Files
os-in-1000-lines/kernel.c
2025-07-27 11:23:29 +03:00

335 lines
9.6 KiB
C

#include "kernel.h"
#include "common.h"
#include <sys/types.h>
extern char __bss[], __bss_end[], __stack_top[];
extern char __free_ram[], __free_ram_end[];
struct sbiret sbi_call(long arg0, long arg1, long arg2, long arg3, long arg4,
long arg5, long fid, long eid) {
register long a0 __asm__("a0") = arg0;
register long a1 __asm__("a1") = arg1;
register long a2 __asm__("a2") = arg2;
register long a3 __asm__("a3") = arg3;
register long a4 __asm__("a4") = arg4;
register long a5 __asm__("a5") = arg5;
register long a6 __asm__("a6") = fid;
register long a7 __asm__("a7") = eid;
__asm__ __volatile__("ecall"
: "=r"(a0), "=r"(a1)
: "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5),
"r"(a6), "r"(a7)
: "memory");
return (struct sbiret){.error = a0, .value = a1};
}
paddr_t alloc_pages(uint32_t n) {
static paddr_t next_paddr = (paddr_t) __free_ram;
paddr_t paddr = next_paddr;
next_paddr += n * PAGE_SIZE;
if (next_paddr > (paddr_t) __free_ram_end)
PANIC("Out ow memowy~ :((");
memset((void *) paddr, 0, n * PAGE_SIZE);
return paddr;
}
void putchar(char ch) {
sbi_call(ch, 0, 0, 0, 0, 0, 0, 1 /* Console Putchar */);
}
__attribute__((naked))
__attribute__((aligned(4)))
void kernel_entry(void) {
__asm__ __volatile__(
// Retrieve the kernel stack of the running process from sscratch
"csrrw sp, sscratch, sp\n"
"addi sp, sp, -4 * 31\n"
"sw ra, 4 * 0(sp)\n"
"sw gp, 4 * 1(sp)\n"
"sw tp, 4 * 2(sp)\n"
"sw t0, 4 * 3(sp)\n"
"sw t1, 4 * 4(sp)\n"
"sw t2, 4 * 5(sp)\n"
"sw t3, 4 * 6(sp)\n"
"sw t4, 4 * 7(sp)\n"
"sw t5, 4 * 8(sp)\n"
"sw t6, 4 * 9(sp)\n"
"sw a0, 4 * 10(sp)\n"
"sw a1, 4 * 11(sp)\n"
"sw a2, 4 * 12(sp)\n"
"sw a3, 4 * 13(sp)\n"
"sw a4, 4 * 14(sp)\n"
"sw a5, 4 * 15(sp)\n"
"sw a6, 4 * 16(sp)\n"
"sw a7, 4 * 17(sp)\n"
"sw s0, 4 * 18(sp)\n"
"sw s1, 4 * 19(sp)\n"
"sw s2, 4 * 20(sp)\n"
"sw s3, 4 * 21(sp)\n"
"sw s4, 4 * 22(sp)\n"
"sw s5, 4 * 23(sp)\n"
"sw s6, 4 * 24(sp)\n"
"sw s7, 4 * 25(sp)\n"
"sw s8, 4 * 26(sp)\n"
"sw s9, 4 * 27(sp)\n"
"sw s10, 4 * 28(sp)\n"
"sw s11, 4 * 29(sp)\n"
// Retrieve and save the sp at the time of exception
"csrr a0, sscratch\n"
"sw a0, 4 * 30(sp)\n"
// Reset the kernel stack
"mv a0, sp\n"
"call handle_trap\n"
"lw ra, 4 * 0(sp)\n"
"lw gp, 4 * 1(sp)\n"
"lw tp, 4 * 2(sp)\n"
"lw t0, 4 * 3(sp)\n"
"lw t1, 4 * 4(sp)\n"
"lw t2, 4 * 5(sp)\n"
"lw t3, 4 * 6(sp)\n"
"lw t4, 4 * 7(sp)\n"
"lw t5, 4 * 8(sp)\n"
"lw t6, 4 * 9(sp)\n"
"lw a0, 4 * 10(sp)\n"
"lw a1, 4 * 11(sp)\n"
"lw a2, 4 * 12(sp)\n"
"lw a3, 4 * 13(sp)\n"
"lw a4, 4 * 14(sp)\n"
"lw a5, 4 * 15(sp)\n"
"lw a6, 4 * 16(sp)\n"
"lw a7, 4 * 17(sp)\n"
"lw s0, 4 * 18(sp)\n"
"lw s1, 4 * 19(sp)\n"
"lw s2, 4 * 20(sp)\n"
"lw s3, 4 * 21(sp)\n"
"lw s4, 4 * 22(sp)\n"
"lw s5, 4 * 23(sp)\n"
"lw s6, 4 * 24(sp)\n"
"lw s7, 4 * 25(sp)\n"
"lw s8, 4 * 26(sp)\n"
"lw s9, 4 * 27(sp)\n"
"lw s10, 4 * 28(sp)\n"
"lw s11, 4 * 29(sp)\n"
"lw sp, 4 * 30(sp)\n"
"sret\n"
);
}
void handle_trap(struct trap_frame *f) {
uint32_t scause = READ_CSR(scause);
uint32_t stval = READ_CSR(stval);
uint32_t user_pc = READ_CSR(sepc);
PANIC("Unexpected trap: scause=%x, stval=%x, sepc=%x\n", scause, stval, user_pc);
}
__attribute__((naked)) void switch_context(uint32_t *prev_sp,
uint32_t *next_sp) {
__asm__ __volatile__(
// Save calle-saved registers onto the stack of current proccess
"addi sp, sp, -13 * 4\n" // Allocate stack space for 13 4-byte registers
"sw ra, 0 * 4(sp)\n" // Save calle-saved registers only
"sw s0, 1 * 4(sp)\n"
"sw s1, 2 * 4(sp)\n"
"sw s2, 3 * 4(sp)\n"
"sw s3, 4 * 4(sp)\n"
"sw s4, 5 * 4(sp)\n"
"sw s5, 6 * 4(sp)\n"
"sw s6, 7 * 4(sp)\n"
"sw s7, 8 * 4(sp)\n"
"sw s8, 9 * 4(sp)\n"
"sw s9, 10 * 4(sp)\n"
"sw s10, 11 * 4(sp)\n"
"sw s11, 12 * 4(sp)\n"
// Switch stack pointer
"sw sp, (a0)\n" // *prev_sp = a0;
"lw sp, (a1)\n" // Switch stack pointer (sp) here
// Restore calle-saved registers from the next process's stack
"lw ra, 0 * 4(sp)\n" // Save calle-saved registers only
"lw s0, 1 * 4(sp)\n"
"lw s1, 2 * 4(sp)\n"
"lw s2, 3 * 4(sp)\n"
"lw s3, 4 * 4(sp)\n"
"lw s4, 5 * 4(sp)\n"
"lw s5, 6 * 4(sp)\n"
"lw s6, 7 * 4(sp)\n"
"lw s7, 8 * 4(sp)\n"
"lw s8, 9 * 4(sp)\n"
"lw s9, 10 * 4(sp)\n"
"lw s10, 11 * 4(sp)\n"
"lw s11, 12 * 4(sp)\n"
"addi sp, sp, 13 * 4\n" // We've popped 13 4-byte registers from the stack
"ret\n"
);
}
struct process procs[PROCS_MAX];
struct process *create_process(uint32_t pc) {
// Find an unused proccess control structure
struct process *proc = NULL;
int i;
for (i = 0; i <= PROCS_MAX; i++) {
if (procs[i].state == PROC_UNUSED) {
proc = &procs[i];
break;
}
}
if (!proc)
PANIC("No free process slots found! Fuck off!");
// Stack calle-saved registers
uint32_t *sp = (uint32_t *) &proc->stack[sizeof(proc->stack)];
*--sp = 0; // s11
*--sp = 0; // s10
*--sp = 0; // s9
*--sp = 0; // s8
*--sp = 0; // s7
*--sp = 0; // s6
*--sp = 0; // s5
*--sp = 0; // s4
*--sp = 0; // s3
*--sp = 0; // s2
*--sp = 0; // s1
*--sp = 0; // s0
*--sp = (uint32_t) pc; // ra
// Initialize fields
proc->pid = i + 1;
proc->state = PROC_RUNNABLE;
proc->sp = (uint32_t) sp;
return proc;
}
void delay(void) {
for (int i = 0; i < 69696969; i++)
__asm__ __volatile__("nop"); // do nothing
}
struct process *current_proc;
struct process *idle_proc;
void yield(void) {
// Search for a runnable process
struct process *next = idle_proc;
for (int i = 0; i < PROCS_MAX; i++) {
struct process *proc = &procs[(current_proc->pid + i) % PROCS_MAX];
if (proc->state == PROC_RUNNABLE && proc->pid > 0) {
next = proc;
break;
}
}
// Return and continue if there's no other processes running than current one
if (next == current_proc)
return;
__asm__ __volatile__(
"csrw sscratch, %[sscratch]\n"
:
: [sscratch] "r" ((uint32_t) &next->stack[sizeof(next->stack)])
);
// Context switch
struct process *prev = current_proc;
current_proc = next;
switch_context(&prev->sp, &next->sp);
}
struct process *proc_a;
struct process *proc_b;
void proc_a_entry(void) {
printf("Start process A\n");
while (1) {
putchar('6');
yield();
}
}
void proc_b_entry(void) {
printf("Start process B\n");
while (1) {
putchar('9');
yield();
}
}
void map_page(uint32_t *table1, uint32_t vaddr, paddr_t paddr, uint32_t flags) {
if (!is_aligned(vaddr, PAGE_SIZE))
PANIC("Unaligned vaddr %x", vaddr);
if (!is_aligned(paddr, PAGE_SIZE))
PANIC("Unaligned paddr %x", paddr);
uint32_t vpn1 = (vaddr >> 22) & 0x3ff;
if ((table1[vpn1] & PAGE_V) == 0) {
// Create the first level page
uint32_t pt_paddr = alloc_pages(1);
table1[vpn1] = ((pt_paddr / PAGE_SIZE) << 10) | PAGE_V;
}
// Set the second level page table entry to map the physical page
uint32_t vpn0 = (vaddr >> 12) & 0x3ff;
uint32_t *table0 = (uint32_t *) ((table1[vpn1] >> 10) * PAGE_SIZE);
table0[vpn0] = ((paddr / PAGE_SIZE) << 10) | flags | PAGE_V;
}
void kernel_main(void) {
// printf("\n\nHello %s\n", "friend :3");
// printf("60 + 9 = %d, %x\n", 60 + 9, 0x1234abcd);
// for (;;) {
// __asm__ __volatile__("wfi");
// }
memset(__bss, 0, (size_t) __bss_end - (size_t) __bss);
printf("\n\n");
WRITE_CSR(stvec, (uint32_t) kernel_entry);
idle_proc = create_process((uint32_t) NULL);
idle_proc->pid = 0; // idle
current_proc = idle_proc;
// paddr_t paddr0 = alloc_pages(2);
// paddr_t paddr1 = alloc_pages(1);
// printf("alloc_pages test paddr0=%x\n", paddr0);
// printf("alloc_pages test paddr1=%x\n", paddr1);
proc_a = create_process((uint32_t) proc_a_entry);
proc_b = create_process((uint32_t) proc_b_entry);
yield();
PANIC("Switched to idle process");
// __asm__ __volatile__("unimp"); // calls a unimp which triggers kernel panic
//
// PANIC("BOOOO!!! GET INFECTED WITH BOOTKID YOU SKID! 0x1337h@x0r");
// printf("you lucky bitch got away\n");
}
__attribute__((section(".text.boot")))
__attribute__((naked))
void boot(void) {
__asm__ __volatile__(
"mv sp, %[stack_top]\n" // Set the stack pointer
"j kernel_main\n" // Jump to the kernel main function
:
: [stack_top] "r" (__stack_top) // Pass the stack top address as %[stack_top]
);
}