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FOREWORD

If you’ve read a book or two on computer security, you may have encountered a
common perspective on the field of cryptography. “Cryptography,” they say, “is
the strongest link in the chain.” Strong praise indeed, but it’s also somewhat
dismissive. If cryptography is in fact the strongest part of your system, why
invest time improving it when there are so many other areas of the system that
will benefit more from your attention?

If there’s one thing that I hope you take away from this book, it’s that this
view of cryptography is idealized; it’s largely a myth. Cryptography n theory is
strong, but cryptography in practice is as prone to failure as any other aspect of a
security system. This is particularly true when cryptographic implementations
are developed by non-experts without sufficient care or experience, as is the case
with many cryptographic systems deployed today. And it gets worse: when
cryptographic implementations fail, they often do so in uniquely spectacular
ways.

But why should you care, and why this book?

When I began working in the field of applied cryptography nearly two
decades ago, the information available to software developers was often
piecemeal and outdated. Cryptographers developed algorithms and protocols,
and cryptographic engineers implemented them to create opaque, poorly
documented cryptographic libraries designed mainly for other experts. There
was—and there has been—a huge divide between those who know and
understand cryptographic algorithms and those who use them (or ignore them at
their peril). There are a few decent textbooks on the market, but even fewer have
provided useful tools for the practitioner.

The results have not been pretty. I'm talking about compromises with labels
like “CVE” and “Severity: High,” and in a few alarming cases, attacks on slide
decks marked “T'OP SECRET.” You may be familiar with some of the more
famous examples if only because they’ve affected systems that you rely on. Many
of these problems occur because cryptography is subtle and mathematically
elegant, and because cryptographic experts have failed to share their knowledge
with the engineers who actually write the software.

Thankfully, this has begun to change and this book is a symptom of that
change.



Serious Cryptography was written by one of the foremost experts in applied
cryptography, but it’s not targeted at other experts. Nor, for that matter, is it
intended as a superficial overview of the field. On the contrary, it contains a
thorough and up-to-date discussion of cryptographic engineering, designed to
help practitioners who plan to work in this field do better. In these pages, you’ll
learn not only how cryptographic algorithms work, but how to use them in real
systems.

The book begins with an exploration of many of the key cryptographic
primitives, including basic algorithms like block ciphers, public encryption
schemes, hash functions, and random number generators. Each chapter provides
working examples of how the algorithms work and what you should or should
not do. Final chapters cover advanced subjects such as TLS, as well as the future
of cryptography—what to do after quantum computers arrive to complicate our
lives.

While no single book can solve all our problems, a bit of knowledge can go a
long way. This book contains plenty of knowledge. Perhaps enough to make
real, deployed cryptography live up to the high expectations that so many have
of it.

Happy reading.

Matthew D. Green

Professor

Information Security Institute
Johns Hopkins University



PREFACE

I wrote this book to be the one I wish I had when I started learning crypto. In
2005, I was studying for my masters degree near Paris, and I eagerly registered
for the crypto class in the upcoming semester. Unfortunately, the class was
canceled because too few students had registered. “Crypto is too hard,” the
students argued, and instead, they enrolled en masse in the computer graphics
and database classes.

I’'ve heard “crypto is hard” more than a dozen times since then. But is crypto
really that hard? To play an instrument, master a programming language, or put
the applications of any fascinating field into practice, you need to learn some
concepts and symbols, but doing so doesn’t take a PhD. I think the same applies
to becoming a competent cryptographer. I also believe that crypto is perceived
as hard because cryptographers haven’t done a good job of teaching it.

Another reason why I felt the need for this book is that crypto is no longer just
about crypto—it has expanded into a multidisciplinary field. To do anything
useful and relevant in crypto, you’ll need some understanding of the concepts
around crypto: how networks and computers work, what users and systems need,
and how attackers can abuse algorithms and their implementations. In other
words, you need a connection to reality.

This Book’s Approach

The initial title of this book was Crypro for Real to stress the practice-oriented,
real-world, no-nonsense approach I aimed to follow. I didn’t want to make
cryptography approachable by dumbing it down, but instead tie it to real
applications. I provide source code examples and describe real bugs and horror
stories.

Along with a clear connection to reality, other cornerstones of this book are
its simplicity and modernity. I focus on simplicity in form more than in



substance: I present many non-trivial concepts, but without the dull
mathematical formalism. Instead, I attempt to impart an understanding of
cryptography’s core ideas, which are more important than remembering a bunch
of equations. To ensure the book’s modernity, I cover the latest developments
and applications of cryptography, such as TLS 1.3 and post-quantum
cryptography. I don’t discuss the details of obsolete or insecure algorithms such
as DES or MD5. An exception to this is RC4, but it’s only included to explain
how weak it is and to show how a stream cipher of its kind works.

Serious Cryptography isn’t a guide for crypto software, nor is it a compendium
of technical specifications—stuff that you’ll easily find online. Instead, the
foremost goal of this book is to get you excited about crypto and to teach you its
fundamental concepts along the way.

Who This Book Is For

While writing, I often imagined the reader as a developer who’d been exposed to
crypto but still felt clueless and frustrated after attempting to read abstruse
textbooks and research papers. Developers often need—and want—a better
grasp of crypto to avoid unfortunate design choices, and I hope this book will
help.

But if you aren’t a developer, don’t worry! The book doesn’t require any
coding skills, and is accessible to anyone who understands the basics of computer
science and college-level math (notions of probabilities, modular arithmetic, and
SO on).

This book can nonetheless be intimidating, and despite its relative
accessibility, it requires some effort to get the most out of it. I like the
mountaineering analogy: the author paves the way, providing you with ropes and
ice axes to facilitate your work, but you make the ascent yourself. Learning the
concepts in this book will take an effort, but there will be a reward at the end.

How This Book Is Organized

The book has fourteen chapters, loosely split into four parts. The chapters are
mostly independent from one another, except for Chapter 9, which lays the
foundations for the three subsequent chapters. I also recommend reading the
first three chapters before anything else.

Fundamentals



Chapter 1: Encryption introduces the notion of secure encryption, from
weak pen-and-paper ciphers to strong, randomized encryption.

Chapter 2: Randomness describes how a pseudorandom generator works,
what it takes for one to be secure, and how to use one securely.

Chapter 3: Cryptographic Security discusses theoretical and practical
notions of security, and compares provable security with probable security.

Symmetric Crypto

Chapter 4: Block Ciphers deals with ciphers that process messages block
per block, focusing on the most famous one, the Advanced Encryption

Standard (AES).

Chapter 5: Stream Ciphers presents ciphers that produce a stream of
random-looking bits that are XORed with messages to be encrypted.

Chapter 6: Hash Functions is about the only algorithms that don’t work
with a secret key, which turn out to be the most ubiquitous crypto building
blocks.

Chapter 7: Keyed Hashing explains what happens if you combine a hash
function with a secret key, and how this serves to authenticate messages.
Chapter 8: Authenticated Encryption shows how some algorithms can
both encrypt and authenticate a message with examples, such as the

standard AES-GCM.

Asymmetric Crypto

Chapter 9: Hard Problems lays out the fundamental concepts behind
public-key encryption, using notions from computational complexity.
Chapter 10: RSA leverages the factoring problem in order to build secure
encryption and signature schemes with a simple arithmetic operation.
Chapter 11: Diffie-Hellman extends asymmetric cryptography to the
notion of key agreement, wherein two parties establish a secret value using
only non-secret values.

Chapter 12: Elliptic Curves provides a gentle introduction to elliptic
curve cryptography, which is the fastest kind of asymmetric cryptography.

Applications



e Chapter 13: TLS focuses on Transport Layer Security (T'LS), arguably the
most important protocol in network security.

e Chapter 14: Quantum and Post-Quantum concludes with a note of
science fiction by covering the concepts of quantum computing and a new

kind of cryptography.
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1
ENCRYPTION

Encryption is the principal application of cryptography; it makes data
incomprehensible in order to ensure its confidentiality. Encryption uses an
algorithm called a cipher and a secret value called the key; if you don’t know
the secret key, you can’t decrypt, nor can you learn any bit of information on the
encrypted message—and neither can any attacker.

"This chapter will focus on symmetric encryption, which is the simplest kind of
encryption. In symmetric encryption, the key used to decrypt is the same as the key
used to encrypt (unlike asymmetric encryption, or public-key encryption, in which the
key used to decrypt is different from the key used to encrypt). You'll start by
learning about the weakest forms of symmetric encryption, classical ciphers that
are secure against only the most illiterate attacker, and then move on to the
strongest forms that are secure forever.

The Basics

When we’re encrypting a message, plaintext refers to the unencrypted message
and ciphertext to the encrypted message. A cipher is therefore composed of two
functions: encryption turns a plaintext into a ciphertext, and decryption turns a
ciphertext back into a plaintext. But we’ll often say “cipher” when we actually
mean “encryption.” For example, Figure 1-1 shows a cipher, E, represented as a
box taking as input a plaintext, P, and a key, K, and producing a ciphertext, C, as
output. I'll write this relation as C = E(K, P). Similarly, when the cipher is in
decryption mode, I'll write D(K, C).
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Figure 1-1: Basic encryption and decryption

For some ciphers, the ciphertext is the same size as the plaintext; for some others, the
ciphertext is slightly longer. However, ciphertexts can never be shorter than
plaintexts.

Classical Ciphers

Classical ciphers are ciphers that predate computers and therefore work on
letters rather than on bits. They are much simpler than a modern cipher like
DES—for example, in ancient Rome or during WWI, you couldn’t use a
computer chip’s power to scramble a message, so you had to do everything with
only pen and paper. There are many classical ciphers, but the most famous are
the Caesar cipher and Vigeneére cipher.

The Caesar Cipher

The Caesar cipher is so named because the Roman historian Suetonius reported
that Julius Caesar used it. It encrypts a message by shifting each of the letters
down three positions in the alphabet, wrapping back around to A if the shift
reaches Z. For example, ZOO encrypts to CRR, FDHVDU decrypts to
CAESAR, and so on, as shown in Figure 1-2. There’s nothing special about the
value 3; it’s just easier to compute in one’s head than 11 or 23.

The Caesar cipher is super easy to break: to decrypt a given ciphertext, simply
shift the letters three positions back to retrieve the plaintext. That said, the
Caesar cipher may have been strong enough during the time of Crassus and
Cicero. Because no secret key is involved (it’s always 3), users of Caesar’s cipher
only had to assume that attackers were illiterate or too uneducated to figure it
out—an assumption that’s much less realistic today. (In fact, in 2006, the Italian
police arrested a mafia boss after decrypting messages written on small scraps of
paper that were encrypted using a variant of the Caesar cipher: ABC was



encrypted to 456 instead of DEF, for example.)

c A E S A R
>>>3 >>>3 >>>3 >>>3 >>>3 >>>3

ST T
SN I B '

]:--I—i - ) —-—

<<<3 <<<3 <<<3 <<<3 <<<d <<<3
e A E S R

Figure 1-2: The Caesar cipher

Could the Caesar cipher be made more secure? You can, for example, imagine
a version that uses a secret shift value instead of always using 3, but that wouldn’t
help much because an attacker could easily try all 25 possible shift values until
the decrypted message makes sense.

The Vigenere Cipher

It took about 1500 years to see a meaningful improvement of the Caesar cipher
in the form of the Vigenere cipher, created in the 16th century by an Italian
named Giovan Battista Bellaso. The name “Vigeneére” comes from the
Frenchman Blaise de Vigenére, who invented a different cipher in the 16th
century, but due to historical misattribution, Vigenere’s name stuck.
Nevertheless, the Vigenére cipher became popular and was later used during the
American Civil War by Confederate forces and during WWI by the Swiss Army,
among others.

The Vigenere cipher is similar to the Caesar cipher, except that letters aren’t
shifted by three places but rather by values defined by a key, a collection of
letters that represent numbers based on their position in the alphabet. For
example, if the key is DUH, letters in the plaintext are shifted using the values 3,
20, 7 because D is three letters after A, U is 20 letters after A, and H is seven
letters after 4. The 3, 20, 7 pattern repeats until you've encrypted the entire
plaintext. For example, the word CRYPTO would encrypt to FLESNV using
DUH as the key: C is shifted three positions to F, R is shifted 20 positions to L,



and so on. Figure 1-3 illustrates this principle when encrypting the sentence
THEY DRINK THE TEA.

Y D R I N K T H E T E A

RO S O O Y O I N R O N

U-~20 D~3|lU~20|H~7||D~3||JU~20||H~7||D~3|JU~20)|H~7}|D~3||U~20||H~7

22220 227 || =223 ||=2220)| 527 || 2223 ||22220|| 527 || 2223 ||=2220|| =27 || 2223 ||=2220]| ===/

B N T N T TN SN S R B M

w B L B X Y L H R W B L W Y H
Figure 1-3: The Vigenere cipher

The Vigenere cipher is clearly more secure than the Caesar cipher, yet it’s still
fairly easy to break. The first step to breaking it is to figure out the key’s length.
For example, take the example in Figure 1-3, wherein THEY DRINK THE
TEA encrypts to WBLBXYLHRWBLWYH with the key DUH. (Spaces are
usually removed to hide word boundaries.) Notice that in the ciphertext
WBLBXYLHRWBLWYH, the group of three letters WBL appears twice in
the ciphertext at nine-letter intervals. This suggests that the same three-letter
word was encrypted using the same shift values, producing WBL each time. A
cryptanalyst can then deduce that the key’s length is either nine or a value
divisible by nine (that is, three). Furthermore, they may guess that this repeated
three-letter word is THE and therefore determine DUH as a possible
encryption key.

The second step to breaking the Vigenére cipher is to determine the actual
key using a method called frequency analysis, which exploits the uneven
distribution of letters in languages. For example, in English, E is the most
common letter, so if you find that X is the most common letter in a ciphertext,
then the most likely plaintext value at this position is E.

Despite its relative weakness, the Vigenére cipher may have been good
enough to securely encrypt messages when it was used. First, because the attack
just outlined needs messages of at least a few sentences, it wouldn’t work if the
cipher was used to encrypt only short messages. Second, most messages needed
to be secret only for short periods of time, so it didn’t matter if ciphertexts were
eventually decrypted by the enemy. (The 19th-century cryptographer Auguste
Kerckhoffs estimated that most encrypted wartime messages required
confidentiality for only three to four hours.)



How Ciphers Work

Based on simplistic ciphers like the Caesar and Vigenere ciphers, we can try to
abstract out the workings of a cipher, first by identifying its two main
components: a permutation and a mode of operation. A permutation is a function
that transforms an item (in cryptography, a letter or a group of bits) such that
each item has a unique inverse (for example, the Caesar cipher’s three-letter
shift). A mode of operation is an algorithm that uses a permutation to process
messages of arbitrary size. The mode of the Caesar cipher is trivial: it just
repeats the same permutation for each letter, but as you’ve seen, the Vigenére
cipher has a more complex mode, where letters at different positions undergo
different permutations.

In the following sections, I discuss in more detail what these are and how they
relate to a cipher’s security. I use each component to show why classical ciphers
are doomed to be insecure, unlike modern ciphers that run on high-speed
computers.

The Permutation

Most classical ciphers work by replacing each letter with another letter—in other
words, by performing a substitution. In the Caesar and Vigenere ciphers, the
substitution is a shift in the alphabet, though the alphabet or set of symbols can
vary: instead of the English alphabet, it could be the Arabic alphabet; instead of
letters, it could be words, numbers, or ideograms, for example. The
representation or encoding of information is a separate matter that is mostly
irrelevant to security. (We're just considering Latin letters because that’s what
classical ciphers use.)

A cipher’s substitution can’t be just any substitution. It should be a
permutation, which is a rearrangement of the letters A to Z, such that each letter
has a unique inverse. For example, a substitution that transforms the letters A, B,
C, and D, respectively to C, A, D, and B is a permutation, because each letter
maps onto another single letter. But a substitution that transforms A4, B, C, D to
D, A, A, C is not a permutation, because both B and C map onto A. With a
permutation, each letter has exactly one inverse.

Still, not every permutation is secure. In order to be secure, a cipher’s
permutation should satisfy three criteria:

e The permutation should be determined by the key, so as to keep the



permutation secret as long as the key is secret. In the Vigenére cipher, if
you don’t know the key, you don’t know which of the 26 permutations was
used; hence, you can’t easily decrypt.

¢ Different keys should result in different permutations. Otherwise, it
becomes easier to decrypt without the key: if different keys result in
identical permutations, that means there are fewer distinct keys than
distinct permutations, and therefore fewer possibilities to try when
decrypting without the key. In the Vigenere cipher, each letter from the key
determines a substitution; there are 26 distinct letters, and as many distinct
permutations.

e The permutation should look random, loosely speaking. There should
be no pattern in the ciphertext after performing a permutation, because
patterns make a permutation predictable for an attacker, and therefore less
secure. For example, the Vigenere cipher’s substitution is pretty predictable:
if you determine that 4 encrypts to F, you could conclude that the shift
value is 5 and you would also know that B encrypts to G, that C encrypts to
H, and so on. However, with a randomly chosen permutation, knowing that
A encrypts to F would only tell you that B does #ot encrypt to F.

We’ll call a permutation that satisfies these criteria a secure permutation. But as
you’ll see next, a secure permutation is necessary but not sufficient on its own for
building a secure cipher. A cipher will also need a mode of operation to support
messages of any length.

The Mode of Operation

Say we have a secure permutation that transforms A to X, B to M, and N to L,
for example. The word BANANA therefore encrypts to MXLXLX, where each
occurrence of A is replaced by an X. Using the same permutation for all the
letters in the plaintext thus reveals any duplicate letters in the plaintext. By
analyzing these duplicates, you might not learn the entire message, but you’ll
learn something about the message. In the BANANA example, you don’t need the
key to guess that the plaintext has the same letter at the three X positions and
another same letter at the two L positions. So if you know, for example, that the
message is a fruit’s name, you could determine that it’s BANANA rather than
CHERRY, LYCHEE, or another six-letter fruit.

The mode of operation (or just 7zode) of a cipher mitigates the exposure of



duplicate letters in the plaintext by using different permutations for duplicate
letters. The mode of the Vigenére cipher partially addresses this: if the key is N
letters long, then N different permutations will be used for every N consecutive
letters. However, this can still result in patterns in the ciphertext because every
Nth letter of the message uses the same permutation. That’s why frequency
analysis works to break the Vigenere cipher, as you saw earlier.

Frequency analysis can be defeated if the Vigenere cipher only encrypts
plaintexts that are of the same length as the key. But even then, there’s another
problem: reusing the same key several times exposes similarities between
plaintexts. For example, with the key KYN, the words TTE and PIE encrypt to
DGR and ZGR, respectively. Both end with the same two letters (GR), revealing
that both plaintexts share their last two letters as well. Finding these patterns
shouldn’t be possible with a secure cipher.

To build a secure cipher, you must combine a secure permutation with a
secure mode. Ideally, this combination prevents attackers from learning anything
about a message other than its length.

Why Classical Ciphers Are Insecure

Classical ciphers are doomed to be insecure because they’re limited to operations
you can do in your head or on a piece of paper. They lack the computational
power of a computer and are easily broken by simple computer programs. Let’s
see the fundamental reason why that simplicity makes them insecure in today’s
world.

Remember that a cipher’s permutation should look random in order to be
secure. Of course, the best way to look random is to be random—that is, to select
every permutation randomly from the set of all permutations. And there are
many permutations to choose from. In the case of the 26-letter English alphabet,

there are approximately 253

permutations:
26! = 403291461126605635584000000 ~ 288
Here, the exclamation point (!) is the factorial symbol, defined as follows:

nl=nxm—-1)xm-2)x...x3x2

(To see why we end up with this number, count the permutations as lists of
reordered letters: there are 26 choices for the first possible letter, then 25



possibilities for the second, 24 for the third, and so on.) This number is huge: it’s
of the same order of magnitude as the number of atoms in the human body. But
classical ciphers can only use a small fraction of those permutations—namely,
those that need only simple operations (such as shifts) and that have a short
description (like a short algorithm or a small look-up table). The problem is that
a secure permutation can’t accommodate both of these limitations.

You can get secure permutations using simple operations by picking a random
permutation, representing it as a table of 25 letters (enough to represent a
permutation of 26 letters, with the 26th one missing), and applying it by looking
up letters in this table. But then you wouldn’t have a short description. For
example, it would take 250 letters to describe 10 different permutations, rather
than just the 10 letters used in the Vigenere cipher.

You can also produce secure permutations with a short description. Instead of
just shifting the alphabet, you could use more complex operations such as
addition, multiplication, and so on. That’s how modern ciphers work: given a
key of typically 128 or 256 bits, they perform hundreds of bit operations to
encrypt a single letter. This process is fast on a computer that can do billions of
bit operations per second, but it would take hours to do by hand, and would still
be vulnerable to frequency analysis.

Perfect Encryption: The One-Time Pad

Essentially, a classical cipher can’t be secure unless it comes with a huge key, but
encrypting with a huge key is impractical. However, the one-time pad is such a
cipher, and it is the most secure cipher. In fact, it guarantees perfect secrecy: even
if an attacker has unlimited computing power, it’s impossible to learn anything
about the plaintext except for its length.

In the next sections, I’ll show you how a one-time pad works and then offer a
sketch of its security proof.

Encrypting with the One-Time Pad

The one-time pad takes a plaintext, P, and a random key, K| that’s the same
length as P and produces a ciphertext C, defined as

C=PoK

where C, P, and K are bit strings of the same length and where @ is the bitwise



exclusive OR operation (XOR), definedas 0@ 0=0,0e1=1,1e0=1,1@1 =
0.

NOTE

I'm presenting the one-time pad in its usual form, as working on bits, but it can be
adapted to other symbols. With letters, for example, you would end up with a variant
of the Caesar cipher with a shift index picked at random for each letter.

The one-time pad’s decryption is identical to encryption; it’s just an XOR: P =
C e K. Indeed, we can verify C ® K= P ® K ® K = P because XORing K with itself
gives the all-zero string 000 . . . 000. That’s it—even simpler than the Caesar
cipher.

For example, if P = 01101101 and K = 10110100, then we can calculate the
following:

C=P®K=01101101®10110100= 11011001
Decryption retrieves P by computing the following:
P=Ce®K=11011001©10110100=01101101

The important thing is that a one-time pad can only be used one time: each key
K should be used only once. If the same K is used to encrypt P; and P, to C} and

C,, then an eavesdropper can compute the following:
CoeC=P2K)e(P2K)=P ®P)®K®K=P ©P,

An eavesdropper would thus learn the XOR difference of P; and P,

information that should be kept secret. Moreover, if either plaintext message is
known, then the other message can be recovered.

Of course, the one-time pad is utterly inconvenient to use because it requires a
key as long as the plaintext and a new random key for each new message or
group of data. To encrypt a one-terabyte hard drive, you’d need another one-
terabyte drive to store the key! Nonetheless, the one-time pad has been used

throughout history. For example, it was used by the British Special Operations
Executive during WWII, by KGB spies, by the NSA, and is still used today in



specific contexts. (I've heard of Swiss bankers who couldn’t agree on a cipher
trusted by both parties and ended up using one-time pads, but I don’t
recommend doing this.)

Why Is the One-Time Pad Secure?

Although the one-time pad is not practical, it’s important to understand what
makes it secure. In the 1940s, American mathematician Claude Shannon proved
that the one-time pad’s key must be at least as long as the message to achieve
perfect secrecy. The proof’s idea is fairly simple. You assume that the attacker
has unlimited power, and thus can try all the keys. The goal is to encrypt such
that the attacker can’t rule out any possible plaintext given some ciphertext.

The intuition behind the one-time pad’s perfect secrecy goes as follows: if Kis
random, the resulting C looks as random as K to an attacker because the XOR of
a random string with any fixed string yields a random string. To see this,
consider the probability of getting 0 as the first bit of a random string (namely, a
probability of 1/2). What’s the probability that a random bit XORed with the
second bit is 0? Right, 1/2 again. The same argument can be iterated over bit
strings of any length. The ciphertext C thus looks random to an attacker that
doesn’t know K, so it’s literally impossible to learn anything about P given C,
even for an attacker with unlimited time and power. In other words, knowing
the ciphertext gives no information whatsoever about the plaintext except its

length—pretty much the definition of a secure cipher.
For example, if a ciphertext is 128 bits long (meaning the plaintext is 128 bits
as well), there are 2!2® possible ciphertexts; therefore, there should be 21%%

possible plaintexts from the attacker’s point of view. But if there are fewer than

2128 possible keys, the attacker can rule out some plaintexts. If the key is only 64

bits, for example, the attacker can determine the 26 possible plaintexts and rule
out the overwhelming majority of 128-bit strings. The attacker wouldn’t learn
what the plaintext is, but they would learn what the plaintext is not, which makes

the encryption’s secrecy imperfect.

As you can see, you must have a key as long as the plaintext to achieve perfect
security, but this quickly becomes impractical for real-world use. Next, I'll
discuss the approaches taken in modern-day encryption to achieve the best
security that’s both possible and practical.



PROBABILITY IN CRYPTOGRAPHY

A probability is a number that expresses the likelihood, or
chance, of some event happening. It’s expressed as a
number between 0 and 1, where 0 means “never” and 1
means “always.” The higher the probability, the greater
the chance. You'll find many explanations of probability,
usually in terms of white balls and red balls in a bag and

the probability of picking a ball of either color.

Cryptography often uses probabilities to measure an
attack’s chances of success, by 1) counting the number of
successful events (for example, the event “find the one
correct secret key”) and 2) counting the total number of
possible events (for example, the total number of keys is
2" if we deal with #-bit keys). In this example, the
probability that a randomly chosen key is the correct one
is 1/2”, or the count of successful events (1 secret key) and
the count of possible events (2” possible keys). The

number 1/2” is negligibly small for common key lengths
such as 128 and 256.

The probability of an event not happening is 1 — p, if the
event’s probability is p. The probability of getting a
wrong key in our previous example is therefore 1 — 1/2”, a
number very close to 1, meaning almost certainty.

\_ J

Encryption Security

You've seen that classical ciphers aren’t secure and that a perfectly secure cipher
like the one-time pad is impractical. We’ll thus have to give a little in terms of



security if we want secure #nd usable ciphers. But what does “secure” really
mean, besides the obvious and informal “eavesdroppers can’t decrypt secure
messages’?

Intuitively, a cipher is secure if, even given a large number of plaintext—
. : . : ; : :
ciphertext pairs, nothing can be learned about the cipher’s behavior when applied
to other plaintexts or ciphertexts. This opens up new questions:

e How does an attacker come by these pairs? How large is a “large number”?
This is all defined by attack models, assumptions about what the attacker can
and cannot do.

e What could be “learned” and what “cipher’s behavior” are we talking
about? This is defined by security goals, descriptions of what is considered a
successful attack.

Attack models and security goals must go together; you can’t claim that a
system is secure without explaining against whom or from what it’s safe. A
security notion is thus the combination of some security goal with some attack
model. We’ll say that a cipher achieves a certain security notion if any attacker
working in a given model can’t achieve the security goal.

Attack Models

An attack model is a set of assumptions about how attackers might interact with
a cipher and what they can and can’t do. The goals of an attack model are as
follows:

e To set requirements for cryptographers who design ciphers, so that they
know what attackers and what kinds of attacks to protect against.

e To give guidelines to users, about whether a cipher will be safe to use in
their environment.

e To provide clues for cryptanalysts who attempt to break ciphers, so they
know whether a given attack is valid. An attack is only valid if it’s doable in
the model considered.

Attack models don’t need to match reality exactly; they’re an approximation.
As the statistician George E. P. Box put it, “all models are wrong; the practical
question is how wrong do they have to be to not be useful.” To be useful in
cryptography, attack models should at least encompass what attackers can



actually do to attack a cipher. It’s okay and a good thing if a model overestimates
attackers’ capabilities, because it helps anticipate future attack techniques—only
the paranoid cryptographers survive. A bad model underestimates attackers and
provides false confidence in a cipher by making it seem secure in theory when
it’s not secure in reality.

Kerckhoffs’s Principle

One assumption made in all models is the so-called Kerckhoffs’s principle, which
states that the security of a cipher should rely only on the secrecy of the key and
not on the secrecy of the cipher. This may sound obvious today, when ciphers
and protocols are publicly specified and used by everyone. But historically,
Dutch linguist Auguste Kerckhoffs was referring to military encryption
machines specifically designed for a given army or division. Quoting from his
1883 essay “La Cryptographie Militaire,” where he listed six requirements of a
military encryption system: “The system must not require secrecy and can be
stolen by the enemy without causing trouble.”

Black-Box Models

Let’s now consider some useful attack models expressed in terms of what the
attacker can observe and what queries they can make to the cipher. A guery for
our purposes is the operation that sends an input value to some function and gets
the output in return, without exposing the details of that function.

An encryption query, for example, takes a plaintext and returns a corresponding
ciphertext, without revealing the secret key.

We call these models black-box models, because the attacker only sees what goes
in and out of the cipher. For example, some smart card chips securely protect a
cipher’s internals as well as its keys, yet you're allowed to connect to the chip
and ask it to decrypt any ciphertext. The attacker would then receive the
corresponding plaintext, which may help them determine the key. That’s a real
example where decryption queries are possible.

There are several different black-box attack models. Here, I list them in order
from weakest to strongest, describing attackers’ capabilities for each model:

o Ciphertext-only attackers (COA) observe ciphertexts but don’t know the
associated plaintexts, and don’t know how the plaintexts were selected.
Attackers in the COA model are passive and can’t perform encryption or



decryption queries.

o Known-plaintext attackers (KPA) observe ciphertexts and do know the
associated plaintexts. Attackers in the KPA model thus get a list of
plaintext—ciphertext pairs, where plaintexts are assumed to be randomly
selected. Again, KPA is a passive attacker model.

o Chosen-plaintext attackers (CPA) can perform encryption queries for
plaintexts of their choice and observe the resulting ciphertexts. This model
captures situations where attackers can choose all or part of the plaintexts
that are encrypted and then get to see the ciphertexts. Unlike COA or KPA,
which are passive models, CPA are active attackers, because they influence
the encryption processes rather than passively eavesdropping.

o Chosen-ciphertext attackers (CCA) can both encrypt and decrypt; that is, they
get to perform encryption queries and decryption queries. The CCA model
may sound ludicrous at first—if you can decrypt, what else do you need>—
but like the CPA model, it aims to represent situations where attackers can
have some influence on the ciphertext and later get access to the plaintext.
Moreover, decrypting something is not always enough to break a system.
For example, some video-protection devices allow attackers to perform
encryption queries and decryption queries using the device’s chip, but in
that context attackers are interested in the key in order to redistribute it; in
this case, being able to decrypt “for free” isn’t sufficient to break the system.

In the preceding models, ciphertexts that are observed as well as queried don’t
come for free. Each ciphertext comes from the computation of the encryption
function. This means that generating 2” plaintext—ciphertext pairs through
encryption queries takes about as much computation as trying 2” keys, for
example. The cost of queries should be taken into account when you’re
computing the cost of an attack.

Gray-Box Models

In a gray-box model, the attacker has access to a cipher’s implementation. This
makes gray-box models more realistic than black-box models for applications
such as smart cards, embedded systems, and virtualized systems, to which
attackers often have physical access and can thus tamper with the algorithms’
internals. By the same token, gray-box models are more difficult to define than
black-box ones because they depend on physical, analog properties rather than



just on an algorithm’s input and outputs, and crypto theory will often fail to
abstract the complexity of the real world.

Side-channel attacks are a family of attacks within gray-box models. A side
channel is a source of information that depends on the implementation of the
cipher, be it in software or hardware. Side-channel attackers observe or measure
analog characteristics of a cipher’s implementation but don’t alter its integrity;
they are moninvasive. For pure software implementations, typical side channels
are the execution time and the behavior of the system that surrounds the cipher,
such as error messages, return values, branches, and so on. In the case of
implementations on smart cards, for example, typical side-channel attackers
measure power consumption, electromagnetic emanations, or acoustic noise.

Invasive attacks are a family of attacks on cipher implementations that are more
powerful than side-channel attacks, and more expensive because they require
sophisticated equipment. You can run basic side-channel attacks with a standard
PC and an off-the-shelf oscilloscope, but invasive attacks require tools such as a
high-resolution microscopes and a chemical lab. Invasive attacks thus consist of a
whole set of techniques and procedures, from using nitric acid to remove a chip’s
packaging to microscopic imagery acquisition, partial reverse engineering, and
possible modification of the chip’s behavior with something like laser fault
injection.

Security Goals

I've informally defined the goal of security as “nothing can be learned about the
cipher’s behavior.” To turn this idea into a rigorous mathematical definition,
cryptographers define two main security goals that correspond to different ideas
of what it means to learn something about a cipher’s behavior:

Indistinguishability (IND) Ciphertexts should be indistinguishable from
random strings. This is usually illustrated with this hypothetical game: if an
attacker picks two plaintexts and then receives a ciphertext of one of the two
(chosen at random), they shouldn’t be able to tell which plaintext was
encrypted, even by performing encryption queries with the two plaintexts
(and decryption queries, if the model is CCA rather than CPA).

Non-malleability (NM) Given a ciphertext C; = E(K, P)), it should be
impossible to create another ciphertext, C,, whose corresponding plaintext,

P, is related to P; in a meaningful way (for example, to create a P, that is



equal to P; ® 1 or to P; @ X for some known value X). Surprisingly, the one-
time pad is malleable: given a ciphertext C; = P; @ K, you can define C, = C; @
1, which is a valid ciphertext of P, = P; @ 1 under the same key K. Oops, so
much for our perfect cipher.

Next, I’ll discuss these security goals in the context of different attack models.

Security Notions

Security goals are only useful when combined with an attack model. The
convention is to write a security notion as GOAL-MODEL. For example, IND-
CPA denotes indistinguishability against chosen-plaintext attackers, NM-CCA
denotes nonmalleability against chosen-ciphertext attackers, and so on. Let’s
start with the security goals for an attacker.

Semantic Security and Randomized Encryption: IND-CPA

The most important security notion is IND-CPA, also called semantic securiry. It
captures the intuition that ciphertexts shouldn’t leak any information about
plaintexts as long as the key is secret. To achieve IND-CPA security, encryption
must return different ciphertexts if called twice on the same plaintext; otherwise,
an attacker could identify duplicate plaintexts from their ciphertexts,
contradicting the definition that ciphertexts shouldn’t reveal any information.

One way to achieve IND-CPA security is to use randomized encryption. As the
name suggests, it randomizes the encryption process and returns different
ciphertexts when the same plaintext is encrypted twice. Encryption can then be
expressed as C = E(K, R, P), where R is fresh random bits. Decryption remains
deterministic, however, because given E(K, R, P), you should always get P,
regardless of the value of R.

What if encryption isn’t randomized? In the IND game introduced in
“Security Goals” on page 12, the attacker picks two plaintexts, P; and P,, and
receives a ciphertext of one of the two, but doesn’t know which plaintext the
ciphertext corresponds to. That is, they get C; = E(K, P;) and have to guess

whether 7 is 1 or 2. In the CPA model, the attacker can perform encryption
queries to determine both C| = E(K, P) and C, = E(K, P,). If encryption isn’t
randomized, it suffices to see if C; is equal to C; or to C, in order to determine

which plaintext was encrypted and thereby win the IND game. Therefore,



randomization is key to the IND-CPA notion.

NOTE

With randomized encryption, cipbertexts must be slightly longer than plaintexts in
order to allow for more than one possible ciphertext per plaintext. For example, if
there are 2°7 possible ciphertexts per plaintext, ciphertexts must be at least 64 bits
longer than plaintexts.

Achieving Semantically Secure Encryption

One of the simplest constructions of a semantically secure cipher uses a
deterministic vandom bit generator (DRBG), an algorithm that returns random-
looking bits given some secret value:

E(K, R, P)= (DRBG(K R) © P, R)

Here, R is a string randomly chosen for each new encryption and given to a
DRBG along with the key (K | | R denotes the string consisting of K followed by
R). This approach is reminiscent of the one-time pad: instead of picking a
random key of the same length as the message, we leverage a random bit
generator to get a random-looking string.

The proof that this cipher is IND-CPA secure is simple, if we assume that the
DRBG produces random bits. The proof works ad absurdum: if you can
distinguish ciphertexts from random strings, which means that you can
distinguish DRBG(K || R) @ P from random, then this means that you can
distinguish DRBG(K || R) from random. Remember that the CPA model lets
you get ciphertexts for chosen values of P, so you can XOR P to DRBG(K, R) @
P and get DRBG(K, R). But now we have a contradiction, because we started by
assuming that DRBG(K, R) can’t be distinguished from random, producing
random strings. So we conclude that ciphertexts can’t be distinguished from
random strings, and therefore that the cipher is secure.

As an exercise, try to determine what other security notions are satisfied by the above
cipher E(K, R, P) = (DRBG(K | | R) ® P, R). Is it NM-CPA? IND-CCA? You’ll

find the answers in the next section.




Comparing Security Notions

You've learned that attack models such as CPA and CCA are combined with
security goals such as NM and IND to build the security notions NM-CPA,
NM-CCA, IND-CPA, and IND-CCA. How are these notions related? Can we
prove that satisfying notion X implies satisfying notion Y?

Some relations are obvious: IND-CCA implies IND-CPA, and NM-CCA
implies NM-CPA, because anything a CPA attacker can do, a CCA attacker can
do as well. That is, if you can’t break a cipher by performing chosen-ciphertext
and chosen-plaintext queries, you can’t break it by performing chosen-plaintext
queries only.

A less obvious relation is that IND-CPA does not imply NM-CPA. To
understand this, observe that the previous IND-CPA construction (DRBG(K, R)
© P, R) is not NM-CPA: given a ciphertext (X, R), you can create the ciphertext
(X @ 1, R), which is a valid ciphertext of P @ 1, thus contradicting the notion of
non-malleability.

But the opposite relation does hold: NM-CPA implies IND-CPA. The
intuition is that IND-CPA encryption is like putting items in a bag: you don’t
get to see them, but you can rearrange their positions in the bag by shaking it up
and down. NM-CPA is more like a safe: once inside, you can’t interact with
what you put in there. But this analogy doesn’t work for IND-CCA and NM-
CCA, which are equivalent notions that each imply the presence of the other. I'll
spare you the proof, which is pretty technical.

( )
TWO TYPES OF ENCRYPTION APPLICATIONS

There are two main types of encryption applications. In-
transit encryption protects data sent from one machine to
another: data is encrypted before being sent and
decrypted after being received, as in encrypted
connections to e-commerce websites. At-rest encryption
protects data stored on an information system. Data is
encrypted before being written to memory and decrypted




before being read. Examples include disk encryption
systems on laptops as well as virtual machine encryption
for cloud virtual instances. The security notions we’ve
seen apply to both types of applications, but the right
notion to consider may depend on the application.
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Asymmetric Encryption

So far we’ve considered only symmetric encryption, where two parties share a
key. In asymmetric encryption, there are two keys: one to encrypt and another to
decrypt. The encryption key is called a public key and is generally considered
publicly available to anyone who wants to send you encrypted messages. The
decryption key, however, must remain secret and is called a private key.

The public key can be computed from the private key, but obviously the
private key can’t be computed from the public key. In other words, it’s easy to
compute in one direction, but not in the other—and that’s the point of public-key
cryptography, whose functions are easy to compute in one direction but
practically impossible to invert.

The attack models and security goals for asymmetric encryption are about the
same as for symmetric encryption, except that because the encryption key is
public, any attacker can make encryption queries by using the public key to
encrypt. The default model for asymmetric encryption is therefore the chosen-
plaintext attacker (CPA).

Symmetric and asymmetric encryption are the two main types of encryption,
and they are usually combined to build secure communication systems. They’re
also used to form the basis of more sophisticated schemes, as you’ll see next.

When Ciphers Do More Than Encryption

Basic encryption turns plaintexts into ciphertexts and ciphertexts into plaintexts,
with no requirements other than security. However, some applications often
need more than that, be it extra security features or extra functionalities. That’s
why cryptographers created variants of symmetric and asymmetric encryption.
Some are well-understood, efficient, and widely deployed, while others are
experimental, hardly used, and offer poor performance.



Authenticated Encryption

Authenticated encryption (AE) is a type of symmetric encryption that returns an
authentication tag in addition to a ciphertext. Figure 1-4 shows authenticated
encryption sets AE(K, P) = (C, T), where the authentication tag 7 is a short
string that’s impossible to guess without the key. Decryption takes K, C, and T
and returns the plaintext P only if it verifies that 7 is a valid tag for that
plaintext—ciphertext pair; otherwise, it aborts and returns some error.

i
P—m= AE <
— |

Figure 1-4: Authenticated encryption

The tag ensures the integrity of the message and serves as evidence that the
ciphertext received is identical to the one sent in the first place by a legitimate
party that knows the key K. When K is shared with only one other party, the tag
also guarantees that the message was sent by that party; that is, it implicitly
authenticates the expected sender as the actual creator of the message.

NOTE

I use “creator” rather than “sender” here because an eavesdropper can record some
(C, 'T) pairs sent by party A to party B and then send them again to B, pretending
to be A. This is called a replay attack, and it can be prevented, for example, by
including a counter number in the message. When a message is decrypted, its counter
145 increased by one: 1 + 1. In this way, one could check the counter to see if a message
has been sent twice, indicating that an attacker is attempting a replay attack by
resending the message. This also enables the detection of lost messages.

Authenticated encryption with associated data (AEAD) is an extension of
authenticated encryption that takes some cleartext and unencrypted data and
uses it to generate the authentication tag AEAD(K, P, A) = (C, T). A typical
application of AEAD is used to protect protocols’ datagrams with a cleartext
header and an encrypted payload. In such cases, at least some header data has to
remain in the clear; for example, destination addresses need to be clear in order



to route network packets.
For more on authenticated encryption, jump to Chapter 8.

Format-Preserving Encryption

A basic cipher takes bits and returns bits; it doesn’t care whether bits represents
text, an image, or a PDF document. The ciphertext may in turn be encoded as
raw bytes, hexadecimal characters, base64, and other formats. But what if you
need the ciphertext to have the same format as the plaintext, as is sometimes
required by database systems that can only record data in a prescribed format?

Format-preserving encryption (FPE) solves this problem. It can create
ciphertexts that have the same format as the plaintext. For example, FPE can
encrypt IP addresses to IP addresses (as shown in Figure 1-5), ZIP codes to ZIP
codes, credit card numbers to credit card numbers with a valid checksum, and so
on.
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Figure 1-5: Format-preserving encryption for IP addresses

Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is the holy grail to cryptographers: it enables
its users to replace a ciphertext, C = E(K, P), with another ciphertext, C' = E(K,
F(P)), for F(P) can be any function of P, and without ever decrypting the initial
ciphertext C. For example, P can be a text document, and F can be the
modification of part of the text. You can imagine a cloud application that stores
your encrypted data, but where the cloud provider doesn’t know what the data is
or the type of changes made when you change that data. Sounds amazing,
doesn’t it?

But there’s a flip side: this type of encryption is slow—so slow that even the
most basic operation would take an unacceptably long time. The first FHE
scheme was created in 2009, and since then more efficient variants appeared, but
it remains unclear whether FHE will ever be fast enough to be useful.

Searchable Encryption



Searchable encryption enables searching over an encrypted database without
leaking the searched terms by encrypting the search query itself. Like fully
homomorphic encryption, searchable encryption could enhance the privacy of
many cloud-based applications by hiding your searches from your cloud
provider. Some commercial solutions claim to offer searchable encryption,
though they’re mostly based on standard cryptography with a few tricks to
enable partial searchability. As of this writing, however, searchable encryption
remains experimental within the research community.

Tweakable Encryption

Tweakable encryption (TE) is similar to basic encryption, except for an additional
parameter called the tweak, which aims to simulate different versions of a cipher
(see Figure 1-6). The tweak might be a unique per-customer value to ensure that
a customer’s cipher can’t be cloned by other parties using the same product, but
the main application of TE is disk encryption. However, TE is not bound to a
single application and is a lower-level type of encryption used to build other
schemes, such as authentication encryption modes.
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Figure 1-6: Tweakable encryption

In disk encryption, TE encrypts the content of storage devices such as hard
drives or solid-state drives. (Randomized encryption can’t be used because it
increases the size of the data, which is unacceptable for files on storage media.)
To make encryption unpredictable, TE uses a tweak value that depends on the
position of the data encrypted, which is usually a sector number or a block index.

How Things Can Go Wrong

Encryption algorithms or implementations thereof can fail to protect
confidentiality in many ways. This can be due to a failure to match the security
requirements (such as “be IND-CPA secure”) or to set requirements matching



reality (if you target only IND-CPA security when attackers can actually
perform chosen-ciphertext queries). Alas, many engineers don’t even think about
cryptographic security requirements and just want to be “secure” without
understanding what that actually means. That’s usually a recipe for disaster.
Let’s look at two examples.

Weak Cipher

Our first example concerns ciphers that can be attacked using cryptanalysis
techniques, as occurred with the 2G mobile communication standard.
Encryption in 2G mobile phones used a cipher called A5/1 that turned out to be
weaker than expected, enabling the interception of calls by anyone with the right
skills and tools. Telecommunication operators had to find workarounds to
prevent the attack.

The 2G standard also defined A572, a cipher for areas other than the EU and US.
AS572 was purposefully weaker to prevent the use of strong encryption everywhere.

That said, attacking AS5/1 isn’t trivial, and it took more than 10 years for
researchers to come up with an effective cryptanalysis method. Furthermore, the
attack is a time-memory trade-off (IMTO), a type of method that first runs
computations for days or weeks in order to build large look-up tables, which are
subsequently used for the actual attack. For A5/1, the precomputed tables are
more than 1TB. Later standards for mobile encryption, such as 3G and LTE,
specify stronger ciphers, but that doesn’t mean that their encryption won’t be
compromised; rather, it simply means that the encryption won’t be
compromised by breaking the symmetric cipher that’s part of the system.

Wrong Model

The next example concerns an invalid attack model that overlooked some side
channels.

Many communication protocols that use encryption ensure that they use
ciphers considered secure in the CPA or CCA model. However, some attacks
don’t require encryption queries, as in the CPA model, nor do they require
decryption queries, as in the CCA model. They simply need validity queries to
tell whether a ciphertext is valid, and these queries are usually sent to the system



responsible for decrypting ciphertexts. Padding oracle attacks are an example of
such attacks, wherein an attacker learns whether a ciphertext conforms to the
required format.

Specifically, in the case of padding oracle attacks, a ciphertext is valid only if
its plaintext has the proper padding, a sequence of bytes appended to the
plaintext to simplify encryption. Decryption fails if the padding is incorrect, and
attackers can often detect decryption failures and attempt to exploit them. For
example, the presence of the Java exception javax.crypto.BadPaddingException
would indicate that an incorrect padding was observed.

In 2010, researchers found padding oracle attacks in several web application
servers. The validity queries consisted of sending a ciphertext to some system
and observing whether it threw an error. Thanks to these queries, they could
decrypt otherwise secure ciphertexts without knowing the key.

Cryptographers often overlook attacks like padding oracle attacks because
they usually depend on an application’s behavior and on how users can interact
with the application. But if you don’t anticipate such attacks and fail to include
them in your model when designing and deploying cryptography, you may have
some nasty surprises.

Further Reading

We discuss encryption and its various forms in more detail throughout this
book, especially how modern, secure ciphers work. Still, we can’t cover
everything, and many fascinating topics won’t be discussed. For example, to
learn the theoretical foundations of encryption and gain a deeper understanding
of the notion of indistinguishability IND), you should read the 1982 paper that
introduced the idea of semantic security, “Probabilistic Encryption and How to
Play Mental Poker Keeping Secret All Partial Information” by Goldwasser and
Micali. If you’re interested in physical attacks and cryptographic hardware, the
proceedings of the CHES conference are the main reference.

There are also many more types of encryption than those presented in this
chapter, including attribute-based encryption, broadcast encryption, functional
encryption, identity-based encryption, message-locked encryption, and proxy re-
encryption, to cite but a few. For the latest research on those topics, you should
check https://eprint.iacr.org/, an electronic archive of cryptography research

papers.
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2
RANDOMNESS

Randomness is found everywhere in cryptography: in the generation of secret
keys, in encryption schemes, and even in the attacks on cryptosystems. Without
randomness, cryptography would be impossible because all operations would
become predictable, and therefore insecure.

This chapter introduces you to the concept of randomness in the context of
cryptography and its applications. We discuss pseudorandom number generators
and how operating systems can produce reliable randomness, and we conclude
with real examples showing how flawed randomness can impact security.

Random or Non-Random?

You’ve probably already heard the phrase “random bits,” but strictly speaking
there is no such thing as a series of random bits. What is random is actually the
algorithm or process that produces a series of random bits; therefore, when we
say “random bits,” we actually mean randomly generated bits.

What do random bits look like? For example, to most people, the 8-bit string
11010110 is more random than 00000000, although both have the same chance
of being generated (namely, 1/256). The value 11010110 looks more random
than 00000000 because it has the signs typical of a randomly generated value.
That is, 11010110 has no obvious pattern.

When we see the string 11010110, our brain registers that it has about as
many zeros (three) as it does ones (five), just like 55 other 8-bit strings
(11111000, 11110100, 11110010, and so on), but only one 8-bit string has eight
zeros. Because the pattern three-zeros-and-five-ones is more likely to occur than
the pattern eight-zeros, we identify 11010110 as random and 00000000 as non-
random, and if a program produces the bits 11010110, you may think that it’s
random, even if it’s not. Conversely, if a randomized program produces



00000000, you’ll probably doubt that it’s random.

This example illustrates two types of errors people often make when
identifying randomness:

Mistaking non-randomness for randomness Thinking that an object was
randomly generated simply because it Jooks random.

Mistaking randomness for non-randomness Thinking that patterns
appearing by chance are there for a reason other than chance.

The distinction between random-looking and actually random is crucial.
Indeed, in crypto, non-randomness is often synonymous with insecurity.

Randomness as a Probability Distribution

Any randomized process is characterized by a probability distribution, which gives
all there is to know about the randomness of the process. A probability
distribution, or simply distribution, lists the outcomes of a randomized process
where each outcome is assigned a probability.

A probability measures the likelihood of an event occurring. It’s expressed as a
real number between 0 and 1 where a probability 0 means impossible and a
probability of 1 means certain. For example, when tossing a two-sided coin, each
side has a probability of landing face up of 1/2, and we usually assume that
landing on the edge of the coin has probability zero.

A probability distribution must include all possible outcomes, such that the
sum of all probabilities is 1. Specifically, if there are N possible events, there are
N probabilities py, py, . . ., pyWith p; + p + .. . + py = 1. In the case of the coin
toss, the distribution is 1/2 for heads and 1/2 for tails. The sum of both
probabilities is equal to 1/2 + 1/2 = 1, because the coin will fall on one of its two
faces.

A uniform distribution occurs when all probabilities in the distribution are
equal, meaning that all outcomes are equally likely to occur. If there are N
events, then each event has probability 1/N. For example, if a 128-bit key is
picked uniformly at random—that is, according to a uniform distribution—then
each of the 21?8 possible keys should have a probability of 1/2128,

In contrast, when a distribution is non-uniform, probabilities aren’t all equal. A
coin toss with a non-uniform distribution is said to be biased, and may yield
heads with probability 1/4 and tails with probability 3/4, for example.



Entropy: A Measure of Uncertainty

Entropy is the measure of uncertainty, or disorder in a system. You might think
of entropy as the amount of surprise found in the result of a randomized process:
the higher the entropy, the less the certainty found in the result.

We can compute the entropy of a probability distribution. If your distribution
consists of probabilities py, p, . . ., pn, then its entropy is the negative sum of all

probabilities multiplied by their logarithm, as shown in this expression:
—py % log(py) — py ¥ log(py) — ... py * log(py)

Here the function log is the binary logarithm, or logarithm in base two. Unlike
the natural logarithm, the binary logarithm expresses the information in bits and
yields integer values when probabilities are powers of two. For example, log(1/2)
= -1, log(1/4) = -2, and more generally log(1/2y) = —n. (That’s why we actually
take the negative sum, in order to end up with a positive number.) Random 128-
bit keys produced using a uniform distribution therefore have the following
entropy:

2128 x (—27128 x Jog(27128)) = —log(27128) = 128 bits

If you replace 128 by any integer n» you will find that the entropy of a
uniformly distributed #-bit string will be 7 bits.

Entropy is maximized when the distribution is uniform because a uniform
distribution maximizes uncertainty: no outcome is more likely than the others.
Therefore, n-bit values can’t have more than # bits of entropy.

By the same token, when the distribution is not uniform, entropy is lower.
Consider the coin toss example. The entropy of a fair toss is the following:

—(1/2) x log (1/2) — (1/2) x log (1/2) = 1/2 + 1/2 = 1 bit

What if one side of the coin has a higher probability of landing face up than
the other? Say heads has a probability of 1/4 and tails 3/4 (remember that the
sum of all probabilities should be 1).

The entropy of such a biased toss is this:

—(3/4) x log(3/4) — (1/4) x log(1/4) = —(3/4) x (=0.415) — (1/4) x (-2) = 0.81 bit



The fact that 0.81 is less than the 1-bit entropy of a fair toss tells us that the
more biased the coin, the less uniform the distribution and the lower the
entropy. Taking this example further, if heads has a probability of 1/10, the
entropy is 0.469; if the probability drops to 1/100, the entropy drops to 0.081.

NOTE

Entropy can also be viewed as a measure of information. For example, the result of a
fair coin toss gives you exactly one bit of information—beads or tails—and you’re
unable to predict the result of the toss in advance. In the case of the unfair coin toss,
you know in advance that tails is more probable, so you can usually predict the
outcorne of the toss. The result of the coin toss gives you the information needed to
predict the result with certainty.

Random Number Generators (RNGs) and Pseudorandom Number
Generators (PRNGs)

Cryptosystems need randomness to be secure and therefore need a component
from which to get their randomness. The job of this component is to return
random bits when requested to do so. How is this randomness generation done?
You’ll need two things:

e A source of uncertainty, or source of entropy, provided by random number
generators (RNNGs).

® A cryptographic algorithm to produce high-quality random bits from the
source of entropy. This is found in pseudorandom number generators

(PRNGs).

Using RNGs and PRNGs is the key to making cryptography practical and
secure. Let’s briefly look at how RNGs work before exploring PRNGs in depth.

Randomness comes from the environment, which is analog, chaotic,
uncertain, and hence unpredictable. Randomness can’t be generated by
computer-based algorithms alone. In cryptography, randomness usually comes
from random number generators (RNGs), which are software or hardware
components that leverage entropy in the analog world to produce unpredictable
bits in a digital system. For example, an RNG might directly sample bits from
measurements of temperature, acoustic noise, air turbulence, or electrical static.



Unfortunately, such analog entropy sources aren’t always available, and their
entropy is often difficult to estimate.

RNGs can also harvest the entropy in a running operating system by drawing
from attached sensors, I/O devices, network or disk activity, system logs,
running processes, and user activities such as key presses and mouse movement.
Such system- and human-generated activities can be a good source of entropy,
but they can be fragile and manipulated by an attacker. Also, they’re slow to
yield random bits.

Quantum random number generators (QRNGs) are a type of RNG that relies on
the randomness arising from quantum mechanical phenomena such as
radioactive decay, vacuum fluctuations, and observing photons’ polarization.
These can provide res/ randomness, rather than just apparent randomness.
However, in practice, QRNGs may be biased and don’t produce bits quickly;
like the previously cited entropy sources, they need an additional component to
produce reliably at high speed.

Pseudorandom number generators (PRNGs) address the challenge we face in
generating randomness by reliably producing many artificial random bits from a
few true random bits. For example, an RNG that translates mouse movements to
random bits would stop working if you stop moving the mouse, whereas a
PRNG always returns pseudorandom bits when requested to do so.

PRNGs rely on RNGs but behave differently: RNGs produce true random
bits relatively slowly from analog sources, in a nondeterministic way, and with
no guarantee of high entropy. In contrast, PRNGs produce random-looking bits
quickly from digital sources, in a deterministic way, and with maximum entropy.
Essentially, PRNGs transform a few unreliable random bits into a long stream of

reliable pseudorandom bits suitable for crypto applications, as shown in Figure
2-1.

\f\/\/_-. RNG l—»=100 . .. 01—=| PRNG —»= 1011001 ... 10110

Figure 2-1: RNGs produce few unreliable bits from analog sources, whereas PRNGS expand
those bits to a long stream of reliable bits.

How PRNGs Work

A PRNG receives random bits from an RNG at regular intervals and uses them
to update the contents of a large memory buffer, called the entropy pool. The
entropy pool is the PRNG’s source of entropy, just like the physical



environment is to an RNG. When the PRNG updates the entropy pool, it mixes
the pool’s bits together to help remove any statistical bias.

In order to generate pseudorandom bits, the PRNG runs a deterministic
random bit generator (DRBG) algorithm that expands some bits from the
entropy pool into a much longer sequence. As its name suggests, a DRBG is
deterministic, not randomized: given one input you will always get the same
output. The PRNG ensures that its DRBG never receives the same input twice,
in order to generate unique pseudorandom sequences.

In the course of its work, the PRNG performs three operations, as follows:

init() Initializes the entropy pool and the internal state of the PRNG

refresh(R) Updates the entropy pool using some data, R, usually sourced from
an RNG

next(N) Returns N pseudorandom bits and updates the entropy pool

The init operation resets the PRNG to a fresh state, reinitializes the entropy
pool to some default value, and initializes any variables or memory buffers used
by the PRNG to carry out the 7efresh and next operations.

The refresh operation is often called reseeding, and its argument R is called a
seed. When no RNG is available, seeds may be unique values hardcoded in a
system. The refresh operation is typically called by the operating system, whereas
next is typically called or requested by applications. The next operation runs the
DRBG and modifies the entropy pool to ensure that the next call will yield
different pseudorandom bits.

Security Concerns

Let’s talk briefly about the way that PRNGs address some high-level security
concerns. Specifically, PRNGs should guarantee backtracking resistance and
prediction resistance. Backtracking resistance (also called forward secrecy) means
that previously generated bits are impossible to recover, whereas prediction
resistance (backward secrecy) means that future bits should be impossible to
predict.

In order to achieve backtracking resistance, the PRNG should ensure that the
transformations performed when updating the state through the refresh and next
operations are irreversible so that if an attacker compromises the system and
obtains the entropy pool’s value, they can’t determine the previous values of the



pool or the previously generated bits. To achieve prediction resistance, the
PRNG should call refresh regularly with R values that are unknown to an
attacker and that are difficult to guess, thus preventing an attacker from
determining future values of the entropy pool, even if the whole pool is
compromised. (Even if the list of R values used were known, you’d need to know
the order in which refresh and next calls were made in order to reconstruct the
pool.)

The PRNG Fortuna

Fortuna is a PRNG construction used in Windows originally designed in 2003
by Niels Ferguson and Bruce Schneier. Fortuna superseded Yarrow, a 1998
design by Kelsey and Schneier now used in the macOS and iOS operating
systems. I won’t provide the Fortuna specification here or show you how to
implement it, but I will try to explain how it works. You'll find a complete
description of Fortuna in Chapter 9 of Cryptography Engineering by Ferguson,
Schneier, and Kohno (Wiley, 2010).

Fortuna’s internal memory includes the following:

e Thirty-two entropy pools, Py, P,, . . ., Ps,, such that P; is used every 2
reseeds.

e A key, K, and a counter, C (both 16 bytes). These form the internal state of
Fortuna’s DRBG.

In simplest terms, Fortuna works like this:

o init() sets K and C to zero and empties the 32 entropy pools P;, where 7 =1 .
.. 32.

o refresh(R) appends the data, R, to one of the entropy pools. The system
chooses the RNGs used to produce R values, and it should call refresh
regularly.

o next(N) updates K using data from one or more entropy pools, where the
choice of the entropy pools depends mainly on how many updates of K have
already been done. The N bits requested are then produced by encrypting C
using K as a key. If encrypting C is not enough, Fortuna encrypts C + 1,
then C + 2, and so on, to get enough bits.



Although Fortuna’s operations look fairly simple, implementing them
correctly is hard. For one thing, you need to get all the details of the algorithm
right—namely, how entropy pools are chosen, the type of cipher to be used in
next, how to behave when no entropy is received, and so on. Although the specs
define most of the details, they don’t include a comprehensive test suite to check
that an implementation is correct, which makes it difficult to ensure that your
implementation of Fortuna will behave as expected.

Even if Fortuna is correctly implemented, security failures may occur for
reasons other than the use of an incorrect algorithm. For example, Fortuna
might not notice if the RNGs fail to produce enough random bits, and as a
result Fortuna will produce lower-quality pseudorandom bits, or it may stop
delivering pseudorandom bits altogether.

Another risk inherent in Fortuna implementations lies in the possibility of
exposing associated seed files to attackers. The data in Fortuna seed files is used to
feed entropy to Fortuna through refresh calls when an RNG is not immediately
available, such as immediately after a system reboot and before the system’s
RNGs have recorded any unpredictable events. However, if an identical seed file
is used twice, then Fortuna will produce the same bit sequence twice. Seed files
should therefore be erased after being used to ensure that they aren’t reused.

Finally, if two Fortuna instances are in the same state because they are sharing
a seed file (meaning they are sharing the same data in the entropy pools,
including the same C and K), then the next operation will return the same bits in
both instances.

Cryptographic vs. Non-Cryptographic PRNGs

There are both cryptographic and non-cryptographic PRNGs. Non-crypto
PRNGs are designed to produce uniform distributions for applications such as
scientific simulations or video games. However, you should never use non-
crypto PRNGs in crypto applications, because they’re insecure—they’re only
concerned with the quality of the bits’ probability distribution and not with their
predictability. Crypto PRNGs, on the other hand, are unpredictable, because
they’re also concerned with the strength of the underlying operations used to
deliver well-distributed bits.

Unfortunately, most PRNGs exposed by programming languages, such as
libc’s rand and drand48, PHP’s rand and mt_rand, Python’s random module, Ruby’s
Random class, and so on, are non-cryptographic. Defaulting to a non-crypto



PRNG is a recipe for disaster because it often ends up being used in crypto
applications, so be sure to use only crypto PRNGs in crypto applications.

A Popular Non-Crypto PRNG: Mersenne Twister

The Mersenne Twister (M'T) algorithm is a non-cryptographic PRNG used (at
the time of this writing) in PHP, Python, R, Ruby, and many other systems. M'T
will generate uniformly distributed random bits without statistical bias, but it’s
predictable: given a few bits produced by MT, it’s easy enough to tell which bits
will follow.

Let’s look under the hood to see what makes the Mersenne Twister insecure.
The MT algorithm is much simpler than that of crypto PRNGs: its internal
state is an array, S, consisting of 624 32-bit words. This array is initially set to
S, S5, - .., Sgrq and evolves to S5, . . ., Sgs, then Sz, . . ., Ser4, and so on,

according to this equation:

Sk+ 624 — Sk+ 397 ® A((Sk /\ OXSOOOOOOO) V (Sk+ 1 /\ OXfffffff))

Here, ® denotes the bitwise XOR (» in the C programming language), A
denotes the bitwise AND (& in C), V denotes the bitwise OR (] in C), and A is
a function that transforms some 32-bit word, , to (x >> 1), if x’s most significant
bit is 0, or to (x >> 1) ® 0x9908b0df otherwise.

Notice in this equation that bits of S interact with each other only through
XORs. The operators A and V never combine two bits of S together, but just
bits of S with bits from the constants 0x80000000 and Ox7fffttff. This way, any
bit from Sg,5 can be expressed as an XOR of bits from S3¢g4, S}, and S5, and any

bit from any future state can be expressed as an XOR combination of bits from
the initial state Sy, . . ., Sg4. (When you express, say, Syrg , 24 = Sgs» as a

function of Sg,s, Sy, and S,,9, you can in turn replace Sg,5 by its expression in
terms of Ss9g, S1, and S,.)

Because there are exactly 624 x 32 = 19,968 bits in the initial state (or 624 32-
bit words), any output bit can be expressed as an equation with at most 19,969
terms (19,968 bits plus one constant bit). That’s just about 2.5 kilobytes of data.

The converse is also true: bits from the initial state can be expressed as an XOR
of output bits.



Linearity Insecurity

We call an XOR combination of bits a linear combination. For example, if X, Y,
and Z are bits, then the expression X @ V' Z is a linear combination, whereas (X
A Y) @ Z is not because there’s an AND (A). If you flip a bitof Xin X ® Ve Z,
then the result changes as well, regardless of the value of the ¥ and Z. In
contrast, if you flip a bit of X in (X A ) @ Z, the result changes only if I’s bit at
the same position is 1. The upshot is that linear combinations are predictable,
because you don’t need to know the value of the bits in order to predict how a
change in their value will affect the result.

For comparison, if the MT algorithm were cryptographically strong, its
equations would be nonlinear and would involve not only single bits but also
AND-combinations  (products)  of  bits, such as 5,555,350 or

S1757565757535454085601- Although linear combinations of those bits include at

most 624 variables, nonlinear combinations allow for up to 2%°* variables. It
would be impossible to solve, let alone write down the whole of these equations.
(Note that 239, a much smaller number, is the estimated information capacity of
the observable universe.)

The key here is that linear transformations lead to short equations
(comparable in size to the number of variables), which are easy to solve, whereas
nonlinear transformations give rise to equations of exponential size, which are
practically unsolvable. The game of cryptographers is thus to design PRNG
algorithms that emulate such complex nonlinear transformations using only a
small number of simple operations.

Linearity is just one of many security criteria. Although necessary, nonlinearity alone
does not make a PRNG cryptographically secure.

The Uselessness of Statistical Tests

Statistical test suites like TestUO1, Diehard, or the National Institute of
Standards and Technology (NIST) test suite are one way to test the quality of
pseudorandom bits. These tests take a sample of pseudorandom bits produced by
a PRNG (say, one megabyte worth), compute some statistics on the distribution
of certain patterns in the bits, and compare the results with the typical results



obtained for a perfect, uniform distribution. For example, some tests count the
number of 1 bits versus the number of 0 bits, or the distribution of 8-bit
patterns. But statistical tests are largely irrelevant to cryptographic security, and
it’s possible to design a cryptographically weak PRNG that will fool any
statistical test.

When you run statistical tests on randomly generated data, you will usually
see a bunch of statistical indicators as a result. These are typically p-values, a
common statistical indicator. These results aren’t always easy to interpret,
because they’re rarely as simple as passed or failed. If your first results seem
abnormal, don’t worry: they may be the result of some accidental deviation, or
you may be testing too few samples. To ensure that the results you see are
normal, compare them with those obtained for some reliable sample of identical
size; for example, one generated with the OpenSSL toolkit using the following
command:

$ openssl rand <number of bytes> -out <output file>

Real-World PRNGs

Let’s turn our attention to how to implement PRNGs in the real world. You'll
find crypto PRNGs in the operating systems (OSs) of most platforms, from
desktops and laptops to embedded systems such as routers and set-top boxes, as
well as virtual machines, mobile phones, and so on. Most of these PRNGs are
software based, but some are pure hardware. Those PRNGs are used by
applications running on the OS, and sometimes other PRNGs running on top of
cryptographic libraries or applications.

Next we’ll look at the most widely deployed PRNGs: the one for Linux,
Android, and many other Unix-based systems; the one in Windows; and the one
in recent Intel microprocessors, which is hardware based.

Generating Random Bits in Unix-Based Systems

The device file /dev/urandom is the userland interface to the crypto PRNG of
common *nix systems, and it’s what you will typically use to generate reliable
random bits. Because it’s a device file, requesting random bits from /dev/urandom
is done by reading it as a file. For example, the following command uses
/dev/urandom to write 10MB of random bits to a file:



$ dd if=/dev/urandom of=<output file> bs=1M count=10

The Wrong Way to Use /dev/urandom

You could write a naive and insecure C program like the one shown in Listing 2-
1 to read random bits, and hope for the best, but that would be a bad idea.

int random_bytes_insecure(void *buf, size_t len)

{
int fd = open("/dev/urandom", O RDONLY);
read(fd, buf, len);
close(fd);
return 0;
}

Listing 2-1: Insecure use of /dev/urandom

This code is insecure; it doesn’t even check the return values of open() and
read(), which means your expected random buffer could end up filled with
zeroes, or left unchanged.

A Safer Way to Use /dev/urandom

Listing 2-2, copied from LibreSSL, shows a safer way to use /dev/urandom.

int random_bytes_safer(void *buf, size_ t len)

{

struct stat st;

size_t i;

int fd, cnt, flags;

int save_errno = errno;
start:

flags = O_RDONLY;
#ifdef O_NOFOLLOW
flags |= O_NOFOLLOW;
#endif
#ifdef O_CLOEXEC
flags |= O_CLOEXEC;
#endif
fd = @open("/dev/urandom", flags, 0);
if (fd == -1) {
if (errno == EINTR)
goto start;
goto nodevrandom;
}
#ifndef O_CLOEXEC
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);



#endif
/* Lightly verify that the device node looks sane */

if (fstat(fd, &st) == -1 || !'S_ISCHR(st.st_mode)) {
close(fd);
goto nodevrandom;

}

if (ioctl(fd, RNDGETENTCNT, &cnt) == -1) {
close(fd);

goto nodevrandom;

for (1 =0; 1 < len; ) {
size_t wanted = len - {i;
ssize_t ret = @read(fd, (char *)buf + i, wanted);
if (ret == -1) {
if (errno == EAGAIN || errno == EINTR)
continue;
close(fd);
goto nodevrandom;

}

1 += ret;

}
close(fd);
if (gotdata(buf, len) == 0) {
errno = save_errno;
return 0; /* satisfied */

nodevrandom:
errno = EIO;
return -1;

}

Listing 2-2: Safe use of /dev/urandom

Unlike Listing 2-1, Listing 2-2 makes several sanity checks. Compare, for
example, the call to open() at @ and the call to read() at ® with those in Listing
2-1: you’ll notice that the safer code checks the return values of those functions,
and upon failure closes the file descriptor and returns —1.

Differences Between /dev/urandom and /dev/random on Linux

Different Unix versions use different PRNGs. The Linux PRNG, defined in
drivers/char/random.c in the Linux kernel, mainly uses the hash function SHA-1
to turn raw entropy bits into reliable pseudorandom bits. The PRNG harvests
entropy from various sources (including the keyboard, mouse, disk, and interrupt
timings) and has a primary entropy pool of 512 bytes, as well as a non-blocking
pool for /dev/urandom and a blocking pool for /dev/random.

What'’s the difference between /dev/urandom and /dev/random? The short story



is that /dev/random attempts to estimate the amount of entropy and refuses to
return bits if the level of entropy is too low. Although this may sound like a good
idea, it’s not. For one thing, entropy estimators are notoriously unreliable and
can be fooled by attackers (which is one reason why Fortuna ditched Yarrow’s
entropy estimation). Furthermore, /dev/random runs out of estimated entropy
pretty quickly, which can produce a denial-of-service condition, slowing
applications that are forced to wait for more entropy. The upshot is that in
practice, /dev/random is no better than /dev/urandom and creates more problems
than it solves.

Estimating the Entropy of /dev/random

You can observe how /dev/random’s entropy estimate evolves by reading its
current value in bits in /proc/sys/kernel/random/entropy_avail on Linux. For
example, the shell script shown in Listing 2-3 first minimizes the entropy
estimate by reading 4KB from /dev/random, waits until it reaches an estimate of
128 bits, reads 64 bits from /dev/random, and then shows the new estimate.
When running the script, notice how user activity accelerates entropy recovery
(bytes read are printed to stdout encoded in base64).

#!/bin/sh
ESTIMATE=/proc/sys/kernel/random/entropy_avail
timeout 3s dd if=/dev/random bs=4k count=1 2> /dev/null | base64
ent="cat SESTIMATE®
while [ $ent -1t 128 ]
do

sleep 3

ent="cat SESTIMATE"

echo $ent
done
dd if=/dev/random bs=8 count=1 2> /dev/null | base64
cat SESTIMATE

Listing 2-3: A script showing the evolution of /dev/urandom’s entropy estimate

A sample run of Listing 2-3 gave the output shown in Listing 2-4. (Guess
when I started randomly moving the mouse and hitting the keyboard to gather
entropy.)

XFNX/f2R87/zrrNJ6Ibr5R1L913t1+F4GNzKb60BC+qQnHQCyA==
2

18

19



27
28

72

124

193
jq8XWCt8
129

Listing 2-4: A sample execution of the entropy estimate evolution script in Listing 2-3

As you can see in Listing 2-4, we have 193 - 64 = 129 bits of entropy left in
the pool, as per /dev/random’s estimator. Does it make sense to consider a PRNG
as having N less entropy bits just because N bits were just read from the PRNG?
(Spoiler: it does not.)

Like /dev/random, Linux’s getrandom() system call blocks if it hasn’t gathered
enough initial entropy. However, unlike /dev/random, it won’t attempt to estimate
the entropy in the system and will never block after its initialization stage. And
that’s fine. (You can force getrandom() to wuse /dev/random and to block by
tweaking its flags, but I don’t see why you’d want to do that.)

The CryptGenRandom() Function in Windows

In Windows, the legacy userland interface to the system’s PRNG is the
CryptGenRandom() function from the Cryptography application programming
interface (API). The CryptGenRandom() function has been replaced in recent
Windows versions with the BeryptGenRandon() function in the Cryptography API:
Next Generation (CNG) APL. The Windows PRNG takes entropy from the
kernel mode driver eng.sys (formerly ksecdd.sys), whose entropy collector is loosely
based on Fortuna. As is usually the case in Windows, the process is complicated.

Listing 2-5 shows a typical C++ invocation of CryptGenRandom() with the
required checks.

int random_bytes(unsigned char *out, size_t outlen)
{
static HCRYPTPROV handle = 0; /* only freed when the program ends */
if('handle) {
if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) {
return -1;



}

while(outlen > 0) {
const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
if(!CryptGenRandom(handle, len, out)) {

return -2;
}
out += len;
outlen -= len;
}
return 0O;

}

Listing 2-5: Using the Windows CryptGenRandom() PRNG interface

Notice in Listing 2-5 that prior to calling the actual PRNG, you need to
declare a cryprographic service provider (HCRYPTPROV) and then acquire a cryptographic
context with CryptAcquireContext(), which increases the chances of things going
wrong. For instance, the final version of the TrueCrypt encryption software was
found to call CryptAcquireContext() in a way that could silently fail, leading to
suboptimal randomness without notifying the user. Fortunately, the newer
BCryptGenRandom() interface for Windows is much simpler and doesn’t require the
code to explicitly open a handle (or at least makes it much easier to use without a

handle).
A Hardware-Based PRNG: RDRAND in Intel Microprocessors

We've discussed only software PRNGs so far, so let’s have a look at a hardware
one. The Intel Digital Random Number Generator is a hardware PRNG
introduced in 2012 in Intel’s Ivy Bridge microarchitecture, and it’s based on
NIST’s SP 800-90 guidelines with the Advanced Encryption Standard (AES) in
CTR_DRBG mode. Intel’s PRNG is accessed through the RDRAND assembly
instruction, which offers an interface independent of the operating system and is
in principle faster than software PRNGs.

Whereas software PRNGs try to collect entropy from unpredictable sources,
RDRAND has a single entropy source that provides a serial stream of entropy data as
zeroes and ones. In hardware engineering terms, this entropy source is a dual
differential jamb latch with feedback; essentially, a small hardware circuit that
jumps between two states (0 or 1) depending on thermal noise fluctuations, at a
frequency of 800 MHz. This kind of thing is usually pretty reliable.

The RrorAND assembly instruction takes as an argument a register of 16, 32, or
64 bits and then writes a random value. When invoked, RDRAND sets the carry flag



to 1 if the data set in the destination register is a valid random value, and to 0
otherwise, which means you should be sure to check the cF flag if you write
assembly code directly. Note that the C intrinsics available in common
compilers don’t check the cF flag but do return its value.

NOTE

Intel’s PRNG framework provides an assembly instruction other than RDRAND:
the RDSEED assembly instruction returns random bits directly from the entropy

source, after some conditioning or cryptographic processing. It’s intended to be able to
seed other PRNGs.

Intel’s PRNG is only partially documented, but it’s built on known standards,
and has been audited by the well-regarded company Cryptography Research (see
their report titled “Analysis of Intel’s Ivy Bridge Digital Random Number
Generator”). Nonetheless, there have been some concerns about its security,
especially following Snowden’s revelations about cryptographic backdoors, and
PRINGs are indeed the perfect target for sabotage. If you’re concerned but still
wish to use RDRAND or RDSEED, just mix them with other entropy sources. Doing so
will prevent effective exploitation of a hypothetical backdoor in Intel’s hardware
or in the associated microcode in all but the most far-fetched scenarios.

How Things Can Go Wrong

To conclude, T’ll present a few examples of randomness failures. There are
countless examples to choose from, but I've chosen four that are simple enough
to understand and illustrate different problems.

Poor Entropy Sources

In 1996, the SSL implementation of the Netscape browser was computing 128-
bit PRNG seeds according to the pseudocode shown in Listing 2-6, copied from
Goldberg and Wagner’s page at betp://www.cs.berkeley.edu/~daw/papers/ddj-
netscape.btml.

global variable seed;

RNG_CreateContext()
(seconds, microseconds)
pid = process ID; ppid

time of day; /* Time elapsed since 1970 */
parent process ID;


../../../../../www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

a = mklcpr(microseconds);
O b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b); /* Derivation of a 128-bit value using the hash MD5 */

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((OXDEECE66D * x + Ox2BBB62DC) >> 1);

MD5() /* a very good standard mixing function, source omitted */

Listing 2-6: Pseudocode of the Netscape browser’s generation of 128-bit PRNG seeds

The problem here is that the PIDs and microseconds are guessable values.
Assuming that you can guess the value of seconds, microseconds has only 106
possible values and thus an entropy of log(10°), or about 20 bits. The process ID
(PID) and parent process ID (PPID) are 15-bit values, so you’d expect 15 + 15 =
30 additional entropy bits. But if you look at how b is computed at @, you’ll see
that the overlap of three bits yields an entropy of only about 15 + 12 = 27 bits,

for a total entropy of only 47 bits, whereas a 128-bit seed should have 128 bits of
entropy.

Insufficient Entropy at Boot Time

In 2012, researchers scanned the whole internet and harvested public keys from
TLS certificates and SSH hosts. They found that a handful of systems had
identical public keys, and in some cases very similar keys (namely, RSA keys with
shared prime factors): in short, two numbers, z = pg and »’ = p’q’, with p = p’,
whereas normally all ps and ¢s should be different in distinct modulus values.

After further investigation, it turned out that many devices generated their
public key early, at first boot, before having collected enough entropy, despite
using an otherwise decent PRNG (typically /dev/urandom). PRNGs in different
systems ended up producing identical random bits due to a same base entropy
source (for example, a hardcoded seed).

At a high level, the presence of identical keys is due to key-generation schemes
like the following, in pseudocode:

prng.seed(seed)
prng.generate_random_prime()
prng.generate_random_prime()
pP*q

D0 0©
I n

If two systems run this code given an identical seed, they’ll produce the same



p, the same ¢, and therefore the same 7.

The presence of shared primes in different keys is due to key-generation
schemes where additional entropy is injected during the process, as shown here:

prng.seed(seed)

p = prng.generate_random_prime()
prng.add_entropy()

q = prng.generate_random_prime()
n = p*q

If two systems run this code with the same seed, they’ll produce the same p,
but the injection of entropy through prng.add_entropy() will ensure distinct gs.

The problem with shared prime factors is that given » = pg and #” = pq’, it’s
trivial to recover the shared p by computing the greatest common divisor (GCD) of
n and n’. For the details, see the paper “Mining Your Ps and Qs” by Heninger,
Durumeric, Wustrow, and Halderman, available at htzps://factorable.net/.

Non-cryptographic PRNG

Earlier we discussed the difference between crypto and non-crypto PRNGs and
why the latter should never be used for crypto applications. Alas, many systems
overlook that detail, so I thought I should give you at least one such example.

The popular MediaWiki application runs on Wikipedia and many other wikis. It
uses randomness to generate things like security tokens and temporary
passwords, which of course should be unpredictable. Unfortunately, a now
obsolete version of MediaWiki used a non-crypto PRNG, the Mersenne
Twister, to generate these tokens and passwords. Here’s a snippet from the
vulnerable MediaWiki source code. Look for the function called to get a random
bit, and be sure to read the comments.

/**
* Generate a hex-y looking random token for various uses.
* Could be made more cryptographically sure if someone cares.
* @return string
*
function generateToken( $salt = '' ) {
$token = dechex(mt_rand()).dechex(mt_rand());
return md5( $token . $salt );

Did you notice mt_rand() in the preceding code? Here, mt stands for Mersenne
Twister, the non-crypto PRNG discussed earlier. In 2012, researchers showed
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how to exploit the predictability of Mersenne Twister to predict future tokens
and temporary passwords, given a couple of security tokens. MediaWiki was
patched in order to use a crypto PRNG.

Sampling Bug with Strong Randomness

The next bug shows how even a strong crypto PRNG with sufficient entropy
can produce a biased distribution. The chat program Cryptocat was designed to
offer secure communication. It used a function that attempted to create a
uniformly distributed string of decimal digits—namely, numbers in the range 0
through 9. However, just taking random bytes modulo 10 doesn’t yield a
uniform distribution, because when taking all numbers between 0 and 255 and
reducing them modulo 10, you don’t get an equal number of values in 0 to 9.

Cryptocat did the following to address that problem and obtain a uniform
distribution:

Cryptocat.random = function() {
var x, o = '';
while (o.length < 16) {
x = state.getBytes(1);
if (x[0] <= 250) {
o += x[0] % 10;
}
}

return parseFloat('0.' + o)

}

And that was almost perfect. By taking only the numbers up to a multiple of
10 and discarding others, you’d expect a uniform distribution of the digits 0
through 9. Unfortunately, there was an off-by-one error in the if condition. I'll
leave the details to you as an exercise. You should find that the values generated
had an entropy of 45 instead of approximately 53 bits (hint: <= should have been
< instead).

Further Reading

I've just scratched the surface of randomness in cryptography in this chapter.
There is much more to learn about the theory of randomness, including topics
such as different entropy notions, randomness extractors, and even the power of
randomization and derandomization in complexity theory. To learn more about
PRINGs and their security, read the classic 1998 paper “Cryptanalytic Attacks on



Pseudorandom Number Generators” by Kelsey, Schneier, Wagner, and Hall.
Then look at the implementation of PRNGs in your favorite applications and
try to find their weaknesses. (Search online for “random generator bug” to find

plenty of examples.)
We’re not done with randomness, though. We’ll encounter it again and again

throughout this book, and you’ll discover the many ways it helps to construct
secure systems.



3
CRYPTOGRAPHIC SECURITY

Cryptographic definitions of security are not the same as those that apply to
general computer security. The main difference between software security and
cryptographic security is that the latter can be quantified. Unlike in the software
world, where applications are usually seen as either secure or insecure, in the
cryptographic world it’s often possible to calculate the amount of effort required
to break a cryptographic algorithm. Also, whereas software security focuses on
preventing attackers from abusing a program’s code, the goal of cryptographic
security is to make well-defined problems impossible to solve.

Cryptographic problems involve mathematical notions, but not complex math
—or at least not in this book. This chapter walks you through some of these
security notions and how they’re applied to solve real-world problems. In the
following sections, I discuss how to quantify crypto security in ways that are both
theoretically sound and practically relevant. 1 discuss the notions of
informational versus computational security, bit security versus full attack cost,
provable versus heuristic security, and symmetric versus asymmetric key
generation. I conclude the chapter with actual examples of failures in seemingly

strong cryptography.

Defining the Impossible

In Chapter 1, I described a cipher’s security relative to an attacker’s capabilities
and goals, and deemed a cipher secure if it was impossible to reach these goals
given an attacker’s known capabilities. But what does #mpossible mean in this
context?

Two notions define the concept of impossible in cryptography: informational
security and computational security. Roughly speaking, informational security is
about theoretical impossibility whereas computational security is about practical



impossibility. Informational security doesn’t quantify security because it views a
cipher as either secure or insecure, with no middle ground; it’s therefore useless
in practice, although it plays an important role in theoretical cryptography.
Computational security is the more relevant and practical measure of the
strength of a cipher.

Security in Theory: Informational Security

Informational security is based not on how hard it is to break a cipher, but
whether it’s conceivable to break it at all. A cipher is informationally secure only
if, even given unlimited computation time and memory, it cannot be broken.
Even if a successful attack on a cipher would take trillions of years, such a cipher
is informationally insecure.

For example, the one-time pad introduced in Chapter 1 is informationally
secure. Recall that the one-time pad encrypts a plaintext, P, to a ciphertext, C =
P e K, where K is a random bit string that is unique to each plaintext. The cipher
is informationally secure because given a ciphertext and unlimited time to try all
possible keys, K, and compute the corresponding plaintext, P, you would still be
unable to identify the right K because there are as many possible Ps as there are
Ks.

Security in Practice: Computational Security

Unlike informational security, computational security views a cipher as secure if
it cannot be broken within a reasonable amount of time, and with reasonable
resources such as memory, hardware, budget, energy, and so on. Computational
security is a way to quantify the security of a cipher or any crypto algorithm.

For example, consider a cipher, E, for which you know a plaintext—ciphertext
pair (P, C) but not the 128-bit key, K, that served to compute C = E(K, P). This
cipher is not informationally secure because you could break it after trying the
2128 possible 128-bit Ks until you find the one that satisfies E(K, P) = C. But in
practice, even testing 100 billion keys per second, it would take more than
100,000,000,000,000,000,000 years. In other words, reasonably speaking, this
cipher is computationally secure because it’s practically impossible to break.

Computational security is sometimes expressed in terms of two values:

e 1, which is a limit on the number of operations that an attacker will carry
out



e ¢ (called “epsilon”), which is a limit on the probability of success of an
attack

We then say that a cryptographic scheme is (#, €)-secure if an attacker
performing at most ¢ operations—whatever those operations are—has a
probability of success that is no higher than €, where € is at least 0 and at most 1.
Computational security gives a limit on how hard it is to break a cryptographic
algorithm.

Here it’s important to know that ¢ and € are just limits: if a cipher is (¢, €)-
secure, then no attacker performing fewer than ¢ operations will succeed (with
probability €). But that doesn’t imply that an attacker doing exactly # operations
will succeed, and it doesn’t tell you how many operations are needed, which may
be much larger than z. We say that ¢ is a Jower bound on the computation effort
needed, because you’d need at least t operations to compromise security.

We sometimes know precisely how much effort it takes to break a cipher; in
such cases we say that a (¢, €)-security gives us a tight bound when an attack exists
that breaks the cipher with probability € and exactly # operations.

For example, consider a symmetric cipher with a 128-bit key. Ideally, this
cipher should be (z, #/2128)-secure for any value of t between 1 and 218, The best
attack should be brute force (trying all keys until you find the correct one). Any
better attack would have to exploit some imperfection in the cipher, so we strive
to create ciphers where brute force is the best possible attack.

Given the statement (¢, #/2'28)-secure, let’s examine the probability of success
of three possible attacks:

e In the first case, + = 1, an attacker tries one key and succeeds with a

probability of € = 1/2128,

e In the second case, ¢ = 21?8 an attacker tries all 21?8 keys and one succeeds.

Thus, the probability € = 1 (if the attacker tries all keys, obviously the right
one must be one of them).
e In the third case, an attacker tries only # = 2% keys, and succeeds with a

probability of € = 264/2128 = 2-6% ‘When an attacker only tries a fraction of
all keys, the success probability is proportional to the number of keys tried.

We can conclude that a cipher with a key of # bits is at best (¢, #/2”)-secure, for



any t between 1 and 2”, because no matter how strong the cipher, a brute-force
attack against it will always succeed. The key thus needs be long enough to blunt
brute-force attacks in practice.

NOTE

In this example, we are counting the number of evaluations of the cipher, not the
absolute time or number of processor clock cycles. Computational security is technology
agnostic, which is good: a cipher that is (t, €)-secure today will be (t, €)-secure
tomorrow, but what’s considered secure in practice today might not be considered

secure tomorrow.

Quantifying Security

When an attack is found, the first thing you want to know is how efficient it is in
theory, and how practical it is, if at all. Likewise, given a cipher that’s allegedly
secure, you want to know what amount of work it can withstand. To address

those questions, I’ll explain how cryptographic security can be measured in bits
(the theoretical view) and what factors affect the actual cost of an attack.

Measuring Security in Bits

When speaking of computational security, we say that a cipher is #-secure when a
successful attack needs at least ¢ operations. We thus avoid the unintuitive (¢, €)
notation by assuming a success probability of € close to 1, or what we care about
in practice. We then express security in bits, where “z-bit security” means that
about 2 operations are needed to compromise some particular security notion.

If you know approximately how many operations it takes to break a cipher,
you can determine its security level in bits by taking the binary logarithm of the
number of operations: if it takes 1000000 operations, the security level is
log,(1000000), or about 20 bits (that is, 1000000 is approximately equal to 2°0).
Recall that an n-bit key will give at most n-bit security because a brute-force
attack with all 2” possible keys will always succeed. But the key size doesn’t
always match the security level—it just gives an upper bound, or the highest
possible security level.

A security level may be smaller than the key size for one of two reasons:



e An attack broke the cipher in fewer operations than expected—for example,
using a method that recovers the key by trying not all 2” keys, but only a
subset of those.

e The cipher’s security level intentionally differs from its key size, as with
most public key algorithms. For example, the RSA algorithm with a 2048-
bit secret key provides less than 100-bit security.

Bit security proves useful when comparing ciphers’ security levels but doesn’t
provide enough information on the actual cost of an attack. It is sometimes too
simple an abstraction because it just assumes that an n-bit-secure cipher takes 2”
operations to break, whatever these operations are. Two ciphers with the same
bit security level can therefore have vastly different real-world security levels
when you factor in the actual cost of an attack to a real attacker.

Say we have two ciphers, each with a 128-bit key and 128-bit security. Each
must be evaluated 2!28 times in order to be broken, except that the second cipher
is 100 times slower than the first. Evaluating the second cipher 21?8 times thus
2128 5 21346% evaluations of the first. If we count in
2134.64

2128

takes the same time as 100 x
terms of the first, fast cipher, then breaking the slower one takes

operations. If we count in terms of the second, slow cipher, it only takes
operations. Should we then say that the second cipher is stronger than the first?
In principle, yes, but we rarely see such a hundred-fold performance difference
between commonly used ciphers.

The inconsistent definition of an operation raises more difficulties when
comparing the efficiency of attacks. Some attacks claim to reduce a cipher’s

2120

security because they perform evaluations of some operation rather than

2128 evaluations of the cipher, but the speed of each type of attack is left out of

2120

the analysis. The 21?%-operation attack won’t always be faster than a 21?8 brute-

force attack.

Nevertheless, bit security remains a useful notion as long as the operation is
reasonably defined—meaning about as fast as an evaluation of the cipher. After
all, in real life, all it takes to determine whether a security level is sufficient is an
order of magnitude.

Full Attack Cost

Bit security expresses the cost of the fastest attack against a cipher by estimating



the order of magnitude of the number of operations it needs to succeed. But
other factors affect the cost of an attack, and these must be taken into account
when estimating the actual security level. I'll explain the four main ones:
parallelism, memory, precomputation, and the number of targets.

Parallelism

The first factor to consider is computational parallelism. For example, consider

two attacks of 2°¢ operations each. The difference between the two is that the
second attack can be parallelized but not the first: the first attack performs 2°°

sequentially dependent operations, such as x; , | = fi{x;) for some x; and some

functions f; (with i from 1 to 2°6), whereas the second performs 2°6 independent

256

operations, such as x; = fi(x) for some x and 7 from 1 to 2°°, which can be

executed in parallel. Parallel processing can be orders of magnitude faster than
sequential processing. For example, if you had 2'® = 65536 processors available,

216

you could divide the workload of the parallel attacks into 2*° independent tasks,

each performing 2°¢ / 216 = 240 operations. The first attack, however, cannot
benefit from having multiple cores available because each operation relies on the
previous operation’s result. Therefore, the parallel attack will complete 65536
times faster than the sequential one, even though they perform the same number

of operations.

NOTE

Algorithms that become N times faster to attack when N cores are available are
called embarrassingly parallel, and we say that their execution times scale linearly
with respect to the number of computing cores.

Memory

The second factor when determining the cost of an attack is memory.
Cryptanalytic attacks should be evaluated with respect to their use of time and
space: how many operations do they perform over time, how much memory or
space do they consume, how do they use the space they consume, and what’s the
speed of the available memory? Unfortunately, bit security is concerned only
with the time it takes to perform an attack.

Concerning the way space is used, it’s important to consider how many



memory lookups are required as part of an attack, the speed of memory accesses
(which may differ between reads and writes), the size of the data accessed, the
access pattern (contiguous or random memory addresses), and how data is
structured in memory. For example, on one of today’s general-purpose CPUs,
reading from a register takes one cycle, whereas reading from the CPU’s cache
memory takes around 20 cycles (for the L3 cache), and reading from DRAM
usually takes at least 100 cycles. A factor of 100 can make the difference between
one day and three months.

Precomputation

Precomputation operations are those that need to be performed only once and
can be reused over subsequent executions of the attack. Precomputation is
sometimes called the offline stage of an attack.

For example, consider the time-memory trade-off attack. When performing
this kind of attack, the attacker performs one huge computation that produces
large lookup tables that are then stored and reused to perform the actual attack.
For example, one attack on 2G mobile encryption took two months to build two
terabytes’ worth of tables, which were then used to break the encryption in 2G
and recover a secret session key in only a few seconds.

Number of Targets

Finally, we come to the number of targets of the attack. The greater the number
of targets, the greater the attack surface, and the more attackers can learn about
the keys they’re after.

For example, consider a brute-force key search: if you target a single #-bit key,
it will take 2” attempts to find the correct key with certainty. But if you target
multiple 7-bit keys—say, a number M—and if for a single P you have M distinct
ciphertexts, where C = E(K, P) for each of the M keys (K) that you’re after, it will
again take 2” attempts to find each key. But if you’re only interested in at Jeast
one of the M keys and not in every one, it would take on average 2” / M attempts
to succeed. For example, to break one 128-bit key of 21¢ = 65536 target keys, it
will take on average 2128 - 16 = 2112 evaluations of the cipher. That is, the cost
(and speed) of the attack decreases as the number of targets increases.

Choosing and Evaluating Security Levels



Choosing a security level often involves selecting between 128-bit and 256-bit
security because most standard crypto algorithms and implementations are
available in one of these two security levels. Below 128 bits you’ll find schemes
with 64- or 80-bit security, but these are generally not secure enough for real-

world use.

At a high level, 128-bit security means that you’d need to carry out
approximately 2128 operations to break that crypto system. To give you a sense
of what this number means, consider the fact that the universe is approximately
288 nanoseconds old (there’s a billion nanoseconds in a second). Since testing a
key with today’s technology takes no less than a nanosecond, you’d need several
times the age of the universe for an attack to succeed (20 times to be precise) if

it takes exactly one nanosecond to test a key.

But can’t parallelism and multiple targets dramatically reduce the time it takes
to complete a successful attack? Not exactly. Say you’re interested in breaking
any of a million targets, and that you have a million parallel cores available. That

brings the search time down from 2!28 to (2128 / 220) / 220 = 288 which is
equivalent to only one universe lifetime.

Another thing to consider when evaluating security levels is the evolution of
technology. Moore’s law posits that computing efficiency doubles roughly every
two years. We can think of this as a loss of one bit of security every two years: if
today a $1000 budget allows you to break, say, a 40-bit key in one hour, then
Moore’s law says that two years later, you could break a 41-bit key in one hour
for the same $1000 budget (I’'m simplifying). We can extrapolate from this to say
that, according to Moore’s law, we’ll have 40 fewer bits of security in 80 years

2128

compared to today. In other words, in 80 years doing operations may cost as

much as doing 2% operations today. Accounting for parallelism and multiple
targets, as discussed earlier, we’re down to 2% nanoseconds of computation, or
about three days. But this extrapolation is highly inaccurate, because Moore’s
law won’t and can’t scale that much. Still, you get the idea: what looks infeasible

today may be realistic in a century.

There will be times when a security level lower than 128 bits is justified. For
example, when you need security for only a short time period and when the costs
of implementing a higher security level will negatively impact the cost or
usability of a system. A real-world example is that of pay TV systems, wherein
encryption keys are either 48 or 64 bits. This sounds ridiculously low, but that’s



a sufficient security level because the key is refreshed every 5 or 10 seconds.

Nevertheless, to ensure long-term security, you should choose 256-bit
security or a bit less. Even in a worst-case scenario—the existence of quantum
computers, see Chapter 14—a 256-bit secure scheme is unlikely to be broken in
the foreseeable future. More than 256 bits of security is practically unnecessary,
except as a marketing device.

As NIST cryptographer John Kelsey once put it, “The difference between 80
bits and 128 bits of key search is like the difference between a mission to Mars
and a mission to Alpha Centauri. As far as I can see, there is no meaningful
difference between 192-bit and 256-bit keys in terms of practical brute-force
attacks; impossible is impossible.”

Achieving Security

Once you’ve chosen a security level, it’s important to guarantee that your
cryptographic schemes will stick to it. In other words, you want confidence, not
just hope and uncertainty, that things will work as planned, all the time.

When building confidence in the security of a crypto algorithm, you can rely
on mathematical proofs, an approach called provable security, or on evidence of
failed attempts to break the algorithm, which I'll call heuristic security (though it’s
sometimes called probable security). These two approaches are complementary
and neither is better than the other, as you’ll see.

Provable Security

Provable security is about proving that breaking your crypto scheme is at least as
hard as solving another problem known to be hard. Such a security proof
guarantees that the crypto remains safe as long as the hard problem remains
hard. This type of proof is called a reduction, and it comes from the field of
complexity theory. We say that breaking some cipher is reducible to problem X
if any method to solve problem X also yields a method to break the cipher.

Security proofs come in two flavors, depending on the type of presumably
hard problem used: proofs relative to a mathematical problem and proofs
relative to a cryptographic problem.

Proofs Relative to a Mathematical Problem
Many security proofs (such as those for public-key crypto) show that breaking a



crypto scheme is at least as hard as solving some hard mathematical problem.
We're talking of problems for which a solution is known to exist, and is easy to
verify once it’s known, but is computationally hard to find.

There’s no real proof that seemingly bard math problems are actually bard. In fact,
proving this for a specific class of problems is one of the greatest challenges in the field
of complexity theory, and as I write this there is a $1,000,000 bounty for anyone
who can solve it, awarded by the Clay Mathematics Institute. This is discussed in
more detail in Chapter 9.

For example, consider the challenge of solving the factoring problem, which is
the best-known math problem in crypto: given a number that you know is the
product of two prime numbers (z = pg), find the said primes. For example, if z =
15, the answer is 3 and 5. That’s easy for a small number, but it becomes
exponentially harder as the size of the number grows. For example, if a number,
n, is 3000 bits long (about 900 decimal digits) or more, factoring is believed to
be practically infeasible.

RSA is the most famous crypto scheme to rely on the factoring problem: RSA
encrypts a plaintext, P, seen as a large number, by computing C = P¥ mod #,
where the number e and # = pg are the public key. Decryption recovers a
plaintext from a ciphertext by computing P = C? mod #, where d is the private
key associated to ¢ and n. If we can factor 7, then we can break RSA (by
recovering the private key from the public key), and if we can obtain the private
key, then we can factor #n; in other words, recovering an RSA private key and
factoring » are equivalently hard problems. That’s the kind of reduction we’re
looking for in provable security. However, there is no guarantee that recovering
an RSA plaintext is as hard as factoring #, since the knowledge of a plaintext
doesn’t reveal the private key.

Proofs Relative to Another Crypto Problem

Instead of comparing a crypto scheme to a math problem, you can compare it to
another crypto scheme and prove that you can only break the second if you can
break the first. Security proofs for symmetric ciphers usually follow this
approach.



For example, if all you have is a single permutation algorithm, then you can
build symmetric ciphers, random bit generators, and other crypto objects such as
hash functions by combining calls to the permutations with various types of
inputs (as you’ll see in Chapter 6). Proofs then show that the newly created
schemes are secure if the permutation is secure. In other words, we know for
sure that the newly created algorithm is not weaker than the original one. Such
proofs usually work by crafting an attack on the smaller component given an
attack on the larger one—that is, by showing a reduction.

When you’re proving that a crypto algorithm is no weaker than another, the
main benefit is that of a reduced attack surface: instead of analyzing both the
core algorithm and the combination, you can simply look at the new cipher’s
core algorithm. Specifically, if you write a cipher that uses a newly developed
permutation and a new combination, you may prove that the combination
doesn’t weaken security compared to the core algorithm. Therefore, to break the
combination, you need to break the new permutation.

Caveats

Cryptography researchers rely heavily on security proofs, whether with respect
to math problem schemes or to other crypto schemes. But the existence of a
security proof does not guarantee that a cryptographic scheme is perfect, nor is it
an excuse for neglecting the more practical aspects of implementation. After all,
as cryptographer Lars Knudsen once said, “If it’s provably secure, it’s probably
not,” meaning that a security proof shouldn’t be taken as an absolute guarantee
of security. Worse, there are multiple reasons why a “provably secure” scheme
may lead to a security failure.

One issue is with the phrase “proof of security” itself. In mathematics, a proof
is the demonstration of an absolute truth, but in crypto, a proof is only the
demonstration of a relative truth. For example, a proof that your cipher is as hard
to break as it is to compute discrete logarithms—finding the number x given g
and g* mod n—guarantees that if your cipher fails, a whole lot of other ciphers
will fail as well, and nobody will blame you if the worst happens.

Another caveat is that security proofs are usually proven with respect to a
single notion of security. For example, you might prove that recovering the
private key of a cipher is as hard as the factoring problem. But if you can recover
plaintexts from ciphertext without the key, you’ll bypass the proof, and
recovering the key hardly matters.



Then again, proofs are not always correct, and it may be easier to break an
algorithm than originally thought.

NOTE

Unfortunately, few researchers carefully check security proofs, which commonly span
dozens of pages, thus complicating quality control. That said, demonstrating that a
proof is incorvect doesn’t necessarily imply that the proof’s goal is completely wrong; if
the result is correct, the proof may be salvaged by correcting its errors.

Another important consideration is that hard math problems sometimes turn
out to be easier to solve than expected. For example, certain weak parameters
make breaking RSA easy. Or the math problem may be hard in certain cases, but
not on average, as often happens when the reference problem is new and not
well understood. That’s what happened when the 1978 knapsack encryption
scheme by Merkle and Hellman was later totally broken using lattice reduction
techniques.

Finally, although the proof of an algorithm’s security may be fine, the
implementation of the algorithm can be weak. For example, attackers may
exploit side-channel information such as power consumption or execution time
to learn about an algorithm’s internal operations in order to break it, thus
bypassing the proof. Or implementers may misuse the crypto scheme: if the
algorithm is too complicated with too many knobs to configure, chances are
higher that the user or developer will get a configuration wrong, which may
render the algorithm completely insecure.

Heuristic Security

Provable security is a great tool to gain confidence in a crypto scheme, but it
doesn’t apply to all kinds of algorithms. In fact, most symmetric ciphers don’t
have a security proof. For example, every day we rely on the Advanced
Encryption Standard (AES) to securely communicate using our mobile phones,
laptops, and desktop computers, but AES is not provably secure; there’s no proof
that it’s as hard to break as some well-known problem. AES can’t be related to a
math problem or to another algorithm because it is the hard problem itself.

In cases where provable security doesn’t apply, the only reason to trust a
cipher is because many skilled people tried to break it and failed. This is
sometimes called heuristic security.



When can we be sure that a cipher is secure then? We can never be sure, but
we can be pretty confident that an algorithm won’t be broken when hundreds of
experienced cryptanalysts have each spent hundreds of hours trying to break it
and published their findings—usually by attempting attacks on simplified versions
of a cipher (often versions with fewer operations, or fewer rounds, which are
short series of operations that ciphers iterate in order to mix bits together).

When analyzing a new cipher, cryptanalysts first try to break one round, then
two, three, or as many as they can. The security margin is then the difference
between the total number of rounds and the number of rounds that were
successfully attacked. When after years of study a cipher’s security margin is still
high, we become confident that it’s (probably) secure.

Generating Keys

If you plan to encrypt something, you’ll have to generate keys, whether they are
temporary “session keys” (like the ones generated when browsing an HTTPS
site) or long-term public keys. Recall from Chapter 2 that secret keys are the
crux of cryptographic security and should be randomly generated so that they
are unpredictable and secret.

For example, when you browse an HT'TPS website, your browser receives the
site’s public key and uses it to establish a symmetric key that’s only valid for the
current session, and that site’s public key and its associated private key may be
valid for years. Therefore, it’d better be hard to find for an attacker. But
generating a secret key isn’t always as simple as dumping enough pseudorandom
bits. Cryptographic keys may be generated in one of three ways:

® Randomly, using a pseudorandom number generator (PRNG) and, when
needed, a key-generation algorithm

e From a password, using a key derivation function (KDF), which transforms
the user-supplied password into a key

e Through a key agreement protocol, which is a series of message exchanges

between two or more parties that ends with the establishment of a shared
key

For now, I'll explain the simplest method: randomized generation.

Generating Symmetric Keys



Symmetric keys are secret keys shared by two parties, and they are the simplest
to generate. They are usually the same length as the security level they provide:
a 128-bit key provides 128-bit security, and any of the 2!?® possible keys is a
valid one that can do the job as well as any other key.

To generate a symmetric key of # bits using a cryptographic PRNG, you
simply ask it for » pseudorandom bits and use those bits as the key. That’s it.
You can, for example, use the OpenSSL toolkit to generate a random symmetric
key by dumping pseudorandom bytes, as in the following command (obviously,
your result will differ from mine):

$ openssl rand 16 -hex
6534400ea649d282b855bd2e246812c6

Generating Asymmetric Keys

Unlike symmetric keys, asymmetric keys are usually longer than the security
level they provide. But that’s not the main problem. Asymmetric keys are trickier
to generate than symmetric ones because you can’t just dump # bits from your
PRNG and get away with the result. Asymmetric keys aren’t just raw bit
sequences; instead, they represent a specific type of object, such as a large
number with specific properties (in RSA, a product of two primes). A random bit
string value (and thus a random number) is unlikely to have the specific
properties needed, and therefore won’t be a valid key.

To generate an asymmetric key, you send pseudorandom bits as a seed to a
key-generation algorithm. "This key-generation algorithm takes as input a seed
value that’s at least as long as the intended security level and then constructs
from it a private key and its respective public key, ensuring that both satisfy all
the necessary criteria. For example, a naive key-generation algorithm for RSA
would generate a number, z = pg, by using an algorithm to generate two random
primes of about the same length. That algorithm would pick random numbers
until one happens to be prime—so you’d also need an algorithm to test whether
a number is prime.

To save yourself the burden of manually implementing the key-generation
algorithm, you can use OpenSSL to generate a 4096-bit RSA private key, like
this:

$ openssl genrsa 4096
Generating RSA private key, 4096 bit long modulus



e 1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----
MIIJKQIBAAKCAGEA3Qgm60iMy61YVstaGawk22A9LyMXhiQUUANSF5QZXEef2Piq
VTtAIA1hzpK2AJsv16INpNkYcTjNmechAJOxHraft06cp2pZFP85dvknsMfUoe8u
btKXZiYvIwpSOfQQ4tz1DtH45G8SMHCWFXTO3HSIXOXVOowf ITLMzZbSE3TD LN+
JdW8d9Xd5UVB+09gqUCI8tSfnOjF2dHILN1OhLfT4wORf+G35USIyUIZt0QODh8M+
--snip--

z0/dbYtqRkMT8Ubb/0Q1IWOq8eOWNFetzkwPzAI jwZGXTOkWIu3RYj10XbTYDr2c
XBRVC/ujoDL603NagPxkWY5HIVmkyKIE5pCO4RFNyaQ8+04APyobabPMy1Qq5Vo5
N5L2c4mhy1/0H8fvKBRDuvCk20ZinjdoKUo8ZA5D0a4pdvIQfR+b4 /4] jsx4
----- END RSA PRIVATE KEY-----

Notice that the key comes in a specific format—namely, base64-encoded data

between the BEGIN RSA PRIVATE KEY and END RSA PRIVATE KEY markers. That’s a

standard encoding format supported by most systems, which then convert this
representation to raw bytes of data. The dot sequences at the beginning are a
kind of progress bar, and e is 65537 (0x10001) indicates the parameter to use
when encrypting (remember that RSA encrypts by computing C = P° mod #).

Protecting Keys

Once you have a secret key, you need to keep it secret, yet available when you
need it. There are three ways to address this problem.

Key wrapping (encrypting the key using a second key)

The problem with this approach is that the second key must be available when
you need to decrypt the protected key. In practice, this second key is often
generated from a password supplied by the user when he needs to use the
protected key. That’s how private keys for the Secure Shell (SSH) protocol
are usually protected.

On-the-fly generation from a password

Here, no encrypted file needs to be stored because the key comes straight out
from the password. Modern systems like minilLock use this method. Although
this method is more direct than key wrapping, it’s less widespread, in part
because it’s more vulnerable to weak passwords. Say, for example, that an
attacker captured some encrypted message: if key wrapping was used, the
attacker first needs to get the protected key file, which is usually stored locally
on the user’s file system and therefore not easy to access. But if on-the-fly
generation was used, the attacker can directly search for the correct password



by attempting to decrypt the encrypted message with candidate passwords.
And if the password is weak, the key is compromised.

Storing the key on a hardware token (smart card or USB dongle)

In this approach, the key is stored in secure memory and remains safe even if
the computer is compromised. This is the safest approach to key storage, but
also the costliest and least convenient because it requires you to carry the
hardware token with you and run the risk of losing it. Smart cards and USB
dongles usually require you to enter a password to unlock the key from the
secure memory.

Whatever method you use, make sure not to mistake the private key for the public
one when exchanging keys, and don’t accidentally publish the private key through
email or source code. (I've actually found private keys on GitHub.)

To test key wrapping, run the OpenSSL command shown here with the
argument -aes128 to tell OpenSSL to encrypt the key with the cipher AES-128
(AES with a 128-bit key):

$ openssl genrsa -aes128 4096
Generating RSA private key, 4096 bit long modulus

e i1s 65537 (0x10001)
Enter pass phrase:

The passphrase requested will be used to encrypt the newly created key.

How Things Can Go Wrong

Cryptographic security can go wrong in many ways. The biggest risk is when we
have a false sense of security thanks to security proofs or to well-studied
protocols, as illustrated by the following two examples.

Incorrect Security Proof

Even proofs of security by renowned researchers may be wrong. One of the most
striking examples of a proof gone terribly wrong is that of Optimal Asymmetric
Encryption Padding (OAEP), a method of secure encryption that used RSA and



was implemented in many applications. Yet, an incorrect proof of OAEP’s
security against chosen-ciphertext attackers was accepted as valid for seven years,
until a researcher found the flaw in 2001. Not only was the proof wrong, the
result was wrong as well. A new proof later showed that OAEP is only almost
secure against chosen-ciphertext attackers. We now have to trust the new proof
and hope that it’s flawless. (For further details, see the 2001 paper “OAEP
Reconsidered” by Victor Shoup.)

Short Keys for Legacy Support

In 2015, researchers found that some HTTPS sites and SSH servers supported
public-key cryptography with shorter keys than expected: namely, 512 bits
instead of at least 2048 bits. Remember, with public-key schemes, the security
level isn’t equal to the key size, and in the case of HT'I'PS, keys of 512 bits offer
a security level of approximately 60 bits. These keys could be broken after only
about two weeks of computation using a cluster of 72 processors. Many websites
were affected, including the FBI’s. Although the software was ultimately fixed
(thanks to patches for OpenSSL and for other software), the problem was quite
an unpleasant surprise.

Further Reading

To learn more about provable security for symmetric ciphers, read the sponge
functions  documentation  (http://sponge.noekeon.org/).  Sponge  functions
introduced the permutation-based approach in symmetric crypto, which
describes how to construct a bunch of different cryptographic functions using
only one permutation.

Some must-reads on the real cost of attacks include Bernstein’s 2005 paper
“Understanding Brute Force” and Wiener’s 2004 paper “The Full Cost of
Cryptanalytic Attacks,” both available online for free.

To determine the security level for a given key size, wisit
http://www.keylength.com/. 'This site also offers an explanation on how private
keys are protected in common cryptographic utilities, such as SSH, OpenSSL,
GnuPG, and so on.

Finally, as an exercise, pick an application (such as a secure messaging
application) and identify its crypto schemes, key length, and respective security
levels. You'll often find surprising inconsistencies, such as a first scheme
providing a 256-bit security level but a second scheme providing only 100-bit


../../../../../sponge.noekeon.org/default.htm
../../../../../www.keylength.com/default.htm

security. The security of the whole system is often only as strong as that of its
weakest component.



4
BLOCK CIPHERS

During the Cold War, the US and Soviets developed their own ciphers. The US
government created the Data Encryption Standard (DES), which was adopted as
a federal standard from 1979 to 2005, while the KGB developed GOST 28147-
89, an algorithm kept secret until 1990 and still used today. In 2000, the US-
based National Institute of Standards and Technology (NIST) selected the
successor to DES, called the Advanced Encryption Standard (AES), an algorithm
developed in Belgium and now found in most electronic devices. AES, DES, and
GOST 28147-89 have something in common: they’re all block ciphers, a type of
cipher that combines a core algorithm working on blocks of data with a mode of
operation, or a technique to process sequences of data blocks.

This chapter reviews the core algorithms that underlie block ciphers, discusses
their modes of operation, and explains how they all work together. It also
discusses how AES works and concludes with coverage of a classic attack tool
from the 1970s, the meet-in-the-middle attack, and a favorite attack technique of
the 2000s—padding oracles.

What Is a Block Cipher?

A block cipher consists of an encryption algorithm and a decryption algorithm:

o ‘The encryption algorithm (E) takes a key, K, and a plaintext block, P, and
produces a ciphertext block, C. We write an encryption operation as C =
E(K, P).

o 'The decryption algorithm (D) is the inverse of the encryption algorithm and
decrypts a message to the original plaintext, P. This operation is written as

P=D(K, ).



Since they’re the inverse of each other, the encryption and decryption
algorithms usually involve similar operations.

Security Goals

If you've followed earlier discussions about encryption, randomness, and
indistinguishability, the definition of a secure block cipher will come as no
surprise. Again, we’ll define security as random-lookingness, so to speak.

In order for a block cipher to be secure, it should be a pseudorandom
permutation (PRP), meaning that as long as the key is secret, an attacker
shouldn’t be able to compute an output of the block cipher from any input. That
is, as long as K is secret and random from an attacker’s perspective, they should
have no clue about what E(K, P) looks like, for any given P.

More generally, attackers should be unable to discover any pattern in the
input/output values of a block cipher. In other words, it should be impossible to
tell a block cipher from a truly random permutation, given black-box access to
the encryption and decryption functions for some fixed and unknown key. By
the same token, they should be unable to recover a secure block cipher’s secret
key; otherwise, they would be able to use that key to tell the block cipher from a
random permutation. Of course that also implies that attackers can’t predict the
plaintext that corresponds to a given ciphertext produced by the block cipher.

Block Size

T'wo values characterize a block cipher: the block size and the key size. Security
depends on both values. Most block ciphers have either 64-bit or 128-bit blocks
—DES’s blocks have 64 (26) bits, and AES’s blocks have 128 (27) bits. In
computing, lengths that are powers of two simplify data processing, storage, and
addressing. But why 26 and 27 and not 2# or 21 bits?

For one thing, it’s important that blocks are not too large in order to
minimize both the length of ciphertext and the memory footprint. With regard
to the length of the ciphertext, block ciphers process blocks, not bits. This
means that in order to encrypt a 16-bit message when blocks are 128 bits, you’ll
first need to convert the message into a 128-bit block, and only then will the
block cipher process it and return a 128-bit ciphertext. The wider the blocks, the
longer this overhead. As for the memory footprint, in order to process a 128-bit
block, you need at least 128 bits of memory. This is small enough to fit in the
registers of most CPUs or to be implemented using dedicated hardware circuits.



Blocks of 64, 128, or even 512 bits are short enough to allow for efficient
implementations in most cases. But larger blocks (for example, several kilobytes
long) can have a noticeable impact on the cost and performance of
implementations.

When ciphertexts’ length or memory footprint is critical, you may have to use
64-bit blocks, because these will produce shorter ciphertexts and consume less
memory. Otherwise, 128-bit or larger blocks are better, mainly because 128-bit
blocks can be processed more efficiently than 64-bit ones on modern CPUs and
are also more secure. In particular, CPUs can leverage special CPU instructions
in order to efficiently process one or more 128-bit blocks in parallel—for

example, the Advanced Vector Extensions (AVX) family of instructions in Intel
CPUs.

The Codebook Attack

While blocks shouldn’t be too large, they also shouldn’t be too small; otherwise,
they may be susceptible to codebook attacks, which are attacks against block

ciphers that are only efficient when smaller blocks are used. The codebook
attack works like this with 16-bit blocks:

1. Get the 65536 (2!6) ciphertexts corresponding to each 16-bit plaintext
block.

2. Build a lookup table—the codebook—mapping each ciphertext block to its
corresponding plaintext block.

3. To decrypt an unknown ciphertext block, look up its corresponding
plaintext block in the table.

When 16-bit blocks are used, the lookup table needs only 216 x 16 = 220 bits of
memory, or 128 kilobytes. With 32-bit blocks, memory needs grow to 16
gigabytes, which is still manageable. But with 64-bit blocks, you’d have to store
270 bits (a zetabit, or 128 exabytes), so forget about it. Codebook attacks won’t
be an issue for larger blocks.

How to Construct Block Ciphers

There are hundreds of block ciphers but only a handful of techniques to
construct one. First, a block cipher used in practice isn’t a gigantic algorithm but
a repetition of rounds, a short sequence of operations that is weak on its own but



strong in number. Second, there are two main techniques to construct a round:
substitution—permutation networks (as in AES) and Feistel schemes (as in DES).
In this section, we look at how these work, after viewing an attack that works
when all rounds are identical to each other.

A Block Cipher’s Rounds

Computing a block cipher boils down to computing a sequence of rounds. In a
block cipher, a round is a basic transformation that is simple to specify and to
implement, and which is iterated several times to form the block cipher’s
algorithm. This construction, consisting of a small component repeated many
times, is simpler to implement and to analyze than a construction that would
consist of a single huge algorithm.

For example, a block cipher with three rounds encrypts a plaintext by
computing C = R3(R,(R(P))), where the rounds are R, R,, and R; and P is a
plaintext. Each round should also have an inverse in order to make it possible for
a recipient to compute back to plaintext. Specifically, P = iR;(iR,(iR;3(C))), where

iR, is the inverse of Ry, and so on.

The round functions—R;, R,, and so on—are usually identical algorithms,

but they are parameterized by a value called the round key. T'wo round functions
with two distinct round keys will behave differently, and therefore will produce
distinct outputs if fed with the same input.

Round keys are keys derived from the main key, K, using an algorithm called a
key schedule. For example, R, takes the round key Kj, R, takes the round key K,
and so on.

Round keys should always be different from each other in every round. For
that matter, not all round keys should be equal to the key K. Otherwise, all the
rounds would be identical and the block cipher would be less secure, as described
next.

The Slide Attack and Round Keys

In a block cipher, no round should be identical to another round in order to
avoid a slide attack. Slide attacks look for two plaintext/ciphertext pairs (P, C)

and (P,, C;), where P, = R(P)) if R is the cipher’s round (see Figure 4-1). When
rounds are identical, the relation between the two plaintexts, P, = R(P;), implies



the relation C?> = R(C;) between their respective ciphertexts. Figure 4-1 shows
three rounds, but the relation C> = R(C;) will hold no matter the number of

rounds, be it 3, 10, or 100. The problem is that knowing the input and output of
a single round often helps recover the key. (For details, read the 1999 paper by
Biryukov and Wagner called “Advanced Slide Attacks,” available at
bttps://www.iacr.org/archive/eurocrypt2000/1807/180705 95 -new. pdf)

The use of different round keys as parameters ensures that the rounds will
behave differently and thus foil slide attacks.

P
PbP—a| R |—»| R |—»| R [—»C

RP)=P,—] R |—»| R |—»| R |—»C,

Figure 4-1: The principle of the slide attack, against block ciphers with identical rounds

One potential byproduct and benefit of using round keys is protection against side-
channel attacks, or attacks that exploit information leaked from the implementation
of a cipher (for example, electromagnetic emanations). If the transformation from
the main key, K, to a round key, K, is not invertible, then if an attacker finds K;,

they can’t use that key to find K. Unfortunately, few block ciphers have a one-way
key schedule. The key schedule of AES allows attackers to compute K from any round
key, K, for example.

Substitution—-Permutation Networks

If you’ve read textbooks about cryptography, you’ll undoubtedly have read about
confusion and diffusion. Confusion means that the input (plaintext and encryption
key) undergoes complex transformations, and diffusion means that these
transformations depend equally on all bits of the input. At a high level, confusion
is about depth whereas diffusion is about breadth. In the design of a block
cipher, confusion and diffusion take the form of substitution and permutation
operations, which are combined within substitution—permutation networks

(SPNGs).
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Substitution often appears in the form of S-boxes, or substitution boxes, which
are small lookup tables that transform chunks of 4 or 8 bits. For example, the
first of the eight S-boxes of the block cipher Serpent is composed of the 16
elements 38fla65bed427009 c), where each element represents a 4-bit
nibble. This particular S-box maps the 4-bit nibble 0000 to 3 (0011), the 4-bit
nibble 0101 (5 in decimal) to 6 (0110), and so on.

NOTE

S-boxes must be carefully chosen to be cryptographically strong: they should be as
nonlinear as possible (inputs and outputs should be related with complex equations)
and bave no statistical bias (meaning, for example, that flipping an input bit should
potentially affect any of the output bits).

The permutation in a substitution—permutation network can be as simple as
changing the order of the bits, which is easy to implement but doesn’t mix up
the bits very much. Instead of a reordering of the bits, some ciphers use basic
linear algebra and matrix multiplications to mix up the bits: they perform a series
of multiplication operations with fixed values (the matrix’s coefficients) and then
add the results. Such linear algebra operations can quickly create dependencies
between all the bits within a cipher and thus ensure strong diffusion. For
example, the block cipher FOX transforms a 4-byte vector (4, 4, ¢, d) to (a’, &', ¢,
d"), defined as follows:

d=a+b+c+(2xd)

V=a+(253%xb)+(2xc)+d
¢ =(253xa)+(2xb)+c+d
d=(2xa)+b+(253x¢)+d

In the above equations, the numbers 2 and 253 are interpreted as binary
polynomials rather than integers; hence, additions and multiplications are
defined a bit differently than what we’re used to. For example, instead of having
2 +2 =4, we have 2 + 2 = 0. Regardless, the point is that each byte in the initial
state affects all 4 bytes in the final state.

Feistel Schemes
In the 1970s, IBM engineer Horst Feistel designed a block cipher called Lucifer



that works as follows:

Split the 64-bit block into two 32-bit halves, L and R.

Set L to L ® F(R), where F is a substitution—permutation round.
Swap the values of L and R.

Go to step 2 and repeat 15 times.

Merge L and R into the 64-bit output block.

N S R N

This construction became known as a Feistel scheme, as shown in Figure 4-2.
The left side is the scheme as just described; the right side is a functionally
equivalent representation where, instead of swapping L and R, rounds alternate
the operations L = L. ® F(R) and R = R @ F(L).

+
$

Figure 4-2: The Feistel scheme block cipher construction in two equivalent forms

I’'ve omitted the keys from Figure 4-2 to simplify the diagrams, but note that
the first F takes a first round key, K, and the second F takes another round key,
K5. In DES, the F functions take a 48-bit round key, which is derived from the
56-bit key, K.

In a Feistel scheme, the F function can be either a pseudorandom permutation
(PRP) or a pseudorandom function (PRF). A PRP yields distinct outputs for any
two distinct inputs, whereas a PRF will have values X and Y for which F(X) =
F(Y). But in a Feistel scheme, that difference doesn’t matter as long as F is
cryptographically strong.

How many rounds should there be in a Feistel scheme? Well, DES performs

16 rounds, whereas GOST 28147-89 performs 32 rounds. If the F function is as
strong as possible, four rounds are in theory sufficient, but real ciphers use more



rounds to defend against potential weaknesses in F.

The Advanced Encryption Standard (AES)

AES is the most-used cipher in the universe. Prior to the adoption of AES, the
standard cipher in use was DES, with its ridiculous 56-bit security, as well as the
upgraded version of DES known as Triple DES, or 3DES.

Although 3DES provides a higher level of security (112-bit security), it’s
inefficient because the key needs to be 168 bits long in order to get 112-bit
security, and it’s slow in software (DES was created to be fast in integrated
circuits, not on mainstream CPUs). AES fixes both issues.

NIST standardized AES in 2000 as a replacement for DES, at which point it
became the world’s de facto encryption standard. Most commercial encryption
products today support AES, and the NSA has approved it for protecting top-
secret information. (Some countries do prefer to use their own cipher, largely
because they don’t want to use a US standard, but AES is actually more Belgian
than it is American.)

NOTE

AES used to be called Rijndael (a portmanteau for its inventors’ names, Rijmen and
Daemen, pronounced like “rain-dull”) when it was one of the 15 candidates in the
AES competition, the process held by NIST from 1997 to 2000 to specify “an
unclassified, publicly disclosed encryption algorithm capable of protecting semsitive
government information well into the next cemtury,” as stated in the 1997
announcement of the competition in the Federal Register. The AES competition was
kind of a “Got Talent” competition for cryptographers, where anyone could
participate by submitting a cipher or breaking other contestants’ cipbers.

AES Internals

AES processes blocks of 128 bits using a secret key of 128, 192, or 256 bits, with
the 128-bit key being the most common because it makes encryption slightly
faster and because the difference between 128- and 256-bit security is
meaningless for most applications.
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Figure 4-3: The internal state of AES viewed as a 4 x 4 array of 16 bytes

Whereas some ciphers work with individual bits or 64-bit words, AES
manipulates bytes. It views a 16-byte plaintext as a two-dimensional array of bytes
(5 =505 515 - - - » 515), as shown in Figure 4-3. (The letter s is used because this array
is called the internal state, or just state.) AES transforms the bytes, columns, and
rows of this array to produce a final value that is the ciphertext.

In order to transform its state, AES uses an SPN structure like the one shown
in Figure 4-4, with 10 rounds for 128-bit keys, 12 for 192-bit keys, and 14 for
256-bit keys.
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Figure 4-4: The internal operations of AES
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Figure 4-4 shows the four building blocks of an AES round (note that all but

the last round are a sequence of SubBytes, ShiftRows, MixColumns, and
AddRoundKey):

AddRoundKey XORs a round key to the internal state.

SubBytes Replaces each byte (s, 51, . . ., 515) with another byte according to
an S-box. In this example, the S-box is a lookup table of 256 elements.

ShiftRows Shifts the ith row of i positions, for 7 ranging from 0 to 3 (see

Figure 4-5).

MixColumns Applies the same linear transformation to each of the four

columns of the state (that is, each group of cells with the same shade of gray,

as shown on the left side of Figure 4-5).

Remember that in an SPN, the S stands for substitution and the P for
permutation. Here, the substitution layer is SubBytes and the permutation layer



is the combination of ShiftRows and MixColumns.
The key schedule function KeyExpansion, shown in Figure 4-4, is the AES key
schedule algorithm. This expansion creates 11 round keys (K, Ki, . . . , K;q) of

16 bytes each from the 16-byte key, using the same S-box as SubBytes and a
combination of XORs. One important property of KeyExpansion is that given
any round key, K, an attacker can determine all other round keys as well as the

main key, K, by reversing the algorithm. The ability to get the key from any
round key is usually seen as an imperfect defense against side-channel attacks,
where an attacker may easily recover a round key.
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Figure 4-5: ShiftRows rotates bytes within each row of the internal state.

Without these operations, AES would be totally insecure. Each operation
contributes to AES’s security in a specific way:

Without KeyExpansion, all rounds would use the same key, K, and AES
would be vulnerable to slide attacks.

Without AddRoundKey, encryption wouldn’t depend on the key; hence,
anyone could decrypt any ciphertext without the key.

SubBytes brings nonlinear operations, which add cryptographic strength.
Without it, AES would just be a large system of linear equations that is
solvable using high-school algebra.

Without ShiftRows, changes in a given column would never affect the other
columns, meaning you could break AES by building four 2°2-element
codebooks for each column. (Remember that in a secure block cipher,
flipping a bit in the input should affect all the output bits.)

Without MixColumns, changes in a byte would not affect any other bytes of
the state. A chosen-plaintext attacker could then decrypt any ciphertext



after storing 16 lookup tables of 256 bytes each that hold the encrypted
values of each possible value of a byte.

Notice in Figure 4-4 that the last round of AES doesn’t include the
MixColumns operation. That operation is omitted in order to save useless
computation: because MixColumns is linear (meaning, predictable), you could
cancel its effect in the very last round by combining bits in a way that doesn’t
depend on their value or the key. SubBytes, however, can’t be inverted without
the state’s value being known prior to AddRoundKey.

To decrypt a ciphertext, AES unwinds each operation by taking its inverse
function: the inverse lookup table of SubBytes reverses the SubBytes
transformation, ShiftRow shifts in the opposite direction, MixColumns’s inverse
is applied (as in the matrix inverse of the matrix encoding its operation), and
AddRoundKey’s XOR is unchanged because the inverse of an XOR is another
XOR.

AES in Action

To try encrypting and decrypting with AES, you can use Python’s cryptography
library, as in Listing 4-1.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

# pick a random 16-byte key using Python's crypto PRNG

k = urandom(16)

print "k = %s" % hexa(k)

# create an instance of AES-128 to encrypt a single block

cipher = Cipher(algorithms.AES(k), modes.ECB(), backend = default_backend())
aes_encrypt = cipher.encryptor()

# set plaintext block p to the all-zero string

p = '\x00'*16

# encrypt plaintext p to ciphertext c

c = aes_encrypt.update(p) + aes_encrypt.finalize()
print "enc(%s) = %s" % (hexa(p), hexa(c))

# decrypt ciphertext c to plaintext p

aes_decrypt = cipher.decryptor()

p = aes_decrypt.update(c) + aes_decrypt.finalize()
print "dec(%s) = %s" % (hexa(c), hexa(p))




Listing 4-1: Trying AES with Python’s cryptography library

Running this script produces something like the following output:

$ ./aes_block.py

k = 2c6202f9a582668aa96d511862d8a279
enc(00000000000000000000000000000000)
dec(12b620bb5eddcde9a07523e59292a6d7)

12b620bb5eddcde9a07523e59292a6d7
000000000000000000000000000CMO00

You’ll get different results because the key is randomized at every new
execution.

Implementing AES

Real AES software works differently than the algorithm shown in Figure 4-4.
You won’t find production-level AES code calling a subBytes() function, then a
ShiftRows() function, and then a MixColumns() function because that would be
inefficient. Instead, fast AES software uses special techniques called table-based
implementations and native instructions.

Table-Based Implementations

Table-based implementations of AES replace the sequence SubBytes-ShiftRows-
MixColumns with a combination of XORs and lookups in tables hardcoded into
the program and loaded in memory at execution time. This is possible because
MixColumns is equivalent to XORing four 32-bit values, where each depends on
a single byte from the state and on SubBytes. Thus, you can build four tables
with 256 entries each, one for each byte value, and implement the sequence
SubBytes-MixColumns by looking up four 32-bit values and XORing them
together.

For example, the table-based C implementation in the OpenSSL toolkit looks
like Listing 4-2.

/* round 1: */

t0 = TeO[sO >> 24] » Tel[(sl >> 16) & Oxff] ~ Te2[(s2 >> 8) & Oxff] » Te3[s3 & Oxff] ~
rk[ 4];

t1
rk[ 51;

t2
rk[ 6]1;

t3
rk[ 71;

/* round 2: */

sO = TeO[tO >> 24] ~ Tel[(tl >> 16) & Oxff] ~ Te2[(t2 >> 8) & Oxff] ~ Te3[t3 & Oxff] ~
rk[ 81;

>

TeO[s1 >> 24] ~ Tel[(s2 >> 16) & Oxff] ~ Te2[(s3 >> 8) & Oxff] ~ Te3[sO & Oxff]

>

TeO[s2 >> 24] ~ Tel[(s3 >> 16) & Oxff] » Te2[(sO >> 8) & Oxff] » Te3[s1 & Oxff]

TeO[s3 >> 24] ~ Tel[(sO >> 16) & Oxff] » Te2[(s1l >> 8) & Oxff] ~ Te3[s2 & Oxff] ~



sl
rk[ 971;
s2
rk[10];
s3
rk[11];
--snip--

TeO[t1 >> 24] ~ Tel[(t2 >> 16) & Oxff] ~ Te2[(t3 >> 8) & Oxff] ~ Te3[t0 & Oxff] ~

Te0[t2 >> 24] ~ Tel[(t3 >> 16) & Oxff] ~ Te2[(tO >> 8) & Oxff] ~ Te3[tl & Oxff] ~

TeO[t3 >> 24] ~ Tel[(tO >> 16) & Oxff] » Te2[(t1l >> 8) & Oxff] ~ Te3[t2 & Oxff] ~

Listing 4-2: The table-based C implementation of AES in OpenSSL

A basic table-based implementation of AES encryption needs four kilobytes’
worth of tables because each table stores 256 32-bit values, which occupy 256 x
32 = 8192 bits, or one kilobyte. Decryption requires another four tables, and
thus four more kilobytes. But there are tricks to reduce the storage from four
kilobytes to one, or even fewer.

Alas, table-based implementations are vulnerable to cache-timing attacks, which
exploit timing variations when a program reads or writes elements in cache
memory. Depending on the relative position in cache memory of the elements
accessed, access time varies. Timings thus leak information about which element
was accessed, which in turn leaks information on the secrets involved.

Cache-timing attacks are difficult to avoid. One obvious solution would be to
ditch lookup tables altogether by writing a program whose execution time
doesn’t depend on its inputs, but that’s almost impossible to do and still retain
the same speed, so chip manufacturers have opted for a radical solution: instead
of relying on potentially vulnerable software, they rely on hardware.

Native Instructions

AES native instructions (AES-NI) solve the problem of cache-timing attacks on
AES software implementations. To understand how AES-NI works, you need to
think about the way software runs on hardware: to run a program, a
microprocessor translates binary code into a series of instructions executed by
integrated circuit components. For example, a MUL assembly instruction between
two 32-bit values will activate the transistors implementing a 32-bit multiplier in
the microprocessor. To implement a crypto algorithm, we usually just express a
combination of such basic operations—additions, multiplications, XORs, and so
on—and the microprocessor activates its adders, multipliers, and XOR circuits in
the prescribed order.

AES native instructions take this to a whole new level by providing developers
with dedicated assembly instructions that compute AES. Instead of coding an
AES round as a sequence of assembly instructions, when using AES-NI, you just



call the instruction AESENC and the chip will compute the round for you. Native
instructions allow you to just tell the processor to run an AES round instead of
requiring you to program rounds as a combination of basic operations.

A typical assembly implementation of AES using native instructions looks like
Listing 4-3.

PXOR %xmm5,  %xmmO
AESENC %Xmm6 ,  %xXmmoO
AESENC %xmm7,  %xmmoO
AESENC %xmm8,  %xmmoO
AESENC %xmm9,  %xmmO
AESENC %xXmm10, %xmmoO
AESENC %xmm11, %xmmoO
AESENC %xmm12, %xmmO
AESENC %xmm13, %xmmO
AESENC %xmm14, %xmmoO

AESENCLAST %xmm15, %xmmO

Listing 4-3: AES native instructions

"This code encrypts the 128-bit plaintext initially in the register xmmo, assuming
that registers xmm5 to xmm15 hold the precomputed round keys, with each
instruction writing its result into xmm@. The initial PX0R instruction XORs the first
round key prior to computing the first round, and the final AESENCLAST instruction
performs the last round slightly different from the others (MixColumns is
omitted).

AES is about ten times faster on platforms that implement native instructions, which
as I write this, are virtually all laptop, desktop, and server microprocessors, as well as
most mobile phones and tablets. In fact, on the latest Intel microarchitecture the
AESENC instruction bas a latency of four cycles with a reciprocal throughput of one
cycle, meaning that a call to AESENC takes four cycles to complete and that a new
call can be made every cycle. To encrypt a series of blocks consecutively it thus takes 4
x 10 = 40 cycles to complete the 10 rounds or 40 / 16 = 2.5 cycles per byte. At 2
GHz (2 x 10 ? cycles per second), that gives a throughput of about 736 megabytes
per second. If the blocks to encrypt or decrypt are independent of each other, as certain
modes of operation allow, then four blocks can be processed in parallel to take full
advantage of the AESENC circuit in order to rveach a latency of 10 cycles per block
instead of 40, or about 3 gigabytes per second.




Is AES Secure?

AES is as secure as a block cipher can be, and it will never be broken.
Fundamentally, AES is secure because all output bits depend on all input bits in
some complex, pseudorandom way. To achieve this, the designers of AES
carefully chose each component for a particular reason—MixColumns for its
maximal diffusion properties and SubBytes for its optimal non-linearity—and
they have shown that this composition protects AES against whole classes of
cryptanalytic attacks.

But there’s no proof that AES is immune to all possible attacks. For one thing,
we don’t know what all possible attacks are, and we don’t always know how to
prove that a cipher is secure against a given attack. The only way to really gain
confidence in the security of AES is to crowdsource attacks: have many skilled
people attempt to break AES and, hopefully, fail to do so.

After more than 15 years and hundreds of research publications, the
theoretical security of AES has only been scratched. In 2011 cryptanalysts found
a way to recover an AES-128 key by performing about 2126 operations instead of

21283 speed-up of a factor four. But this “attack” requires an insane amount of

plaintext—ciphertext pairs—about 2% bits worth. In other words, it’s a nice
finding but not one you need to worry about.

The upshot is that you should care about a million things when implementing
and deploying crypto, but AES security is not one of those. The biggest threat to
block ciphers isn’t in their core algorithms but in their modes of operation.
When an incorrect mode is chosen, or when the right one is misused, even a
strong cipher like AES won’t save you.

Modes of Operation

In Chapter 1, I explained how encryption schemes combine a permutation with a
mode of operation to handle messages of any length. In this section, I'll cover
the main modes of operations used by block ciphers, their security and function
properties, and how (not) to use them. I'll begin with the dumbest one:
electronic codebook.

The Electronic Codebook (ECB) Mode
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Figure 4-6: The ECB mode

The simplest of the block cipher encryption modes is electronic codebook
(ECB), which is barely a mode of operation at all. ECB takes plaintext blocks P;,

P;, . .., Py and processes each independently by computing C; = E(K, P;), C, =
E(K, P,), and so on, as shown in Figure 4-6. It’s a simple operation but also an
insecure one. I repeat: ECB is insecure and you should not use it!

Marsh Ray, a cryptographer at Microsoft, once said, “Everybody knows ECB
mode is bad because we can see the penguin.” He was referring to a famous
illustration of ECB’s insecurity that uses an image of Linux’s mascot, Tux, as
shown in Figure 4-7. You can see the original image of Tux on the left, and the
image encrypted in ECB mode using AES (though the underlying cipher doesn’t
matter) on the right. It’s easy to see the penguin’s shape in the encrypted version
because all the blocks of one shade of gray in the original image are encrypted to
the same new shade of gray in the new image; in other words, ECB encryption
just gives you the same image but with different colors.



Figure 4-7: The original image (left) and the ECB-encrypted image (right)

The Python program in Listing 4-4 also shows ECB’s insecurity. It picks a
pseudorandom key and encrypts a 32-byte message p containing two blocks of
null bytes. Notice that encryption yields two identical blocks and that repeating
encryption with the same key and the same plaintext yields the same two blocks
again.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

BLOCKLEN = 16

def blocks(data):
split = [hexa(data[i:1+BLOCKLEN]) for i1 in range(®, len(data), BLOCKLEN)]
return ' '.join(split)

k = urandom(16)
print 'k = %s' % hexa(k)

# create an instance of AES-128 to encrypt and decrypt

cipher = Cipher(algorithms.AES(k), modes.ECB(), backend=default_backend())
aes_encrypt = cipher.encryptor()

# set plaintext block p to the all-zero string

p = '\x00'*BLOCKLEN*2



# encrypt plaintext p to ciphertext c
c = aes_encrypt.update(p) + aes_encrypt.finalize()
print 'enc(%s) = %s' % (blocks(p), blocks(c))

Listing 4-4: Using AES in ECB mode in Python

Running this script gives ciphertext blocks like this, for example:

$ ./aes_ecb.py

k = 50a0ebeff8001250e87d31d72a86e46d
enc(00000000000000000000000000000000 OONNOOEEEEOAANOOOEEEEONNOOEEARO) =
5eb4b7af094ef7acad472bbd3cd72fl1ed 5ebdb7af094ef7acad72bbd3cd72f1ed

As you can see, when the ECB mode is used, identical ciphertext blocks reveal
identical plaintext blocks to an attacker, whether those are blocks within a single
ciphertext or across different ciphertexts. This shows that block ciphers in ECB
mode aren’t semantically secure.

Another problem with ECB is that it only takes complete blocks of data, so if
blocks were 16 bytes, as in AES, you could only encrypt chunks of 16 bytes, 32
bytes, 48 bytes, or any other multiple of 16 bytes. There are a few ways to deal
with this, as you’ll see with the next mode, CBC. (I won’t tell you how these
tricks work with ECB because you shouldn’t be using ECB in the first place.)

The Cipher Block Chaining (CBC) Mode

Cipher block chaining (CBC) is like ECB but with a small twist that makes a big
difference: instead of encrypting the 7th block, P;, as C; = E(K, P;), CBC sets C; =

EK, P;® C; _ ), where C; _ is the previous ciphertext block—thereby chaining
the blocks C; _{ and C;. When encrypting the first block, P;, there is no previous

ciphertext block to use, so CBC takes a random initial value (IV), as shown in
Figure 4-8.
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Figure 4-8: The CBC mode



The CBC mode makes each ciphertext block dependent on all the previous
blocks, and ensures that identical plaintext blocks won’t be identical ciphertext
blocks. The random initial value guarantees that two identical plaintexts will
encrypt to distinct ciphertexts when calling the cipher twice with two distinct
initial values.

Listing 4-5 illustrates these two benefits. This program takes an all-zero, 32-
byte message (like the one in Listing 4-4), encrypts it twice with CBC, and
shows the two ciphertexts. The line iv = urandom(16), shown in bold, picks a new
random IV for each new encryption.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend

from binascii import hexlify as hexa

from os import urandom

BLOCKLEN = 16

# the blocks() function splits a data string into space-separated blocks

def blocks(data):
split = [hexa(data[i1:1+BLOCKLEN]) for i1 in range(0, len(data), BLOCKLEN)]
return ' '.join(split)

k = urandom(16)

print 'k = %s' % hexa(k)

# pick a random IV

iv = urandom(16)

print 'iv = %s' % hexa(iv)

# pick an instance of AES in CBC mode

aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()

p = '\x00'*BLOCKLEN*2

c = aes.update(p) + aes.finalize()

print 'enc(%s) = %s' % (blocks(p), blocks(c))

# now with a different IV and the same key

iv = urandom(16)

print 'iv = %s' % hexa(iv)

aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()
c = aes.update(p) + aes.finalize()

print 'enc(%s) = %s' % (blocks(p), blocks(c))

Listing 4-5: Using AES in CBC mode

The two plaintexts are the same (two all-zero blocks), but the encrypted
blocks should be distinct, as in this example execution:

$ ./aes_cbc.py

k = 9cf0d31ad2df24f3cbbefc1e6933c872

iv = 0a75c4283b4539c094fc262affOd17af
enc(00000000000000000000000000000000 OANNOOEEEEOAANOOOEEEEONNOOEEREAO) =
370404dcab6e9ecbc3d24ca5573d2920 3b9e5d70e597db225609541f6ae9804a

iv = a6016a6698c3996be13e8739d9e793e2



enc(00000000000000000NNOCEEEOANNNNEE CONNNOOEEEEEANNNOOEEEENNNNNAAEREAO) =
655e1bb3e74ee8cf9ec1540afd8b2204 b59db5ac28de43b25612dfd6f031087a

Alas, CBC is often used with a constant IV instead of a random one, which
exposes identical plaintexts and plaintexts that start with identical blocks. For
example, say the two-block plaintext P; || P, is encrypted in CBC mode to the

two-block ciphertext C; || C,. If P; || P," is encrypted with the same IV, where
P," is some block distinct from P,, then the ciphertext will look like C; 'l C,’,
with C," different from C, but with the same first block C;. Thus, an attacker

can guess that the first block is the same for both plaintexts, even though they
only see the ciphertexts.

In CBC mode, decryption needs to know the IV used to encrypt, so the IV is sent
along with the cipbertext, in the clear.

With CBC, decryption can be much faster than encryption due to parallelism.
While encryption of a new block, P, needs to wait for the previous block, C; _ |,

decryption of a block computes P; = D(K, C)) ® C; _{, where there’s no need for
the previous plaintext block, P; _ ;. This means that all blocks can be decrypted in

parallel simultaneously, as long as you also know the previous ciphertext block,
which you usually do.

How to Encrypt Any Message in CBC Mode

Let’s circle back to the block termination issue and look at how to process a
plaintext whose length is not a multiple of the block length. For example, how
would we encrypt an 18-byte plaintext with AES-CBC when blocks are 16
bytes? What do we do with the two bytes left? We’ll look at two widely used
techniques to deal with this problem. The first one, padding, makes the
ciphertext a bit longer than the plaintext, while the second one, ciphertext
stealing, produces a ciphertext of the same length as the plaintext.

Padding a Message

Padding is a technique that allows you to encrypt a message of any length, even
one smaller than a single block. Padding for block ciphers is specified in the



PKCS#7 standard and in RFC 5652, and is used almost everywhere CBC is
used, such as in some HT'TPS connections.

Padding is used to expand a message to fill a complete block by adding extra
bytes to the plaintext. Here are the rules for padding 16-byte blocks:

e If there’s one byte left—for example, if the plaintext is 1 byte, 17 bytes, or
33 bytes long—pad the message with 15 bytes 0f (15 in decimal).

e If there are two bytes left, pad the message with 14 bytes Oe (14 in decimal).

o [f there are three bytes left, pad the message with 13 bytes 0d (13 in
decimal).

If there are 15 plaintext bytes and a single byte missing to fill a block, padding
adds a single 01 byte. If the plaintext is already a multiple of 16, the block length,
add 16 bytes 10 (16 in decimal). You get the idea. The trick generalizes to any
block length up to 255 bytes (for larger blocks, a byte is too small to encode
values greater than 255).

Decryption of a padded message works like this:

1. Decrypt all the blocks as with unpadded CBC.

2. Make sure that the last bytes of the last block conform to the padding rule:
that they finish with at least one 01 byte, at least two 02 bytes, or at least
three 03 bytes, and so on. If the padding isn’t valid—for example, if the last
bytes are 01 02 03—the message is rejected. Otherwise, decryption strips
the padding bytes and returns the plaintext bytes left.

One downside of padding is that it makes ciphertext longer by at least one
byte and at most a block.

Ciphertext Stealing

Ciphertext stealing is another trick used to encrypt a message whose length isn’t
a multiple of the block size. Ciphertext stealing is more complex and less popular
than padding, but it offers at least three benefits:

e Plaintexts can be of any /it length, not just bytes. You can, for example,
encrypt a message of 131 bits.
e Ciphertexts are exactly the same length as plaintexts.



e Ciphertext stealing is not vulnerable to padding oracle attacks, powerful
attacks that sometimes work against CBC with padding (as we’ll see in
“Padding Oracle Attacks” on page 74).

In CBC mode, ciphertext stealing extends the last incomplete plaintext block
with bits from the previous ciphertext block, and then encrypts the resulting
block. The last, incomplete ciphertext block is made up of the first blocks from
the previous ciphertext block; that is, the bits that have not been appended to the
last plaintext block.
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Figure 4-9: Ciphertext stealing for CBC-mode encryption

In Figure 4-9, we have three blocks, where the last block, P3, is incomplete
(represented by a zero). P; is XORed with the last bits from the previous
ciphertext block, and the encrypted result is returned as C,. The last ciphertext
block, C;, then consists of the first bits from the previous ciphertext block.
Decryption is simply the inverse of this operation.

There aren’t any major problems with ciphertext stealing, but it’s inelegant
and hard to get right, especially when NIST’s standard specifies three different
ways to implement it (see Special Publication 800-38A).

The Counter (CTR) Mode

To avoid the troubles and retain the benefits of ciphertext stealing, you should
use counter mode (CTR). CTR is hardly a block cipher mode: it turns a block
cipher into a stream cipher that just takes bits in and spits bits out and doesn’t

embarrass itself with the notion of blocks. (I’ll discuss stream ciphers in detail in
Chapter 5.)
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Figure 4-10: The CTR mode

In CTR mode (see Figure 4-10), the block cipher algorithm won’t transform
plaintext data. Instead, it will encrypt blocks composed of a counter and a nonce. A
counter is an integer that is incremented for each block. No two blocks should
use the same counter within a message, but different messages can use the same
sequence of counter values (1, 2, 3, .. .). A nonce is a number used only once. It
is the same for all blocks in a single message, but no two messages should use the
same nonce.

As shown in Figure 4-10, in CTR mode, encryption XORs the plaintext and
the stream taken from “encrypting” the nonce, N, and counter, Ctr. Decryption
is the same, so you only need the encryption algorithm for both encryption and
decryption. The Python script in Listing 4-6 gives you a hands-on example.

#!/usr/bin/env python

from Crypto.Cipher import AES

from Crypto.Util import Counter

from binascii import hexlify as hexa
from os import urandom

from struct import unpack

k = urandom(16)
print 'k = %s' % hexa(k)

# pick a starting value for the counter
nonce = unpack('<Q', urandom(8))[0]

# instantiate a counter function

ctr = Counter.new(128, initial_value=nonce)

# pick an instance of AES in CTR mode, using ctr as counter
aes = AES.new(k, AES.MODE_CTR, counter=ctr)

# no need for an entire block with CTR
p = '"\x00\x01\x02\x03'

# encrypt p



c = aes.encrypt(p)

print 'enc(%s) = %s' % (hexa(p), hexa(c))

# decrypt using the encrypt function

ctr = Counter.new(128, initial_value=nonce)
aes = AES.new(k, AES.MODE_CTR, counter=ctr)
p = aes.encrypt(c)

print 'enc(%s) = %s' % (hexa(c), hexa(p))

Listing 4-6: Using AES in CTR mode

The example execution encrypts a 4-byte plaintext and gets a 4-byte
ciphertext. It then decrypts that ciphertext using the encryption function:

$ ./aes_ctr.py

k = 130a1aa77fa58335272156421cb2a3ea
enc(00010203) b23d284e
enc(b23d284e) 00010203

As with the initial value in CBC, CTR’s nonce is supplied by the encrypter
and sent with the ciphertext in the clear. But unlike CBC’s initial value, CTR’s
nonce doesn’t need to be random, it simply needs to be unique. A nonce should
be unique for the same reason that a one-time pad shouldn’t be reused: when
calling the pseudorandom stream, S, if you encrypt P; to C; = P; @ S and P, to

C, = P, @ S using the same nonce, then C; @ C, reveals P; @ P;.

A random nonce will do the trick only if it’s long enough; for example, if the
nonce is 7 bits, chances are that after 2/ 2 encryptions and as many nonces you’ll
run into duplicates. Sixty-four bits are therefore insufficient for a random nonce,
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since you can expect a repetition after approximately nonces, which is an

unacceptably low number.

The counter is guaranteed unique if it’s incremented for every new plaintext,
and if it’s long enough; for example, a 64-bit counter.

One particular benefit to CTR is that it can be faster than in any other mode.
Not only is it parallelizable, but you can also start encrypting even before
knowing the message by picking a nonce and computing the stream that you’ll
later XOR with the plaintext.

How Things Can Go Wrong

There are two must-know attacks on block ciphers: meet-in-the-middle attacks,
a technique discovered in the 1970s but still used in many cryptanalytic attacks
(not to be confused with man-in-the-middle attacks), and padding oracle attacks,



a class of attacks discovered in 2002 by academic cryptographers, then mostly
ignored, and finally rediscovered a decade later along with several vulnerable
applications.

Meet-in-the-Middle Attacks

The 3DES block cipher is an upgraded version of the 1970s standard DES that
takes a key of 56 x 3 = 168 bits (an improvement on DES’s 56-bit key). But the
security level of 3DES is 112 bits instead of 168 bits, because of the meet-in-the-
middle (MitM) attack.

As you can see in Figure 4-11, 3DES encrypts a block using the DES
encryption and decryption functions: first encryption with a key, Kj, then

decryption with a key, K,, and finally encryption with another key, K5. If K| =
K, the first two calls cancel themselves out and 3DES boils down to a single
DES with key K3. 3DES does encrypt-decrypt-encrypt rather than encrypting
thrice to allow systems to emulate DES when necessary using the new 3DES
interface.

K, K, K,

.

P —= DES'E ! DES'D —»| DES'E —»C

Figure 4-11: The 3DES block cipher construction

Why use triple DES and not just double DES; that is, E(K{, E(K,, P))? It turns

out that the MitM attack makes double DES only as secure as single DES.
Figure 4-12 shows the MitM attack in action.

K] KE
P—» E > 24— D |=—07¢

Figure 4-12: The meet-in-the-middle attack

The meet-in-the-middle attack works as follows to attack double DES:



1. Say you have P and C = E(K,, E(Kj, P)) with two unknown 56-bit keys, K
and K;. (DES takes 56-bit keys, so double DES takes 112 key bits in total.)
You build a key-value table with 2°6 entries of E(K;, P), where E is the DES
encryption function and K is the value stored.

2. For all 2°6 values of K, compute D(K,, C) and check whether the resulting

value appears in the table as an index (thus as a middle value, represented by
a question mark in Figure 4-12).

3. If a middle value is found as an index of the table, you fetch the
corresponding K; from the table and verify that the (K|, K;) found is the

right one by using other pairs of P and C. Encrypt P using K; and K, and
then check that the ciphertext obtained is the given C.

This method recovers K; and K, by performing about 2°7 instead of 2!1?

operations: step 1 encrypts 2°¢ blocks and then step 2 decrypts at most 2°¢
blocks, for 2°6 + 26 = 257 operations in total. You also need to store 2°6 elements
of 15 bytes each, or about 128 petabytes. That’s a lot, but there’s a trick that
allows you to run the same attack with only negligible memory (as you’ll see in

Chapter 6).

As you can see, you can apply the MitM attack to 3DES in almost the same

way you would to double DES, except that the third stage will go through all

2112 values of K, and Kj;. The whole attack thus succeeds after performing about

2112 operations, meaning that 3DES gets only 112-bit security despite having

168 bits of key material.
Padding Oracle Attacks

Let’s conclude this chapter with one of the simplest and yet most devastating
attacks of the 2000s: the padding oracle attack. Remember that padding fills the
plaintext with extra bytes in order to fill a block. A plaintext of 111 bytes, for
example, is a sequence of six 16-byte blocks followed by 15 bytes. To form a
complete block, padding adds a 01 byte. For a 110-byte plaintext, padding adds
two 02 bytes, and so on.

A padding oracle is a system that behaves differently depending on whether the
padding in a CBC-encrypted ciphertext is valid. You can see it as a black box or
an API that returns either a success or an error value. A padding oracle can be



found in a service on a remote host sending error messages when it receives
malformed ciphertexts. Given a padding oracle, padding oracle attacks record
which inputs have a valid padding and which don’t, and exploit this information
to decrypt chosen ciphertext values.
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Figure 4-13: Padding oracle attacks recover X by choosing C; and checking the validity of
padding.

Say you want to decrypt ciphertext block C,. I'll call X the value you’re
looking for, namely D(K, C,), and P, the block obtained after decrypting in
CBC mode (see Figure 4-13). If you pick a random block €| and send the two-
block ciphertext C; || C; to the oracle, decryption will only succeed if C; @ P, =
X ends with valid padding—a single 01 byte, two 02 bytes, or three 03 bytes, and

SO O1.

Based on this observation, padding oracle attacks on CBC encryption can
decrypt a block C; like this (bytes are denoted in array notation: C;[0] is C}’s first

byte, Cy[1] its second byte, and so on up to C[15], C;’s last byte):

1. Pick a random block C; and vary its last byte until the padding oracle
accepts the ciphertext as valid. Usually, in a valid ciphertext, C;[15] @ X[15]
= 01, so you’ll find X[15] after trying around 128 values of C;[15].

2. Find the value X[14] by setting C;[15] to X[15] ® 02 and searching for the
C[14] that gives correct padding. When the oracle accepts the ciphertext as
valid, it means you have found C/[14] such that C;[14] ® X[14] = 02.

3. Repeat steps 1 and 2 for all 16 bytes.

The attack needs on average 128 queries to the oracle for each of the 16 bytes,
which is about 2000 queries in total. (Note that each query must use the same



initial value.)

NOTE

In practice, implementing a padding oracle attack is a bit more complicated than
what Ive described, because you have to deal with wrong guesses at step 1. A
ciphertext may have valid padding not because P, ends with a single 01 but because

it ends with two 02 bytes or three 03 bytes. But that’s easily managed by testing the
validity of ciphertexts where more bytes are modified.

Further Reading

There’s a lot to say about block ciphers, be it in how algorithms work or in how
they can be attacked. For instance, Feistel networks and SPNs aren’t the only
ways to build a block cipher. The block ciphers IDEA and FOX use the Lai-
Massey construction, and Threefish uses ARX networks, a combination of
addition, word rotations, and XOR:s.

There are also many more modes than just ECB, CBC, and CTR. Some
modes are folklore techniques that nobody uses, like CFB and OFB, while others
are for specific applications, like XTS for tweakable encryption or GCM for
authenticated encryption.

I’ve discussed Rijndael, the AES winner, but there were 14 other algorithms in
the race: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97,
Magenta, MARS, RC6, SAFER+, Serpent, and Twofish. I recommend that you
look them up to see how they work, how they were designed, how they have
been attacked, and how fast they are. It’s also worth checking out the NSA’s
designs (Skipjack, and more recently, SIMON and SPECK) and more recent
“lightweight” block ciphers such as KATAN, PRESENT, or PRINCE.



5]
STREAM CIPHERS

Symmetric ciphers can be either block ciphers or stream ciphers. Recall from
Chapter 4 that block ciphers mix chunks of plaintext bits together with key bits
to produce chunks of ciphertext of the same size, usually 64 or 128 bits. Stream
ciphers, on the other hand, don’t mix plaintext and key bits; instead, they
generate pseudorandom bits from the key and encrypt the plaintext by XORing
it with the pseudorandom bits, in the same fashion as the one-time pad explained
in Chapter 1.

Stream ciphers are sometimes shunned because historically they’ve been more
fragile than block ciphers and are more often broken—both the experimental
ones designed by amateurs and the ciphers deployed in systems used by millions,
including mobile phones, Wi-Fi, and public transport smart cards. But that’s all
history. Fortunately, although it has taken 20 years, we now know how to design
secure stream ciphers, and we trust them to protect things like Bluetooth
connections, mobile 4G communications, TLS connections, and more.

This chapter first presents how stream ciphers work and discusses the two
main classes of stream ciphers: stateful and counter-based ciphers. We’ll then
study hardware- and software-oriented stream ciphers and look at some insecure
ciphers (such as A5/1 in GSM mobile communications and RC4 in TLS) and
some secure, state-of-the-art ones (such as Grain-128a for hardware and Salsa20
for software).

How Stream Ciphers Work

Stream ciphers are more akin to deterministic random bit generators (DRBGs)
than they are to full-fledged pseudorandom number generators (PRNGs)
because, like DRBGs, stream ciphers are deterministic. Stream ciphers’
determinism allows you to decrypt by regenerating the pseudorandom bits used



to encrypt. With a PRNG, you could encrypt but never decrypt—which is
secure, but useless.

What sets stream ciphers apart from DRBGs is that DRBGs take a single
input value whereas stream ciphers take two values: a key and a nonce. The key
should be secret and is usually 128 or 256 bits. The nonce doesn’t have to be
secret, but it should be unique for each key and is usually between 64 and 128
bits.

P

T
K—m SC AJ——C

KS
Figure 5-1: How stream ciphers encrypt, taking a secret key, K, and a public nonce, N

Stream ciphers produce a pseudorandom stream of bits called the keystream:.
The keystream is XORed to a plaintext to encrypt it and then XORed again to
the ciphertext to decrypt it. Figure 5-1 shows the basic stream cipher encryption
operation, where SC is the stream cipher algorithm, KS the keystream, P the
plaintext, and C the ciphertext.

A stream cipher computes KS = SC(K, N), encrypts as C = P @ KS, and
decrypts as P = C @ KS. The encryption and decryption functions are the same
because both do the same thing—namely, XOR bits with the keystream. That’s
why, for example, certain cryptographic libraries provide a single encrypt
function that’s used for both encryption and decryption.

Stream ciphers allow you to encrypt a message with key K; and nonce N; and
then encrypt another message with key K; and nonce N, that is different from
Ny, or with key K, which is different from K; and nonce N;. However, you
should never again encrypt with K; and N;, because you would then use twice
the same keystream KS. You would then have a first ciphertext C| = P; @ KS, a

second ciphertext C, = P, ® KS, and if you know Py, then you could determine P,

The name nonce is actually short for number used only once. In the context of
stream ciphers, it’s sometimes called the IV, for initial value.




Stateful and Counter-Based Stream Ciphers

From a high-level perspective, there are two types of stream ciphers: stateful and
counter based. Stateful stream ciphers have a secret internal state that evolves
throughout keystream generation. The cipher initializes the state from the key
and the nonce and then calls an update function to update the state value and
produce one or more keystream bits from the state, as shown in Figure 5-2. For
example, the famous RC4 is a stateful cipher.

N
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K—={ Init |—=|Updatef—=|Update—={Update

Figure 5-2: The stateful stream cipher

Counter-based stream ciphers produce chunks of keystream from a key, a nonce,
and a counter value, as shown in Figure 5-3. Unlike stateful stream ciphers, such
as Salsa20, no secret state is memorized during keystream generation.

K, N, Cir KN Crr+1 K N Cir+2
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Figure 5-3: The counter-based stream cipher

These two approaches define the high-level architecture of the stream cipher,
regardless of how the core algorithms work. The internals of the stream cipher
also fall into two categories, depending on the target platform of the cipher:
hardware oriented and software oriented.



Hardware-Oriented Stream Ciphers

When cryptographers talk about hardware, they mean application-specific
integrated circuits (ASICs), programmable logic devices (PLDs), and field-
programmable gate arrays (FPGAs). A cipher’s hardware implementation is an
electronic circuit that implements the cryptographic algorithm at the bit level
and that can’t be used for anything else; in other words, the circuit is dedicated
hardware. On the other hand, software implementations of cryptographic
algorithms simply tell a microprocessor what instructions to execute in order to
run the algorithm. These instructions operate on bytes or words and then call
pieces of electronic circuit that implement general-purpose operations such as
addition and multiplication. Software deals with bytes or words of 32 or 64 bits,
whereas hardware deals with bits. The first stream ciphers worked with bits in
order to save complex word-wise operations and thus be more efficient in
hardware, their target platform at the time.

The main reason why stream ciphers were commonly used for hardware
implementations is that they were cheaper than block ciphers. Stream ciphers
needed less memory and fewer logical gates than block ciphers, and therefore
occupied a smaller area on an integrated circuit, which reduced fabrication costs.
For example, counting in gate-equivalents, the standard area metric for
integrated circuits, you could find stream ciphers taking less than 1000 gate-
equivalents; by contrast, typical software-oriented block ciphers needed at least
10000 gate-equivalents, making crypto an order of magnitude more expensive
than with stream ciphers.

Today, however, block ciphers are no longer more expensive than stream
ciphers—first, because there are now hardware-friendly block ciphers about as
small as stream ciphers, and second, because the cost of hardware has plunged.
Yet stream ciphers are often associated with hardware because they used to be
the best option.

In the next section, I'll explain the basic mechanism behind hardware stream
ciphers, called feedback shift registers (FSRs). Almost all hardware stream ciphers
rely on FSRs in some way, whether that’s the A5/1 cipher used in 2G mobile
phones or the more recent cipher Grain-128a.

The first standard block cipher, the Data Encryption Standard (DES), was



optimized for hardware rvather than for software. When the US government
standardized DES in the 1970s, most target applications were hardware
implementations. It’s therefore no surprise that the S-boxes in DES are small and
fast to compute when implemented as a logical circuit in bardware but inefficient in
software. Unlike DES, the current Advanced Encryption Standard (ALS) deals
with bytes and is therefore more efficient in software than DES.

Feedback Shift Registers

Countless stream ciphers have used FSRs because they’re simple and well
understood. An FSR is simply an array of bits equipped with an update feedback
function, which I'll denote as f. The FSR’s state is stored in the array, or register,
and each update of the FSR uses the feedback function to change the state’s value
and to produce one output bit.

In practice, an FSR works like this: if R is the initial value of the FSR, the
next state, R;, is defined as R, left-shifted by 1 bit, where the bit leaving the

register is returned as output, and where the empty position is filled with f(R).

The same rule is repeated to compute the subsequent state values R,, R3, and
so on. That is, given R,, the FSR’s state at time ¢, the next state, R, , {, is the

following:

Ri sy = (R, << DIf(R)

In this equation, | is the logical OR operator and << is the shift operator, as
used in the C language. For example, given the 8-bit string 00001111, we have
this:

00001111 <<1=00011110

00011110 << 1=00111100
00111100 << 1=01111000

The bit shift moves the bits to the left, losing the leftmost bit in order to
retain the state’s bit length, and zeroing the rightmost bit. The update operation
of an FSR is identical, except that instead of being set to 0, the rightmost bit is
set to f(R)).

Consider, for example, a 4-bit FSR whose feedback function f XORs all 4 bits
together. Initialize the state to the following:



1100

Now shift the bits to the left, where 1 is output and the rightmost bit is set to
the following:

£(1100)=1©160©0=0
Now the state becomes this:

1000

The next update outputs 1, left-shifts the state, and sets the rightmost bit to
the following:

£(1000)=1©0© 00 = |
Now the state is this:

0001

The next three updates return three 0 bits and give the following state values:

0011
0110
3otk

We thus return to our initial state of 1100 after five iterations, and we can see
that updating the state five times from any of the values observed throughout
this cycle will return us to this initial value. We say that 5 is the period of the FSR
given any one of the values 1100, 1000, 0001, 0011, or 0110. Because the period
of this FSR is 5, clocking the register 10 times will yield twice the same 5-bit
sequence. Likewise, if you clock the register 20 times, starting from 1100, the
output bits will be 11000110001100011000, or four times the same 5-bit
sequence of 11000. Intuitively, such repeating patterns should be avoided, and a
longer period is better for security.

If you plan to use an FSR in a stream cipher, avoid using one with short periods,
which make the output more predictable. Some types of FSRs make it easy to figure




out their period, but it’s almost impossible to do so with others.

Figure 5-4 shows the structure of this cycle, along with the other cycles of that
FSR, with each cycle shown as a circle whose dots represent a state of the
register.

1100 0100
o110 1000 1010 1001
0011 0001 0101 0010
1111
0111 1110 0000
L
1011 1101

Figure 5-4: Cycles of the FSR whose feedback function XORs the 4 bits together

Indeed, this particular FSR has two other period-5 cycles—namely, {0100,
1001, 0010, 0101, 1010} and {1111, 1110, 1101, 1011, 0111}. Note that any
given state can belong to only one cycle of states. Here, we have three cycles of
five states each, covering 15 of all the 2* = 16 possible values of our 4-bit
register. The 16th possible value is 0000, which, as Figure 5-4 shows, is a
period-1 cycle because the FSR will transform 0000 to 0000.

You've seen that an FSR is essentially a register of bits, where each update of
the register outputs a bit (the leftmost bit of the register) and where a function
computes the new rightmost bit of the register. (All other bits are left-shifted.)
The period of an FSR, from some initial state, is the number of updates needed
until the FSR enters the same state again. If it takes N updates to do so, the FSR
will produce the same N bits again and again.

Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) are FSRs with a /inear feedback function
—namely, a function that’s the XOR of some bits of the state, such as the



example of a 4-bit FSR in the previous section and its feedback function
returning the XOR of the register’s 4 bits. Recall that in cryptography, linearity
is synonymous with predictability and suggestive of a simple underlying
mathematical structure. And, as you might expect, thanks to this linearity,
LESRs can be analyzed using notions like linear complexity, finite fields, and
primitive polynomials—but T’ll skip the math details and just give you the
essential facts.

The choice of which bits are XORed together is crucial for the period of the
LFSR and thus for its cryptographic value. The good news is that we know how
to select the position of the bits in order to guarantee a maximal period, of 2” —
1. Specifically, we take the indices of the bits, from 1 for the rightmost to 7 for
the leftmost, and write the polynomial expression 1 + X + X2 + ... + X ”, where
the term X  is only included if the 7th bit is one of the bits XORed in the
feedback function. The period is maximal if and only if that polynomial is
primitive. T'o be primitive, the polynomial must have the following qualities:

e The polynomial must be irreducible, meaning that it can’t be factorized;
that is, written as a product of smaller polynomials. For example, X + X ? is
not irreducible because it’s equal to (1 + X)(X + X?):

1+X)X+X)=X+X+X+X =X+X

e The polynomial must satisfy certain other mathematical properties that
cannot be easily explained without nontrivial mathematical notions but are
easy to test.

NOTE

The maximal period of an n-bit LFSR is 2™ — 1, not 2", because the all-zero state
always loops on itself infinitely. Because the XOR of any number of zeros is zero, new
bits entering the state from the feedback functions will always be zero; bence, the all-
zero state is doomed to stay all zeros.

For example, Figure 5-5 shows a 4-bit LESR with the feedback polynomial 1 +
X + X3 + X * in which the bits at positions 1, 3, and 4 are XORed together to
compute the new bit set to L;. However, this polynomial isn’t primitive because



it can be factorized into (1 + X *)(1 + X).
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Figure 5-5: An LFSR with the feedback polynomial 1 + X + X3 + x4

Indeed, the period of the LFSR shown in Figure 5-5 isn’t maximal. To prove

that, start from the state 0001.

0001

Now left-shift by 1 bit and set the new bitto 0 + 0 + 1 = 1:

0011

Repeating the operation four times gives the following state values:

0111
1100
1000
0001

And as you can see, the state after five updates is the same as the initial one,
demonstrating that we’re in a period-5 cycle and proving that the LFSR’s period

isn’t the maximal value of 15.

Now, by way of contrast, consider the LFSR shown in Figure 5-6.
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Figure 5-6: An LFSR with the feedback polynomial 1 + X3+ x4 a primitive polynomial,
ensuring a maximal period

This feedback polynomial is a primitive polynomial described by 1 + X3 + X ¥,
and you can verify that its period is indeed maximal (namely 15). Specifically,
from an initial value, the state evolves as follows:



0001 , 0011 ;, 0101 1110
0010 0110 | 1011 1100
0100 1101 | 0111 1000
1001 1010 " 1111 ° 0001

The state spans all possible values except 0000 with no repetition until it
eventually loops. This demonstrates that the period is maximal and proves that
the feedback polynomial is primitive.

Alas, using an LFSR as a stream cipher is insecure. If # is the LFSR’s bit
length, an attacker needs only 7 output bits to recover the LFSR’s initial state,
allowing them to determine all previous bits and predict all future bits. This
attack is possible because the Berlekamp-Massey algorithm can be used to solve
the equations defined by the LFSR’s mathematical structure to find not only the
LFSR’s initial state but also its feedback polynomial. In fact, you don’t even need
to know the exact length of the LFSR to succeed; you can repeat the Berlekamp—
Massey algorithm for all possible values of 7 until you hit the right one.

The upshot is that LFSRs are cryptographically weak because they’re linear.
Output bits and initial state bits are related by simple and short equations that
can be easily solved with high-school linear algebra techniques.

To strengthen LFSRs, let’s thus add a pinch of nonlinearity.
Filtered LFSRs
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Figure 5-7: A filtered LFSR

To mitigate the insecurity of LFSRs, you can hide their linearity by passing their
output bits through a nonlinear function before returning them to produce what
is called a filtered LFSR (see Figure 5-7).

The g function in Figure 5-7 must be a nonlinear function—one that both



XORs bits together and combines them with logical AND or OR operations.
For example, L{L, + L3L,4 is a nonlinear function (I've omitted the multiply sign,

so LiL, means L x L,, or L; & L, using C syntax).

You can write feedback functions either divectly in terms of an FSR’s bits, like 111,

+ 131y, or using the equivalent polynomial notation 1 + XX 2 + X? X*. The direct

notation is easier to grasp, but the polynomial notation better serves the
mathematical analysis of an FSR’s properties. We’ll now stick to the direct notation
unless we care about the mathematical properties.

Filtered LFSRs are stronger than plain LFSRs because their nonlinear
function thwarts straightforward attacks. Still, more complex attacks such as the
following will break the system:

o Algebraic attacks will solve the nonlinear equation systems deduced from the
output bits, where unknowns in the equations are bits from the LFSR state.

o Cube attacks will compute derivatives of the nonlinear equations in order to
reduce the degree of the system down to one and then solve it efficiently
like a linear system.

o Fust corvelation attacks will exploit filtering functions that, despite their
nonlinearity, tend to behave like linear functions.

The lesson here, as we’ve seen in previous examples, is that Band-Aids don’t
fix bullet holes. Patching a broken algorithm with a slightly stronger layer won’t
make the whole thing secure. The problem has to be fixed at the core.

Nonlinear FSRs

Nonlinear FSRs (NFSRs) are like LFSRs but with a nonlinear feedback function
instead of a linear one. That is, instead of just bitwise XORs, the feedback
function can include bitwise AND and OR operations—a feature with both pros
and cons.

One benefit of the addition of nonlinear feedback functions is that they make
NFSRs cryptographically stronger than LFSRs because the output bits depend
on the initial secret state in a complex fashion, according to equations of



exponential size. The LFSRs’ linear function keeps the relations simple, with at
most 7 terms (N7, N,, . . ., N, if the Ns are the NFSR’s state bits). For example,

a 4-bit NFSR with an initial secret state (N7, N,, N3, Ny) and a feedback function
(N7 + N; + NiN, + N3N,) will produce a first output bit equal to the following:

N, + N, + NN, + N3N,

The second iteration replaces the N; value with that new bit. Expressing the
second output bit in terms of the initial state, we get the following equation:

(N,N, + N,N, + N, + N,)+ N, +(N,N, + N,N, + N, + N,) N, + N,N,
= N,N,N, + NN, + N,N, + N,N, + N, + N,

This new equation has algebraic degree 3 (the highest number of bits
multiplied together, here in N;N3;N,) rather than degree 2 of the feedback

function, and it has six terms instead of four. As a result, iterating the nonlinear
function quickly yields unmanageable equations because the size of the output
grows exponentially. Although you’ll never compute those equations when
running the NFSR, an attacker would have to solve them in order to break the
system.

One downside to NFSRs is that there’s no efficient way to determine an
NFSR’s period, or simply to know whether its period is maximal. For an NFSR
of n bits, you’d need to run close to 2” trials to verify that its period is maximal.
This calculation is impossible for large NFSRs of 80 bits or more.

Fortunately, there’s a trick to using an NFSR without worrying about short
periods: you can combine LFSRs and NFSRs to get both a guaranteed maximal
period and the cryptographic strength—and that’s exactly how Grain-128a
works.

Grain-128a

Remember the AES competition discussed in Chapter 4, in the context of the
AES block cipher? The stream cipher Grain is the offspring of a similar project
called the eSTREAM competition. This competition closed in 2008 with a
shortlist of recommended stream ciphers, which included four hardware-
oriented ciphers and four software-oriented ones. Grain is one of these hardware
ciphers, and Grain-128a is an upgraded version from the original authors of



Grain. Figure 5-8 shows the action mechanism of Grain-128a.
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Figure 5-8: The mechanism of Grain-128a, with a 128-bit NFSR and a 128-bit LFSR

As you can see in Figure 5-8, Grain-128a is about as simple as a stream cipher
can be, combining a 128-bit LFSR, a 128-bit NFSR, and a filter function, h.
The LFSR has a maximal period of 2128 — 1, which ensures that the period of the
whole system is at least 2128 — 1 to protect against potential short cycles in the
NFSR. At the same time, the NFSR and the nonlinear filter function h add
cryptographic strength.

Grain-128a takes a 128-bit key and a 96-bit nonce. It copies the 128 key bits
into the NFSR’s 128 bits and copies the 96 nonce bits into the first 96 LFSR
bits, filling the 32 bits left with ones and a single zero bit at the end. The
initialization phase updates the whole system 256 times before returning the first
keystream bit. During initialization, the bit returned by the h function is thus
not output as a keystream, but instead goes into the LFSR to ensure that its
subsequent state depends on both the key and the nonce.

Grain-128a’s LFSR feedback function is

f(L) = L3y + Ly7+ Lsg+ Loy + Lip; + Lypg

where Ly, L,, . . ., L{,g are the bits of the LFSR. This feedback function takes

only 6 bits from the 128-bit LFSR, but that’s enough to get a primitive
polynomial that guarantees a maximal period. The small number of bits
minimizes the cost of a hardware implementation.

Here is the feedback polynomial of Grain-128a’s NFSR (IVy, . . ., Nyyg):



g(N) = Ny, + Nyy + Noy + Nyyy + Nygg + Ny Ny + Ny Ny + Ng Ngy + N Ny
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This function was carefully chosen to maximize its cryptographic strength
while minimizing its implementation cost. It has an algebraic degree of 4
because its term with the most variables has four wvariables (namely,
N33N35:N56N40). Moreover, g can’t be approximated by a linear function because

it is highly nonlinear. Also, in addition to g, Grain-128a XORs the bit coming
out from the LFSRs to feed the result back as the NFSR’s new, rightmost bit.

The filter function h is another nonlinear function; it takes 9 bits from the
NFSR and 7 bits from the LFSR and combines them in a way that ensures good
cryptographic properties.

As 1 write this, there is no known attack on Grain-128a, and I’'m confident
that it will remain secure. Grain-128a is used in some low-end embedded
systems that need a compact and fast stream cipher—typically industrial
proprietary systems—which is why Grain-128a is little known in the open-
source software community.

A5/1

AS5/1 is a stream cipher that was used to encrypt voice communications in the 2G
mobile standard. The AS5/1 standard was created in 1987 but only published in
the late 1990s after it was reverse engineered. Attacks appeared in the early
2000s, and A5/1 was eventually broken in a way that allows actual (rather than
theoretical) decryption of encrypted communications. Let’s see why and how.

A5/1’s Mechanism

A5/1 relies on three LFSRs and uses a trick that looks clever at first glance but
actually fails to be secure (see Figure 5-9).
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Figure 5-9: The A5/1 cipher

As you can see in Figure 5-9, A5/1 uses LFSRs of 19, 22, and 23 bits, with the
polynomials for each as follows:

4+ X"+ X7+ X™ 4+ XV
1+ X" + X*
1+ X+ X + X% + X®
How could this be seen as secure with only LFSRs and no NFSR? The trick

lies in AS5/1’s update mechanism. Instead of updating all three LFSRs at each
clock cycle, the designers of A5/1 added a clocking rule that does the following:

1. Checks the value of the ninth bit of LFSR 1, the 11th bit of LFSR 2, and
the 11th bit of LFSR 3, called the clocking bits. Of those three bits, either all
have the same value (1 or 0) or exactly two have the same value.

2. Clocks the registers whose clocking bits are equal to the majority value, 0 or
1. Either two or three LFSRs are clocked at each update.

Without this simple rule, A5/1 would provide no security whatsoever, and
bypassing this rule is enough to break the cipher. However, that is easier said
than done, as you’ll see.



In A5/1’s irvegular clocking rule, each register is clocked with a probability of 3/4 at
any update. Namely, the probability that at least one other register has the same bit
value is 1 — (1/2)°, where (1/2)? is the chance that both of the other two registers
have a different bit value.

2G communications use A5/1 with a key of 64 bits and a 22-bit nonce, which
is changed for every new data frame. Attacks on A5/1 recover the 64-bit initial
state of the system (the 19 + 22 + 23 LFSR initial value), thus in turn revealing
the nonce (if it was not already known) and the key, by unwinding the
initialization mechanism. The attacks are referred to as known-plaintext attacks
(KPAs) because part of the encrypted data is known, which allows attackers to
determine the corresponding keystream parts by XORing the ciphertext with the
known plaintext chunks.

There are two main types of attacks on A5/1:

Subtle attacks Exploit the internal linearity of A5/1 and its simple irregular
clocking system

Brutal attacks Only exploit the short key of A5/1 and the invertibility of the
frame number injection

Let’s see how these attacks work.

Subtle Attacks

In a subtle attack called a guess-and-determine attack, an attacker guesses certain
secret values of the state in order to determine others. In cryptanalysis,
“guessing” means brute-forcing: for each possible value of LESRs 1 and 2, and
all possible values of LFSR 3’s clocking bit during the first 11 clocks, the attack
reconstructs LESR 3’s bits by solving equations that depend on the bits guessed.
When the guess is correct, the attacker gets the right value for LFSR 3.

"The attack’s pseudocode looks like this:

For all 212 values of LFSR 1's initial state
For all 222 values of LFSR 2's initial state

For all 211 values of LFSR 3's clocking bit during the first 11 clocks
Reconstruct LFSR 3's initial state



Test whether guess is correct; if yes, return; else continue

How efficient is this attack compared to the 2%*-trial brute-force search

discussed in Chapter 3? This attack makes at most 219 x 222 x 211 = 272
operations in the worst case, when the algorithm only succeeds at the very last
test. That’s 212 (or about 4000) times faster than in the brute-force search,
assuming that the last two operations in the above pseudocode require about as
much computation as testing a 64-bit key in a brute-force search. But is this
assumption correct?

Recall our discussion of the full attack cost in Chapter 3. When evaluating the
cost of an attack, we need to consider not only the amount of computation
required to perform the attack but also parallelism and memory consumption.
Neither are issues here: as with any brute-force attack, the guess-and-determine
attack is embarrassingly parallel (or N times faster when run on N cores) and
doesn’t need more memory than just running the cipher itself.

Our 2°? attack cost estimate is inaccurate for another reason. In fact, each of
the 2°? operations (testing a key candidate) takes about four times as many clock
cycles as does testing a key in a brute-force attack. The upshot is that the real
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cost of this particular attack is closer to 4 x 2°2 operations, when compared

to a brute-force attack.

The guess-and-determine attack on AS5/1 can decrypt encrypted mobile
communications, but it takes a couple of hours to recover the key when run on a
cluster of dedicated hardware devices. In other words, it’s nowhere near real-
time decryption. For that, we have another type of attack.

Brutal Attacks
The time-memory trade-off ('MTO) attack is the brutal attack on A5/1. This

attack doesn’t care about A5/1’s internals; it cares only that its state is 64 bits
long. The TMTO attack sees A5/1 as a black box that takes in a 64-bit value (the
state) and spits out a 64-bit value (the first 64 keystream bits).

The idea behind the attack is to reduce the cost of a brute-force search in
exchange for using lots of memory. The simplest type of TMTO is the
codebook attack. In a codebook attack, you precompute a table of 26* elements
containing a combination of key and value pairs (key:value), and store the output
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value for each of the possible keys. To use this precomputed table for the



attack, you simply collect the output of an A5/1 instance and then look up in the
table which key corresponds to that output. The attack itself is fast—taking only
the amount of time necessary to look up a value in memory—but the creation of

the table takes 2% computations of A5/1. Worse, codebook attacks require an

insane amount of memory: 2% x (64 + 64) bits, which is 268 bytes or 256
exabytes. That’s dozens of data centers, so we can forget about it.

TMTO attacks reduce the memory required by a codebook attack at the price
of increased computation during the online phase of the attack; the smaller the
table, the more computations required to crack a key. Regardless, it will still cost
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about 2°7 operations to prepare the table, but that needs to be done only once.

In 2010, researchers took about two months to generate two terabytes’ worth
of tables, using graphics processing units (GPUs) and running 100000 instances
of A5/1 in parallel. With the help of such large tables, calls encrypted with A5/1
could be decrypted almost in real time. Telecommunication operators have

implemented workarounds to mitigate the attack, but a real solution came with
the later 3G and 4G mobile telephony standards, which ditched A5/1 altogether.

Software-Oriented Stream Ciphers

Software stream ciphers work with bytes or 32- or 64-bit words instead of
individual bits, which proves to be more efficient on modern CPUs where
instructions can perform arithmetic operations on a word in the same amount of
time as on a bit. Software stream ciphers are therefore better suited than
hardware ciphers for servers or browsers running on personal computers, where
powerful general-purpose processors run the cipher as native software.

Today, there is considerable interest in software stream ciphers for a few
reasons. First, because many devices embed powerful CPUs and hardware has
become cheaper, there’s less of a need for small bit-oriented ciphers. For

example, the two stream ciphers in the mobile communications standard 4G (the
European SNOW3G and the Chinese ZUC) work with 32-bit words and not
bits, unlike the older A5/1.

Second, stream ciphers have gained popularity in software at the expense of
block ciphers, notably following the fiasco of the padding oracle attack against
block ciphers in CBC mode. In addition, stream ciphers are easier to specify and
to implement than block ciphers: instead of mixing message and key bits
together, stream ciphers just ingest key bits as a secret. In fact, one of the most



popular stream ciphers is actually a block cipher in disguise: AES in counter
mode (CTR).

One software stream cipher design, used by SNOW3G and ZUC, copies
hardware ciphers and their FSRs, replacing bits with bytes or words. But these
aren’t the most interesting designs for a cryptographer. As of this writing, the
two designs of most interest are RC4 and Salsa20, which are used in numerous
systems, despite the fact that one is completely broken.

RC4

Designed in 1987 by Ron Rivest of RSA Security, then reverse engineered and
leaked in 1994, RC4 has long been the most widely used stream cipher. RC4 has
been used in countless applications, most famously in the first Wi-Fi encryption
standard Wireless Equivalent Privacy (WEP) and in the Transport Layer
Security (TLS) protocol used to establish HT'TPS connections. Unfortunately,
RC#4 isn’t secure enough for most applications, including WEP and TLS. To
understand why, let’s see how RC4 works.

How RC4 Works

RC#4 is among the simplest ciphers ever created. It doesn’t perform any crypto-
like operations, and it has no XORs, no multiplications, no S-boxes . . . nada. It
simply swaps bytes. RC4’s internal state is an array, S, of 256 bytes, first set to
S[0]=0,S8[1]=1, S[2] =2, ..., S[255] = 255, and then initialized from an n-byte
K using its key scheduling algorithm (KSA), which works as shown in the Python
code in Listing 5-1.

j=0

# set S to the array S[0] =0, S[1] =1, . . . , S[255] = 255
S = range(256)

# iterate over i1 from 0 to 255

for 1 in range(256):

# compute the sum of v

j = (3 + S[i] + K[1 % n]) % 256
# swap S[i] and S[j]

S[i], S[3l = s[3i], S[i]

Listing 5-1: The key scheduling algorithm of RC4

Once this algorithm completes, array S still contains all the byte values from 0
to 255, but now in a random-looking order. For example, with the all-zero 128-

bit key, the state S (from S[0] to S[255]) becomes this:



0,35,3,43,9,11, 65,229, (...), 233,169, 117, 184, 31, 39

However, if I flip the first key bit and run the KSA again, I get a totally
different, apparently random state:

32,116, 131, 134, 138, 143, 149, (.. .), 152,235, 111, 48, 80, 12

Given the initial state S, RC4 generates a keystream, KS, of the same length as
the plaintext, P, in order to compute a ciphertext: C = P © KS. The bytes of the
keystream KS are computed from S according to the Python code in Listing 5-2,
if P is m bytes long.

i=0
j=0
for b in range(m):
i=(1+1) % 256
j=(j+ S[i]) % 256
S[i], S[j] = S[3l, S[i]
KS[b] = S[(S[i1] + S[j]) % 256]

Listing 5-2: The keystream generation of RC4, where S is the state initialized in Listing 5-1

In Listing 5-2, each iteration of the for loop modifies up to 2 bytes of RC4’s
internal state S: the S[7] and S[j] whose values are swapped. That is, if i = 0 and j
=4, and if S[0] = 56 and S[4] = 78, then the swap operation sets S[0] to 78 and
S[4] to 56. If j equals 7, then S[7] isn’t modified.

This looks too simple to be secure, yet it took 20 years for cryptanalysts to
find exploitable flaws. Before the flaws were revealed, we only knew RC4’s

weaknesses in specific implementations, as in the first Wi-Fi encryption
standard, WEP.

RC4 in WEP

WEDP, the first generation Wi-Fi security protocol, is now completely broken
due to weaknesses in the protocol’s design and in RC4.

In its WEP implementation, RC4 encrypts payload data of 802.11 frames, the
datagrams (or packets) that transport data over the wireless network. All
payloads delivered in the same session use the same secret key of 40 or 104 bits
but have what is a supposedly unique 3-byte nonce encoded in the frame header
(the part of the frame that encodes metadata and comes before the actual
payload). See the problem?



The problem is that RC4 doesn’t support a nonce, at least not in its official
specification, and a stream cipher can’t be used without a nonce. The WEP
designers addressed this limitation with a workaround: they included a 24-bit
nonce in the wireless frame’s header and prepended it to the WEP key to be
used as RC#4’s secret key. That is, if the nonce is the bytes N[0], N[1], N[2] and
the WEP key is K[0], K[1], K[2], K[3], K[4], the actual RC4 key is N[0], N[1],
N[2], K[0], K[1], K[2], K[3], K[4]. The net effect is to have 40-bit secret keys
yield 64-bit effective keys, and 104-bit keys yield 128-bit effective keys. The
result? The advertised 128-bit WEP protocol actually offers only 104-bit
security, at best.

But here are the real problems with WEP’s nonce trick:

e The nonces are too small at only 24 bits. This means that if a nonce is
chosen randomly for each new message, you’ll have to wait about 2242 = 212
packets, or a few megabytes’ worth of traffic, until you can find two packets
encrypted with the same nonce, and thus the same keystream. Even if the
nonce is a counter running from 0 to 2°* — 1, it will take a few gigabytes’
worth of data until a rollover, when the repeated nonce can allow the
attacker to decrypt packets. But there’s a bigger problem.

¢ Combining the nonce and key in this fashion helps recover the key.
WEP’s three non-secret nonce bytes let an attacker determine the value of
S after three iterations of the key scheduling algorithm. Because of this,
cryptanalysts found that the first keystream byte strongly depends on the
first secret key byte—the fourth byte ingested by the KSA—and that this
bias can be exploited to recover the secret key.

Exploiting those weaknesses requires access to both ciphertexts and the
keystream; that is, known or chosen plaintexts. But that’s easy enough: known
plaintexts occur when the Wi-Fi frames encapsulate data with a known header,
and chosen plaintexts occur when the attacker injects known plaintext encrypted
with the target key. The upshot is that the attacks work in practice, not just on
paper.

Following the appearance of the first attacks on WEP in 2001, researchers
found faster attacks that required fewer ciphertexts. Today, you can even find
tools such as aircrack-ng that implement the entire attack, from network sniffing
to cryptanalysis.



WEP’s insecurity is due to both weaknesses in RC4, which takes a single one-
use key instead of a key and nonce (as in any decent stream cipher), and
weaknesses in the WEP design itself.

Now let’s look at the second biggest failure of RC4.
RC4 in TLS

TLS is the single most important security protocol used on the internet. It is
best known for underlying HT'TPS connections, but it’s also used to protect
some virtual private network (VPN) connections, as well as email servers, mobile
applications, and many others. And sadly, TLS has long supported RC4.

Unlike WEP, the TLS implementation doesn’t make the same blatant mistake
of tweaking the RC4 specs in order to use a public nonce. Instead, TLS just
feeds RC4 a unique 128-bit session key, which means it’s a bit less broken than
WEP.

The weakness in TLS is due only to RC4 and its inexcusable flaws: statistical
biases, or non-randomness, which we know is a total deal breaker for a stream
cipher. For example, the second keystream byte produced by RC4 is zero, with a
probability of 1/128, whereas it should be 1/256 ideally. (Recall that a byte can
take 256 values from 0 to 255; hence, a truly random byte is zero with a chance
of 1/256.) Crazier still is the fact that most experts continued to trust RC4 as late
as 2013, even though its statistical biases have been known since 2001.

RC#4’s known statistical biases should have been enough to ditch the cipher
altogether, even if we didn’t know how to exploit the biases to compromise
actual applications. In TLS, RC4’s flaws weren’t publicly exploited until 2011,
but the NSA allegedly managed to exploit RC4’s weaknesses to compromise
TLS’s RC4 connections well before then.

As it turned out, not only was RC4’s second keystream byte biased, but all of
the first 256 bytes were biased as well. In 2011, researchers found that the
probability that one of those bytes comes to zero equals 1/256 + ¢/256%, for some
constant, ¢, taking values between 0.24 and 1.34. It’s not just for the byte zero
but for other byte values as well. The amazing thing about RC4 is that it fails
where even many noncryptographic PRNGs succeed—namely, at producing
uniformly distributed pseudorandom bytes (that is, where each of the 256 bytes
has a chance of 1/256 of showing up).

Even the weakest attack model can be used to exploit RC4’s flawed TLS



implementation: basically, you collect ciphertexts and look for the plaintext, not
the key. But there’s a caveat: you’ll need many ciphertexts, encrypting the same
plaintext several times using different secret keys. This attack model is sometimes
called the broadcast model, because it’s akin to broadcasting the same message to
multiple recipients.

For example, say you want to decrypt the plaintext byte P; given many
ciphertext bytes obtained by intercepting the different ciphertexts of the same
message. The first four ciphertext bytes will therefore look like this:

G?=R ®KS’
G’ =R ®KS’
G' =P ®Ks;*

Because of RC4’s bias, keystream bytes KS;’ are more likely to be zero than
any other byte value. Therefore, C;’ bytes are more likely to be equal to P; than
to any other value. In order to determine P; given the C,’ bytes, you simply

count the number of occurrences of each byte value and return the most
frequent one as P;. However, because the statistical bias is very small, you’ll need

millions of values to get it right with any certainty.

The attack generalizes to recover more than one plaintext byte and to exploit
more than one biased value (zero here). The algorithm just becomes a bit more
complicated. However, this attack is hard to put into practice because it needs to
collect many ciphertexts encrypting the same plaintext but using different keys.
For example, the attack can’t break all TLS-protected connections that use RC4
because you need to trick the server into encrypting the same plaintext to many
different recipients, or many times to the same recipient with different keys.

Salsa20

Salsa20 is a simple, software-oriented cipher optimized for modern CPUs that
has been implemented in numerous protocols and libraries, along with its
variant, ChaCha. Its designer, respected cryptographer Daniel J. Bernstein,
submitted Salsa20 to the eSTREAM competition in 2005 and won a place in
eSTREAM'’s software portfolio. Salsa20’s simplicity and speed have made it
popular among developers.
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Figure 5-10: Salsa20’s encryption scheme for a 512-bit plaintext block

Salsa20 is a counter-based stream cipher—it generates its keystream by
repeatedly processing a counter incremented for each block. As you can see in
Figure 5-10, the Salsa20 core algorithm transforms a 512-bit block using a key
(K), a nonce (N), and a counter value (C#r). Salsa20 then adds the result to the
original value of the block to produce a keystream block. (If the algorithm were to
return the core’s permutation directly as an output, Salsa20 would be totally
insecure, because it could be inverted. The final addition of the initial secret
state K ||l N |l Ctr makes the transform key-to-keystream-block non-
invertible.)

The Quarter-Round Function

Salsa2(’s core permutation uses a function called quarter-round (QR) to
transform four 32-bit words («, b, ¢, and d), as shown here:

b=b®|(a+d)<<< ]
c=c®|(b+a)<<<9]
d=d®[(c+b)<<<13]
a=a®|(d+c)<<<18]

These four lines are computed from top to bottom, meaning that the new
value of / depends on # and d, the new value of ¢ depends on # and on the new
value of b (and thus d as well), and so on.

The operation <<< is wordwise left-rotation by the specified number of bits,
which can be any value between 1 and 31 (for 32-bit words). For example, <<< 8



rotates a word’s bits of eight positions toward the left, as shown in these
examples:

0x01234567 <<< 8 = 0x23456701
0x01234567 <<< 16 = 0x45670123
0x01234567 <<< 22 = 0x59c048d1

Transforming Salsa20’s 512-bit State

Salsa2(’s core permutation transforms a 512-bit internal state viewed as a 4 x 4
array of 32-bit words. Figure 5-11 shows the initial state, using a key of eight
words (256 bits), a nonce of two words (64 bits), a counter of two words (64 bits),
and four fixed constant words (128 bits) that are identical for each
encryption/decryption and all blocks.

To transform the initial 512-bit state, Salsa20 first applies the QR transform
to all four columns independently (known as the column-round) and then to all
four rows independently (the row-round), as shown in Figure 5-12. The sequence
column-round/row-round is called a double-round. Salsa20 repeats 10 double-
rounds, for 20 rounds in total, thus the 20 in Salsa20.

Figure 5-11: The initialization of Salsa20’s state
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Columns and rows transformed by SalsaZ0’s quarter-round (QR) function

The column-round transforms the four columns like so:

QR (x5, %, Xy, .1.5)
QR(x;, g, %7, %,)
QR (x40, %11, Xs Xp)

QR(IIS! X125 X135 x”)

The row-round transforms the rows by doing the following:

top to the bottom line, whereas a row-round’s QR takes as a first argument the
words on the diagonal (as shown in the array on the right in Figure 5-12) rather

QR(J:(,, Ry i .1:5)
QR(I A e )

QR (X9, %y, X, %)
QR('xis-! X125 X135 xn]

Notice that in a column-round, each QR takes x; arguments ordered from the

than words from the first column.

Evaluating Salsa20

Listing 5-3 shows Salsa20’s initial states for the first and second blocks when
initialized with an all-zero key (00 bytes) and an all-one nonce (ff bytes). These
two states differ in only one bit, in the counter, as shown in bold: specifically, 0

for the first block and 1 for the second.

61707865 00000000 B0OAOOGO HBOOAOOV
00000000 3320646e FFFFFFf FFFFFFFF
00000000 00000000 79622d32 ©B0OAOON
00000000 0000000 B00BE000 6b206574

61707865 00000000 00OB0OGO HBOOAOOE
00000000 3320646e FFFFFFFf FFFFFFFF
00000001 00B00A0O 79622d32 HBOOEOOE
00000000 00A00A0 B0OB000 6b206574



Listing 5-3: Salsa”0'’s initial states for the first two blocks with an all-zero key and an all-
one nonce

Yet, despite only a one-bit difference, the respective internal states after 10
double-rounds are totally different from each other, as Listing 5-4 shows.

€98680bc f730ba7a 38663ce® 5f376d93 1ba4d492 c14270c3 9fb05306 ff808c64
85683b75 a56ca873 26501592 64144b6d b49a4100 f5d8fbbd 61423430 e20663d1
6dcb46fd 58178f93 8cf54cfe cfdc27d7 12ele116 6a61bc8f 86f01bcb 2efead4a
68bbe09%e 17b403al1 38aalf27 54323fel 77775a13 d17b99d5 eb773f5b 2c3a5e7d

Listing 5-4: The states from Listing 5-3 after 10 SalsaZ0 double-rounds

But remember, even though word values in the keystream block may look
random, we’ve seen that it’s far from a guarantee of security. RC4’s output looks
random, but it has blatant biases. Fortunately, Salsa20 is much more secure than
RC4 and doesn’t have statistical biases.

Differential Cryptanalysis

To demonstrate why Salsa20 is more secure than RC4, let’s have a look at the
basics of differential cryptanalysis, the study of the differences between states
rather than their actual values. For example, the two initial states in Figure 5-13
differ by one bit in the counter, or by the word xg in the Salsa20 state array. The

bitwise difference between these two states is thus shown in this array:

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000

The difference between the two states is actually the XOR of these states. The
1 bit shown in bold corresponds to a 1-bit difference between the two states. In
the XOR of the two states, any nonzero bits indicate differences.

To see how fast changes propagate in the initial state as a result of Salsa20’s
core algorithm, let’s look at the difference between two states throughout the
rounds iteration. After one round, the difference propagates across the first
column to two of the three other words in that column:



80040003 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00002000 00000000 00000000 00000000

After two rounds, differences further propagate across the rows that already
include a difference, which is all but the second row. At this point the differences
between the states are rather sparse; not many bits have changed within a word
as shown here:

g9ed7eb7f 060002c0 18028b0c 57ca8ico
00000000 00000000 00000000 00000000
00000001 0000e000 801c0006 00000000
00002000 00400000 04000008 00601300

After three rounds, the differences between the states become more dense,
though the many zero nibbles indicate that many bit positions are still not
affected by the initial difference:

3ab3c25d 9f40a5c9 10070e30 07bd03cO
dbleezce 43ee9401 21a702c3 48fd800c¢
403c1e72 00034003 4dc843be 700b8B857
5625b75b 09c00e00 06000348 23f712d4

After four rounds, differences look random to a human observer, and they are
also almost random statistically as well, as shown here:

d93bedéd a267bf47 760c2fof 4ad41d54b
0e03d792 7340e010 119e6a00 e90186af
7fag9617e bbacaod7 4f6e9ada 564b34fd
98be796d 64908d32 4897f7ca a684a2df

So after only four rounds, a single difference propagates to most of the bits in
the 512-bit state. In cryptography, this is called full diffusion.

We've seen that differences propagate quickly throughout Salsa20 rounds. But
not only do differences propagate across all states, they also do so according to
complex equations that make future differences hard to predict because highly
nonlinear relations drive the state’s evolution, thanks to the mix of XOR,
addition, and rotation. If only XORs were used, we’d still have many differences
propagating, but the process would be linear and therefore insecure.



Attacking Salsa20/8

Salsa20 makes 20 rounds by default, but it’s sometimes used with only 12
rounds, in a version called Salsa20/12, to make it faster. Although Salsa20/12
uses eight fewer rounds than Salsa20, it’s still significantly stronger than the
weaker Salsa20/8, another version with eight rounds, which is more rarely used.

Breaking Salsa20 should ideally take 22°® operations, thanks to its use of a
256-bit key. If the key can be recovered by performing any fewer than 226
operations, the cipher is in theory broken. That’s exactly the case with Salsa20/8.

The attack on Salsa20/8 (published in the 2008 paper New Features of Latin
Dances: Analysis of Salsa, ChaCha, and Rumba, of which I'm a co-author, and for
which we won a cryptanalysis prize from Daniel J. Bernstein) exploits a statistical
bias in Salsa’s core algorithm after four rounds to recover the key of eight-round
Salsa20. In reality, this is mostly a theoretical attack: we estimate its complexity
at 22°1 operations of the core function—impossible, but less so than breaking the
expected 22°6 complexity.

The attack exploits not only a bias over the first four rounds of Salsa20/8, but
also a property of the last four rounds: knowing the nonce, N, and the counter,
Ctr (refer back to Figure 5-10), the only value needed to invert the computation
from the keystream back to the initial state is the key, K. But as shown in Figure
5-13, if you only know some part of K, you can partially invert the computation
up until the fourth round and observe some bits of that intermediate state—
including the biased bit! You’ll only observe the bias if you have the correct
guess of the partial key; hence, the bias serves as an indicator that you’ve got the
correct key.

KII NIl Ctr Bias here?
Ji If yes, the gue‘ss was correct
4 rounds = :
: Inverse
Bias here ------ -] e
4 rounds
Guess
part of K
S S

Figure 5-13: The principle of the attack on Salsa20/8



In the actual attack on Salsa20/8, in order to determine the correct guess, we
need to guess 220 bits of the key, and we need 23! pairs of keystream blocks, all
with the same specific difference in the nonce. Once we’ve singled out the
correct 220 bits, we simply need to brute-force 36 bits. The brute-forcing takes
236 operations, a computation that dwarfs the unrealistic 2220 x 23! = 2231 trials
needed to find the 220 bits to complete the first part of the attack.

How Things Can Go Wrong

Alas, many things can go wrong with stream ciphers, from brittle, insecure
designs to strong algorithms incorrectly implemented. I’ll explore each category
of potential problems in the following sections.

Nonce Reuse

The most common failure seen with stream ciphers is an amateur mistake: it
occurs when a nonce is reused more than once with the same key. This produces
identical keystreams, allowing you to break the encryption by XORing two
ciphertexts together. The keystream then vanishes, and you’re left with the XOR
of the two plaintexts.

For example, older versions of Microsoft Word and Excel used a unique
nonce for each document, but the nonce wasn’t changed once the document was
modified. As a result, the clear and encrypted text of an older version of a
document could be used to decrypt later encrypted versions. If even Microsoft
made this kind of blunder, you can imagine how large the problem might be.

Certain stream ciphers designed in the 2010s tried to mitigate the risk of
nonce reuse by building “misuse-resistant” constructions, or ciphers that remain
secure even if a nonce is used twice. However, achieving this level of security
comes with a performance penalty, as we’ll see in Chapter 8 with the SIV mode.

Broken RC4 Implementation

Though it’s already weak, RC4 can become even weaker if you blindly optimize
its implementation. For example, consider the following entry in the 2007
Underhanded C Contest, an informal competition where programmers write
benign-looking code that actually includes a malicious function.

Here’s how it works. The naive way to implement the line swap(S[i], S[j]) in
RC#4’s algorithm is to do the following, as expressed in this Python code:



buf = S[1]

S[i] = S[]]
S[j] = buf

"This way of swapping two variables obviously works, but you need to create a
new variable, buf. To avoid this, programmers often use the XOR-swap trick,
shown here, to swap the values of the variables x and y:

x:x@y
y=x9%y
x=x®y

This trick works because the second line setsy to x ® y ® y = x, and the third
linesetsxtox @y ®x ®y @y = y. Using this trick to implement RC4 gives the
implementation shown in Listing 5-5 (adapted from Wagner and Biondi’s
program submitted to the Underhanded C Contest, and online at
http://www.underbanded-c.org/_page_id_16.html).

# define TOBYTE(x) (x) & 255

# define SWAP(x,y) do { x”*=y; y*=x; x”=y; } while (0)
static unsigned char S[256];

static int 1=0, j=0;

void init(char *passphrase) {
int passlen = strlen(passphrase);
for (1=0; 1<256; i++)
S[i] = 1;
for (i=0; 1<256; i++) {
j = TOBYTE(j + S[TOBYTE(i)] + passphrase[j % passlen]);
SWAP(S[TOBYTE(1)], S[i1);

e

}

unsigned char encrypt_one_byte(unsigned char c) {
int k;
1 = TOBYTE(i+1);
j = TOBYTE(j + S[i]);
SWAP(S[i], S[3i]);
k = TOBYTE(S[1] + S[il);
return c » S[k];

}

Listing 5-5: Incorrect C implementation of RC4, due to its use of an XOR swap

Now stop reading, and try to spot the problem with the XOR swap in Listing
5-5.


../../../../../www.underhanded-c.org/_page_id_16.html

Things will go south when 1 = j. Instead of leaving the state unchanged, the
XOR swap will set s[i] to S[1] @ S[1] = 0. In effect, a byte of the state will be set
to zero each time i equals j in the key schedule or during encryption, ultimately
leading to an all-zero state and thus to an all-zero keystream. For example, after
68KB of data have been processed, most of the bytes in the 256-byte state are
zero, and the output keystream looks like this:

00 00 00 00 00 00 00 53 53 00 00 00 00 00 00 00 00 00 00 00 13 13 00 5¢ 00 a5 00
00...

The lesson here is to refrain from over-optimizing your crypto
implementations. Clarity and confidence always trump performance in

cryptography.
Weak Ciphers Baked Into Hardware

When a cryptosystem fails to be secure, some systems can quickly respond by
silently updating the affected software remotely (as with some pay-TV systems)
or by releasing a new version and prompting the users to upgrade (as with
mobile applications). Some other systems are not so lucky and need to stick to
the compromised cryptosystem for a while before upgrading to a secure version,
as is the case with certain satellite phones.

In the early 2000s, US and European telecommunication standardization
institutes (TTA and ETSI) jointly developed two standards for satellite phone
(satphone) communications. Satphones are like mobile phones, except that their
signal goes through satellites rather than terrestrial stations. The advantage is
that you can use them pretty much everywhere in the world. Their downsides
are the price, quality, latency, and, as it turns out, security.

GMR-1 and GMR-2 are the two satphone standards adopted by most
commercial vendors, such as Thuraya and Inmarsat. Both include stream ciphers
to encrypt voice communications. GMR-1’s cipher is hardware oriented, with a
combination of four LFSRs, similar to A5/2, the deliberately insecure cipher in
the 2G mobile standard aimed at non-Western countries. GMR-2’s cipher is
software oriented, with an 8-byte state and the use of S-boxes. Both stream
ciphers are insecure, and will only protect users against amateurs, not against
state agencies.

This story should remind us that stream ciphers used to be easier to break
than block ciphers and that they’re easier to sabotage. Why? Well, if you design



a weak stream cipher on purpose, when the flaw is found, you can still blame it
on the weakness of stream ciphers and deny any malicious intent.

Further Reading

To learn more about stream ciphers, begin with the archives of the eSTREAM
competition at htep://www.ecrypt.eu.org/stream/project.btml, where you’ll find
hundreds of papers on stream ciphers, including details of more than 30
candidates and many attacks. Some of the most interesting attacks are the
correlation attacks, algebraic attacks, and cube attacks. See in particular the work
of Courtois and Meier for the first two attack types and that of Dinur and
Shamir for cube attacks.

For more information on RC4, see the work of Paterson and his team at
http://www.isg.rbul.ac.uk/tls/ on the security of RC4 as used in TLS and WPA.
Also see Spritz, the RC4-like cipher created in 2014 by Rivest, who designed
RC#4 in the 1980s.

Salsa20’s legacy deserves your attention, too. The stream cipher ChaCha is
similar to Salsa20, but with a slightly different core permutation that was later
used in the hash function BLAKE, as you’ll see in Chapter 6. These algorithms
all leverage Salsa2(0’s software implementation techniques using parallelized
instructions, as discussed at bztps://cr.yp.to/snuffle. html.


../../../../../www.ecrypt.eu.org/stream/project.html
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6
HASH FUNCTIONS

Hash functions—such as MD5, SHA-1, SHA-256, SHA-3, and BLAKE2—
comprise the cryptographer’s Swiss Army Knife: they are used in digital
signatures, public-key encryption, integrity verification, message authentication,
password protection, key agreement protocols, and many other cryptographic
protocols. Whether you’re encrypting an email, sending a message on your
mobile phone, connecting to an HT'TPS website, or connecting to a remote
machine through IPSec or SSH, there’s a hash function somewhere under the

hood.

Hash functions are by far the most versatile and ubiquitous of all crypto
algorithms. There are many examples of their use in the real world: cloud
storage systems use them to identify identical files and to detect modified files;
the Git revision control system uses them to identify files in a repository; host-
based intrusion detection systems (HIDS) use them to detect modified files;
network-based intrusion detection systems (NIDS) use hashes to detect known-
malicious data going through a network; forensic analysts use hash values to
prove that digital artifacts have not been modified; Bitcoin uses a hash function
in its proof-of-work systems—and there are many more.

M —=| Hash |—s H

Any length Short, fixed length:
usually 256 or 512 bits

Figure 6-1: A hash function’s input and output

Unlike stream ciphers, which create a long output from a short one, hash
functions take a long input and produce a short output, called a hash value or
digest (see Figure 6-1).



This chapter revolves around two main topics. First, security: what does it
mean for a hash function to be secure? To that end, I introduce two essential
notions—namely, collision resistance and preimage resistance. The second big
topic revolves around hash functions construction. We look at the high-level
techniques used by modern hash functions and then review the internals of the

most common hash functions: SHA-1, SHA-2, SHA-3, and BLAKE?2. Lastly, we

see how secure hash functions can behave insecurely if misused.

NOTE

Do not confuse cryptographic hash functions with noncryptographic ones.
Noncryptographic bash functions are used in data structures such as hash tables or to
detect accidental ervors, and they provide no security whatsoever. For example, cyclic
redundancy checks (CRCs) are noncryptographic hashes used to detect accidental
modifications of a file.

Secure Hash Functions
SK

'

M —~ Hash |—»| Sign |—= S

Figure 6-2: A hash function in a digital signature scheme. The hash acts as a proxy for the
message.

The notion of security for hash functions is different from what we’ve seen thus
far. Whereas ciphers protect data confidentiality in an effort to guarantee that
data sent in the clear can’t be read, hash functions protect data integrity in an
effort to guarantee that data—whether sent in the clear or encrypted—hasn’t
been modified. If a hash function is secure, two distinct pieces of data should
always have different hashes. A file’s hash can thus serve as its identifier.
Consider the most common application of a hash function: digital signatures,
or just signatures. When digital signatures are used, applications process the hash
of the message to be signed rather than the message itself, as shown in Figure 6-
2. The hash acts as an identifier for the message. If even a single bit is changed
in the message, the hash of the message will be totally different. The hash
function thus helps ensure that the message has not been modified. Signing a



message’s hash is as secure as signing the message itself, and signing a short hash
of, say, 256 bits is much faster than signing a message that may be very large. In
fact, most signature algorithms can only work on short inputs such as hash
values.

Unpredictability Again

All of the cryptographic strength of hash functions stems from the
unpredictability of their outputs. Take the 256-bit hexadecimal values shown
next; these hashes are computed using the NIST standard hash function SHA-
256 with the ASCII letters a, b, and c as inputs. As you can see, though the values

a, b, and c differ by only one or two bits (a is the bit sequence 01100001, b is
01100010, and c is 01100011), their hash values are completely different.

SHA-256("a") = 87428fc522803d31065e7bce3cf03feq475096631e5e07bbd7a0fde60ccf25¢7
SHA-256("b") = a63d8014dba891345b30174df2b2a57efbb65baf9f09b98F245d1b3192277ece
SHA-256("c") = edeaaff3f1774ad2888673770c6d64097e391bc362d7d6Fb34982ddfoefd18ch

Given only these three hashes, it would be impossible to predict the value of
the SHA-256 hash of d or any of its bits. Why? Because hash values of a secure
hash function are unpredictable. A secure hash function should be like a black box
that returns a random string each time it receives an input.

The general, theoretical definition of a secure hash function is that it behaves
like a truly random function (sometimes called a random oracle). Specifically, a
secure hash function shouldn’t have any property or pattern that a random
function wouldn’t have. This definition is helpful for theoreticians, but in
practice we need more specific notions: namely, preimage resistance and
collision resistance.

Preimage Resistance

A preimage of a given hash value, H, is any message, M, such that Hash(M) = H.
Preimage resistance describes the security guarantee that given a random hash
value, an attacker will never find a preimage of that hash value. Indeed, hash
functions are sometimes called one-way functions because you can go from the
message to its hash, but not the other way.

First, note that a hash function can’t be inverted, even given unlimited

computing power. For example, suppose that I hash some message using the
SHA-256 hash function and get this 256-bit hash value:



f67a58184cef99d6dfc3045f08645e84412837eed4bfcc6c949c9f7674367adfd

Even given unlimited computing power, you would never be able to
determine the message that I picked to produce this particular hash, since there
are many messages hashing to the same value. You would therefore find somze
messages that produce this hash value (possibly including the one I picked), but
would be unable to determine the message that I used.

For example, there are 22°6 possible values of a 256-bit hash (a typical length
with hash functions used in practice), but there are many more values of, say,

21024

1024-bit messages (namely, possible values). Therefore, it follows that, on

average, each possible 256-bit hash value will have 21024 7 2236 — 21024 =236 _ 7768
preimages of 1024 bits each.

In practice, we must be sure that it is practically impossible to find any
message that maps to a given hash value, not just the message that was used,
which is what preimage resistance actually stands for. Specifically, we speak of
first-preimage and second-preimage resistance. First-preimage resistance (or just
preimage vesistance) describes cases where it is practically impossible to find a
message that hashes to a given value. Second-preimage resistance, on the other

hand, describes the case that when given a message, M, it’s practically
impossible to find another message, M,, that hashes to the same value that M,
does.

The Cost of Preimages

Given a hash function and a hash value, you can search for first preimages by
trying different messages until one hits the target hash. You would do this using
an algorithm similar to find-preimage() in Listing 6-1.

find-preimage(H) {
repeat {
M = random_message()
if Hash(M) == H then return M

}

Listing 6-1: The optimal preimage search algorithm for a secure hash function

In Listing 6-1, random_message() generates a random message (say, a random
1024-bit value). Obviously, find-preimage() will never complete if the hash’s bit



length, #, is large enough, because it will take on average 2” attempts before
finding a preimage. That’s a hopeless situation when working with z = 256, as in

modern hashes like SHA-256 and BLAKE?2.

Why Second-Preimage Resistance Is Weaker

I claim that if you can find first preimages, you can find second preimages as well
(for the same hash function). As proof, if the algorithm solve-preimage() returns
a preimage of a given hash value, you can use the algorithm in Listing 6-2 to find
a second preimage of some message, M.

solve-second-preimage(M) {
H = Hash(M)
return solve-preimage(H)

}

Listing 6-2: How to find second preimages if you can find first preimages

That is, you’ll find the second preimage by seeing it as a preimage problem
and applying the preimage attack. It follows that any second-preimage resistant
hash function is also preimage resistant. (Were it not, it wouldn’t be second
preimage resistant either, per the preceding solve-second-preimage algorithm.) In
other words, the best attack we can use to find second preimages is almost
identical to the best attack we can use to find first preimages (unless the hash
function has some defect that allows for more efficient attacks). Also note that a
preimage search attack is essentially the same as a key recovery attack on a block
cipher or stream cipher—namely, a brute-force search for a single magic value.

Collision Resistance

Whatever hash function you choose to use, collisions will inevitably exist due to
the pigeonhole principle, which states that if you have 7 holes and » pigeons to put
into those holes, and if » is greater than 7z, at least one hole must contain more
than one pigeon.

NOTE

This can be generalized to other items and containers as well. For example, any 27-
word sequence in the US Constitution includes at least two words that start with the
same letter. In the world of hash functions, holes are the hash values, and pigeons are
the messages. Because we know that there are mamny more possible messages than hash




values, collisions must exist.

However, despite the inevitable, collisions should be as hard to find as the
original message in order for a hash function to be considered collision resistant—
in other words, attackers shouldn’t be able to find two distinct messages that
hash to the same value.

The notion of collision resistance is related to the notion of second-preimage
resistance: if you can find second preimages for a hash function, you can also
find collisions, as shown in Listing 6-3.

solve-collision() {
M = random_message()
return (M, solve-second-preimage(M))

}

Listing 6-3: The naive collision search algorithm

That is, any collision-resistant hash is also second preimage resistant. If this
were not the case, there would be an efficient solve-second-preimage algorithm
that could be used to break collision resistance.

Finding Collisions

It’s faster to find collisions than it is to find preimages, on the order of about
2N72 operations instead of 27, thanks to the birthday attack, whose key idea is the
following: given N messages and as many hash values, you can produce a total of
N x (N -1) / 2 potential collisions by considering each pair of two hash values (a
number of the same order of magnitude as N?). It’s called birthday attack because
it’s usually illustrated using the so-called birthday paradox, or the fact that a
group of only 23 persons will include two persons having the same birth date

with probability 1/2.

N x (N = 1) / 2 is the count of pairs of two distinct messages, where we divide by 2
because we view (My, M,) and (M,, M) as a same pair. In other words, we don’t

care about the ordering.

For the sake of comparison, in the case of a preimage search, N messages only



get you N candidate preimages, whereas the same N messages give
approximately N ? potential collisions, as just discussed. With N ? instead of N,
we say that there are quadratically more chances to find a solution. The
complexity of the search is in turn quadratically lower: in order to find a

collision, you’ll need to use the square root of 2” messages; that is, 272 instead of
2",

The Naive Birthday Attack

Here’s the simplest way to carry out the birthday attack in order to find
collisions:

1. Compute 2”2 hashes of 2”/? arbitrarily chosen messages and store all the
message/hash pairs in a list.

2. Sort the list with respect to the hash value to move any identical hash values
next to each other.

3. Search the sorted list to find two consecutive entries with the same hash
value.

Unfortunately, this method requires a lot of memory (enough to store 25/

message/hash pairs), and sorting lots of elements slows down the search,
requiring about 72, basic operations on average using even the quicksort

algorithm.

Low-Memory Collision Search: The Rho Method

The Rho method is an algorithm for finding collisions that, unlike the naive
birthday attack, requires only a small amount of memory. It works like this:

1. Given a hash function with z-bit hash values, pick some random hash value
(H,), and define H,; = H';.
2. Compute H, = Hash(H,), and H', = Hash(Hash(H",)); that is, in the first

case we apply the hash function once, while in the second case we apply it
twice.

3. Iterate the process and compute H; , ; = Hash(H,), H'; . | = Hash(Hash(H
'), until you reach 7 such that H; , ; = H'; , ;.



Figure 6-3 will help you to visualize the attack, where an arrow from, say, H,
to H, means H, = Hash(H). Observe that the sequence of H;s eventually enters

a loop, also called a cycle, which resembles the Greek letter rho (p) in shape. The
cycle starts at Hs and is characterized by the collision Hash(H,) = Hash(H) =

H;. The key observation here is that in order to find a collision, you simply need

to find such a cycle. The algorithm above allows an attacker to detect the
position of the cycle, and therefore to find the collision.

=
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Figure 6-3: The structure of the Rho hash function. Each arrow represents an evaluation of
the hash function. The cycle beginning at Hg corresponds to a collision, Hash(Hg) =

Hash(H1o) = Hs.

Advanced collision-finding techniques work by first detecting the start of the
cycle and then finding the collision, without storing numerous values in memory
and without needing to sort a long list. The Rho method takes about 2"/2
operations to succeed. Indeed, Figure 6-3 has many fewer hash values than
would an actual function with digests of 256 bits or more. On average, the cycle
and the tail (the part that extends from H; to H; in Figure 6-3) each include

about 2,/? hash values, where 7 is the bit length of the hash values. Therefore,

you’ll need at least 22 + 2"/2 evaluations of the hash to find a collision.

Building Hash Functions

In the 1980s, cryptographers realized that the simplest way to hash a message is
to split it into chunks and process each chunk consecutively using a similar
algorithm. This strategy is called iterative hashing, and it comes in two main



forms:

o [terative hashing using a compression function that transforms an input to a
smaller output, as shown in Figure 6-4. This technique is also known as the
Merkle—Damgdrd construction (named after the cryptographers Ralph
Merkle and Ivan Damgérd).

e Jterative hashing using a function that transforms an input to an output of
the same size, such that any two different inputs give two different outputs
(that is, a permutation), as shown in Figure 6-7. Such functions are called
sponge functions.

We’ll now discuss how these constructions actually work and how
compression functions look in practice.

Compression-Based Hash Functions: The Merkle-Damgard
Construction

All hash functions developed from the 1980s through the 2010s are based on the
Merkle-Damgird (M-D) construction: MD4, MDS5, SHA-1, and the SHA-2
family, as well as the lesser-known RIPEMD and Whirlpool hash functions. The
M-D construction isn’t perfect, but it is simple and has proven to be secure
enough for many applications.

In MID4, MD5, and RIPEMD, the MD stands for message digest, nor Merkle—
Damgird.

To hash a message, the M-D construction splits the message into blocks of
identical size and mixes these blocks with an internal state using a compression
function, as shown in Figure 6-4. Here, H is the initial value (denoted IV) of the

internal state, the values H;, H,, . . . are called the chaining values, and the final

value of the internal state is the message’s hash value.
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Figure 6-4: The Merkle-Damgéard construction using a compression function called
Compress

The message blocks are usually 512 or 1024 bits, but they can, in principle, be
of any size. However, the block length is fixed for a given hash function. For
example, SHA-256 works with 512-bit blocks and SHA-512 works with 1024-bit
blocks.

Padding Blocks

What happens if you want to hash a message that can’t be split into a sequence
of complete blocks? For example, if blocks are 512 bits, then a 520-bit message
will consist of one 512-bit block plus 8 bits. In such a case, the M-D
construction forms the last block as follows: take the chunk of bits left (8 in our
example), append 1 bit, then append 0 bits, and finally append the length of the
original message, encoded on a fixed number of bits. This padding trick
guarantees that any two distinct messages will give a distinct sequence of blocks,
and thus a distinct hash value.

For example, if you hash the 8-bit string 10101010 using SHA-256, which is a
hash function with 512-bit message blocks, the first and only block will appear,
in bits, as follows:

10101010 1000000000000000 ( ) 0000000000001000

Here, the message bits are the first eight bits (10101010), and the padding bits
are all the subsequent bits (shown in italic). The 1000 at the end of the block
(underlined) is the message’s length, or 8 encoded in binary. The padding thus
produces a 512-bit message composed of a single 512-bit block, ready to be
processed by SHA-256’s compression function.

Security Guarantees

The Merkle-Damgard construction is essentially a way to turn a secure
compression function that takes small, fixed-length inputs into a secure hash
function that takes inputs of arbitrary lengths. If a compression function is



preimage and collision resistant, then a hash function built on it using the M-D
construction will also be preimage and collision resistant. This is true because
any successful preimage attack for the M-D hash could be turned into a
successful preimage attack for the compression function, as Merkle and
Damgird both demonstrated in their 1989 papers (see “Further Reading” on
page 126). The same is true for collisions: an attacker can’t break the hash’s
collision resistance without breaking the underlying compression function’s
collision resistance; hence, the security of the latter guarantees the security of
the hash.

Note that the converse argument is wrong, because a collision for the
compression function doesn’t necessarily give a collision for the hash. A
collision, Compress(X, M) = Compress(Y, M,), for chaining values X and Y,
both distinct from H, won’t get you a collision for the hash because you can’t

plug the collision into the iterative chain of hashes—except if one of the
chaining values happens to be X and the other ¥, but that’s unlikely to happen.

Finding Multicollisions

A multicollision occurs when a set of three or more messages hash to the same
value. For example, the triplet (X, ¥, Z), such that Hash(X) = Hash(}) =
Hash(7) is called a 3-collision. 1deally, multicollisions should be much harder to
find than collisions, but there is a simple trick for finding them at almost the
same cost as that of a single collision. Here’s how it works:

1. Find a first collision: Compress(H,,, M; ;) = Compress(H,, M;,) = Hj;.
Now you have a 2-collision, or two messages hashing to the same value.

2. Find a second collision with H; as a starting chaining value: Compress(I{},
M, ) = Compress(H;, M, ,) = H,. Now you have a 4-collision, with four
messages hashing to the same value Hy: My || My, My || M55, M, |1
My 1, and My 5 11 M ;.

3. Repeat and find N times a collision, and you’ll have 2” N-block messages
hashing to the same value, or a 2”-collision, at the cost of “only” about N2”
hash computations.

In practice, this trick isn’t all that practical because it requires you to find a
basic 2-collision in the first place.



Building Compression  Functions: The Davies—Meyer
Construction

M

Hr'-l_ E THE

Figure 6-5: The Davies—Meyer construction. The dark triangle shows where the block
cipher's key is input.

All compression functions used in real hash functions such as SHA-256 and
BLAKE?2 are based on block ciphers, because that is the simplest way to build a
compression function. Figure 6-5 shows the most common of the block cipher—
based compression functions, the Davies—Meyer construction.

Given a message block, M;, and the previous chaining value H; _ |, the Davies—

Meyer compression function uses a block cipher, E, to compute the new
chaining value as

H;=EWM,;, H; ) ® H; |

The message block M; acts as the block cipher key, and the chaining value H; _
1 acts as its plaintext block. As long as the block cipher is secure, the resulting

compression function is secure as well as collision and preimage resistant.
Without the XOR of the preceding chaining value (¢ H; _ ), Davies—Meyer

would be insecure because you could invert it, going from the new chaining
value to the previous one using the block cipher’s decryption function.

The Davies—Meyer construction has a surprising property: you can find fixed
points, or chaining values, that are unchanged after applying the compression
function with a given message block. It suffices to take H; _ 1 = D(M,, 0) as a

chaining value, where D is the decryption function corresponding to E. The new
chaining value H, is therefore equal to the original H; _ ;:




H;=E(M; H;,_,)® H,_, = E(M,, D(M,, 0))® D(M,, 0)
=0®D(M,,0)=D(M, 0)=H,_,

P =

We get H;, = H; _ | because plugging the decryption of zero into the encryption
function yields zero—the term E(M;, D(M;, 0))—leaving only the ® H; _ | part of
the equation in the expression of the compression function’s output. You can then find
fixed points for the compression functions of the SHA-2 functions, as with the
standavds MDS5 and SHA-1, which are also based on the Davies—Meyer

construction. Fortunately, fixed points aren’t a security risk.

There are many block cipher—based compression functions other than Davies—
Meyer, such as those shown in Figure 6-6, but they are less popular because
they’re more complex or require the message block to be the same length as the
chaining value.

M M,
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Figure 6-6: Other secure block cipher-based compression function constructions

Permutation-Based Hash Functions: Sponge Functions

After decades of research, cryptographers know everything there is to know
about block cipher—based hashing techniques. Still, shouldn’t there be a simpler
way to hash? Why bother with a block cipher, an algorithm that takes a secret
key, when hash functions don’t take a secret key? Why not build hash functions
with a fixed-key block cipher, a single permutation algorithm?

Those simpler hash functions are called sponge functions, and they use a
single permutation instead of a compression function and a block cipher (see
Figure 6-7). Instead of using a block cipher to mix message bits with the internal
state, sponge functions just do an XOR operation. Sponge functions are not only
simpler than Merkle-Damgérd functions, they’re also more versatile. You will
find them used as hash functions and also as deterministic random bit
generators, stream ciphers, pseudorandom functions (see Chapter 7), and
authenticated ciphers (see Chapter 8). The most famous sponge function is



Keccak, also known as SHA-3.
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Figure 6-7: The sponge construction

A sponge function works as follows:

1. It XORs the first message block, My, to H, a predefined initial value of the
internal state (for example, the all-zero string). Message blocks are all the
same size and smaller than the internal state.

2. A permutation, P, transforms the internal state to another value of the same
size.

3. It XORs block M, and applies P again, and then repeats this for the
message blocks Mj, My, and so on. This is called the absorbing phase.

4. After injecting all the message blocks, it applies P again and extracts a block
of bits from the state to form the hash. (If you need a longer hash, apply P
again and extract a block.) This is called the squeezing phase.

The security of a sponge function depends on the length of its internal state
and the length of the blocks. If message blocks are 7-bit long and the internal
state is w-bit long, then there are ¢ = w — 7 bits of the internal state that can’t be
modified by message blocks. The value of ¢ is called a sponge’s capacity, and the
security level guaranteed by the sponge function is ¢/2. For example, to reach
256-bit security with 64-bit message blocks, the internal state should be w = 2 x
256 + 64 = 576 bits. Of course, the security level also depends on the length, 7,
of the hash value. The complexity of a collision attack is therefore the smallest
value between 2”/2 and 292, while the complexity of a second preimage attack is
the smallest value between 2” and 2¢2.

To be secure, the permutation P should behave like a random permutation,
without statistical bias and without a mathematical structure that would allow an



attacker to predict outputs. As in compression function-based hashes, sponge
functions also pad messages, but the padding is simpler because it doesn’t need
to include the message’s length. The last message bit is simply followed by a 1
bit and as many zeroes as necessary.

The SHA Family of Hash Functions

The Secure Hash Algorithm (SHA) hash functions are standards defined by
NIST for use by non-military federal government agencies in the US. They are
considered worldwide standards, and only certain non-US governments opt for
their own hash algorithms (such as China’s SM3, Russia’s Streebog, and
Ukraine’s Kupyna) for reasons of sovereignty rather than a lack of trust in SHA’s
security. The US SHAs have been more extensively reviewed by cryptanalysts
than the non-US ones.

NOTE

Message Digest 5 (MD5) was the most popular hash function from 1992 until it
was broken around 2005, and many applications then switched to one of the SHA
hash functions. MD5 processes 512-bit block messages and updates a 128-bit
internal state to produce a 128-bit hash, thus providing at best 128-bit preimage
security and 64-bit collision security. In 1996, cryptanalysts warned of a collision for
MDS5’s compression function, but their warning went unheeded until 2005 when a
team of Chinese cryptanalysts discovered how to compute collisions for the full MD5
hash. As I write this, it takes only seconds to find a collision for MDS, yet many
systems still use or support M5, often for reasons of backward compatibility.

SHA-1

The SHA-1 standard arose from a failure in the NSA’s original SHA-0O hash
function. In 1993, NIST standardized the NSA’s SHA-0 hash algorithm, but in
1995 the NSA released SHA-1 to fix an unidentified security issue in SHA-0.
The reason for the tweak became clear when in 1998 two researchers discovered
how to find collisions for SHA-0 in about 2% operations instead of the 28
expected for 160-bit hash functions such as SHA-0 and SHA-1. Later attacks

reduced the complexity to around 2%* operations, leading to actual collisions in
less than an hour for SHA-0.



SHA-1 Internals

SHA-1 combines a Merkle-Damgird hash function with a Davies—Meyer
compression function based on a specially crafted block cipher, sometimes called

SHACAL. That is, SHA-1 works by iterating the following operation over 512-
bit message blocks (M):

H=EWM, H)+H

Here, the use of a plus sign (+) rather than ® (XOR) is intentional. E(M, H)
and H are viewed as arrays of 32-bit integers, and each two words at a same
position are added together: the first 32-bit word of E(M, H) with the first 32-bit
word of H, and so on. The initial value of H is constant for any message, then H
is modified as per the above equation, and the final value of H after processing
all blocks is returned as the hash of the message.

Once the block cipher is run using the message block as a key and the current
160-bit chaining value as a plaintext block, the 160-bit result is seen as an array
of five 32-bit words, each of which is added to its 32-bit counterpart in the initial
H value.

Listing 6-4 shows SHA-1’s compression function, SHA1-compress():

SHA1-compress(H, M) {
(a0, b0, cO, dO, e®) = H // parsing H as five 32-bit big endian words
(a, b, ¢, d, e) = SHA1-blockcipher(a®, bO, cO, dO, ed, M)
return (a + a®, b + b0, c + cO, d + dO, e + €0)

}

Listing 6-4: SHA-1's compression function

SHA-1’s block cipher SHA1-blockcipher(), shown in bold in Listing 6-5, takes a
512-bit message block, M, as a key and transforms the five 32-bit words (a, b, c,
d, and e) by iterating 80 steps of a short sequence of operations to replace the
word a with a combination of all five words. It then shifts the other words in the
array, as in a shift register.

SHA1-blockcipher(a, b, c, d, e, M) {
W = expand(M)
for 1 =0 to 79 {
new = (a <<< 5) + f(1, b, ¢, d) + e + K[1] + W[i]
(a, b, ¢, d, e) = (new, a, b >>> 2, c, d)

return (a, b, c, d, e)



}

Listing 6-5: SHA-1's block cipher

The expand() function shown in Listing 6-6 creates an array of eighty 32-bit
words, W, from the 16-word message block by setting 1#”s first 16 words to M
and the subsequent ones to an XOR combination of previous words, rotated one

bit to the left.

expand(M) {
// the 512-bit M is seen as an array of sixteen 32-bit words
W = empty array of eighty 32-bit words
for 1 =0 to 79 {
if 1 < 16 then W[i] = M[1]
else
W[i] = (W[1 - 3] @ W[1 - 8] @ W[1 - 14] @ W[1 - 16]) <<< 1

return W

}
Listing 6-6: SHA-1's expand() function

The <<< 1 operation in Listing 6-6 is the only difference between the SHA-1
and SHA-0 functions.

Finally, the f() function (see Listing 6-7) in SHA1-blockcipher() is a sequence of
basic bitwise logical operations (a Boolean function) that depends on the round
number.

f(i, b, ¢, d) {
if 1 < 20 then return ((b & c) © (~b & d))
if 1 < 40 then return (b ® c @ d)
if 1 < 60 then return ((b & c) © (b & d) @ (c & d))
if 1 < 80 then return (b © c @ d)

}

Listing 6-7: SHA-1’s () function.

The second and fourth Boolean functions in Listing 6-7 simply XOR the
three input words together, which is a linear operation. In contrast, the first and
third functions use the non-linear & operator (logical AND) to protect against
differential cryptanalysis, which as you recall, exploits the predictable
propagation of bitwise difference. Without the & operator (in other words, if ()
were always b ® ¢ @ d, for example), SHA-1 would be easy to break by tracing
patterns within its internal state.



Attacks on SHA-1

Though more secure than SHA-0, SHA-1 is still insecure, which is why the
Chrome browser marks websites using SHA-1 in their HT'TPS connection as
insecure. Although its 160-bit hash should grant it 80-bit collision resistance, in
2005 researchers found weaknesses in SHA-1 and estimated that finding a
collision would take approximately 2% calculations. (That number would be 28°
if the algorithm were flawless.) A real SHA-1 collision only came twelve years
later when after years of cryptanalysis, Marc Stevens and other researchers
presented two colliding PDF documents through a joint work with Google

researchers (see https://shattered.io/).

The upshot is that you should not use SHA-1. As mentioned, internet
browsers now mark SHA-1 as insecure, and SHA-1 is no longer recommended

by NIST. Use SHA-2 hash functions instead, or BLAKE?2 or SHA-3.

SHA-2

SHA-2, the successor to SHA-1, was designed by the NSA and standardized by
NIST. SHA-2 is a family of four hash functions: SHA-224, SHA-256, SHA-384,
and SHA-512, of which SHA-256 and SHA-512 are the two main algorithms.
The three-digit numbers represent the bit lengths of each hash.

SHA-256

The initial motivation behind the development of SHA-2 was to generate longer
hashes and thus deliver higher security levels than SHA-1. For example, whereas
SHA-1 has 160-bit chaining values, SHA-256 has 256-bit chaining values or
eight 32-bit words. Both SHA-1 and SHA-256 have 512-bit message blocks;
however, whereas SHA-1 makes 80 rounds, SHA-256 makes 64 rounds,
expanding the 16-word message block to a 64-word message block using the
expand256() function shown in Listing 6-8.

expand256(M) {
// the 512-bit M is seen as an array of sixteen 32-bit words
W = empty array of sixty-four 32-bit words
for 1 =0 to 63 {
if 1 < 16 then W[i] = M[1]
else {
// the ">>" shifts instead of a ">>>" rotates and is not a typo
sO = (W[i1 - 15] >>> 7) ® (W[1 - 15] >>> 18) @ (W[1 - 15] >> 3)
s1 = (W1 - 2] >>> 17) © (W[l - 2] >>> 19) @® (W[1 - 2] >> 10)
W[i] = W[1 - 16] + sO + W[i1 - 7] + s1


../../../../../https@shattered.io/default.htm

}
}
return W

}

Listing 6-8: SHA-256’s expand256() function

Note how SHA-2’s expand256() message expansion is more complex than
SHA-1’s expand(), shown previously in Listing 6-6, which in contrast simply
performs XORs and a 1-bit rotation. The main loop of SHA-256’s compression
function is also more complex than that of SHA-1, performing 26 arithmetic
operations per iteration compared to 11 for SHA-1. Again, these operations are
XORs, logical ANDs, and word rotations.

Other SHA-2 Algorithms

The SHA-2 family includes SHA-224, which is algorithmically identical to
SHA-256 except that its initial value is a different set of eight 32-bit words, and
its hash value length is 224 bits, instead of 256 bits, and is taken as the first 224
bits of the final chaining value.

The SHA-2 family also includes the algorithms SHA-512 and SHA-384.
SHA-512 is similar to SHA-256 except that it works with 64-bit words instead of
32-bit words. As a result, it uses 512-bit chaining values (eight 64-bit words) and
ingests 1024-bit message blocks (sixteen 64-bit words), and it makes 80 rounds
instead of 64. The compression function is otherwise almost the same as that of
SHA-256, though with different rotation distances to cope with the wider word
size. (For example, SHA-512 includes the operation a >>> 34, which wouldn’t
make sense with SHA-256’s 32-bit words.) SHA-384 is to SHA-512 what SHA-
224 is to SHA-256—namely, the same algorithm but with a different initial value
and a final hash truncated to 384 bits.

Security-wise, all four SHA-2 versions have lived up to their promises so far:
SHA-256 guarantees 256-bit preimage resistance, SHA-512 guarantees about
256-bit collision resistance, and so on. Still, there is no genuine proof that SHA-
2 functions are secure; we’re talking about probable security.

That said, after practical attacks on MD5 and on SHA-1, researchers and
NIST grew concerned about SHA-2’s long-term security due to its similarity to
SHA-1, and many believed that attacks on SHA-2 were just a matter of time. As
I write this, though, we have yet to see a successful attack on SHA-2. Regardless,

NIST developed a backup plan: SHA-3.



The SHA-3 Competition

Announced in 2007, the NIST Hash Function Competition (the official name of
the SHA-3 competition) began with a call for submissions and some basic
requirements: hash submissions were to be at least as secure and as fast as SHA-
2, and they should be able to do at least as much as SHA-2. SHA-3 candidates
also shouldn’t look too much like SHA-1 and SHA-2 in order to be immune to
attacks that would break SHA-1 and potentially SHA-2. By 2008, NIST had
received 64 submissions from around the world, including from universities and
large corporations (BT, IBM, Microsoft, Qualcomm, and Sony, to name a few).
Of these 64 submissions, 51 matched the requirements and entered the first
round of the competition.

During the first weeks of the competition, cryptanalysts mercilessly attacked
the submissions. In July 2009, NIST announced 14 second-round candidates.

After spending 15 months analyzing and evaluating the performance of these
candidates, NIST chose five finalists:

BLAKE An enhanced Merkle-Damgéird hash whose compression function is
based on a block cipher, which is in turn based on the core function of the
stream cipher ChaCha, a chain of additions, XORs, and word rotations.
BLAKE was designed by a team of academic researchers based in Switzerland
and the UK, including myself.

Grostl An enhanced Merkle-Damgard hash whose compression function uses
two permutations (or fixed-key block ciphers) based on the core function of
the AES block cipher. Grostl was designed by a team of seven academic
researchers from Denmark and Austria.

JH A tweaked sponge function construction wherein message blocks are
injected before and after the permutation rather than just before. The
permutation also performs operations similar to a substitution—permutation
block cipher (as discussed in Chapter 4). JH was designed by a cryptographer
from a university in Singapore.

Keccak A sponge function whose permutation performs only bitwise
operations. Keccak was designed by a team of four cryptographers working
for a semiconductor company based in Belgium and Italy, and included one of
the two designers of AES.

Skein A hash function based on a different mode of operation than Merkle—



Damgird, and whose compression function is based on a novel block cipher
that uses only integer addition, XOR, and word rotation. Skein was designed
by a team of eight cryptographers from academia and industry, all but one of
whom is based in the US, including the renowned Bruce Schneier.

After extensive analysis of the five finalists, NIST announced a winner:
Keccak. NIST’s report rewarded Keccak for its “elegant design, large security
margin, good general performance, excellent efficiency in hardware, and its
flexibility.” Let’s see how Keccak works.

Keccak (SHA-3)

One of the reasons that NIST chose Keccak is that it’s completely different from
SHA-1 and SHA-2. For one thing, it’s a sponge function. Keccak’s core
algorithm is a permutation of a 1600-bit state that ingests blocks of 1152, 1088,
832, or 576 bits, producing hash values of 224, 256, 384, or 512 bits, respectively
—the same four lengths produced by SHA-2 hash functions. But unlike SHA-2,
SHA-3 uses a single core algorithm rather than two algorithms for all four hash
lengths.

Another reason is that Keccak is more than just a hash. The SHA-3 standard
document FIPS 202 defines four hashes—SHA3-224, SHA3-256, SHA3-384,
and SHA3-512—and two algorithms called SHAKE128 and SHAKE256. (The
name SHAKE stands for Secure Hash Algorithm with Keccak.) These two
algorithms are extendable-output functions (XOFs), or hash functions that can
produce hashes of variable length, even very long ones. The numbers 128 and
256 represent the security level of each algorithm.

The FIPS 202 standard itself is lengthy and hard to parse, but you’ll find
open-source implementations that are reasonably fast and make the algorithm
easier to understand than the specifications. For example, the MIT-licensed
tiny_sha3  (bttps://github.com/mjosaarinen/tiny_sha3/) by Markku-Juhani O.
Saarinen, explains Keccak’s core algorithm in 19 lines of C, as partially
reproduced in Listing 6-9.

static void sha3_keccakf(uint64_t st[25], int rounds)

(®)

for (r = 0; r < rounds; r++) {

® // Theta
for (1 = 0; 1 < 5; i++)
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bc[1] = st[1] ~ st[i1 + 5] ~ st[i1 + 10] »~ st[1 + 15] ~ st[i1 + 20];

for (1 =0; 1 <5; 1++) {
t =bc[(1 + 4) % 5] ~ ROTL64(bc[(1 + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + 1] *= t;

}
® // Rho Pi
t = st[1];

for (1 =0; 1 < 24; i1++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}

® // Chi
for (j =0; j<25; j+=5) {
for (1 = 0; 1 < 5; i++)
bc[i] = st[j + 1];
for (1 =0; 1 < 5; i++)
st[j + 1] ~= (~bc[(1 + 1) % 5]) & bc[(1 + 2) % 5];
}

® // Iota
st[0] "= keccakf_rndc[r];

}
(®)
}

Listing 6-9: The tiny_sha3 implementation

The tiny_sha3 program implements the permutation, P, of Keccak, an
invertible transformation of a 1600-bit state viewed as an array of twenty-five
64-bit words. As you review the code, notice that it iterates a series of rounds,
where each round consists of four main steps (as marked by @, @, &, and @):

e The first step, Theta @, includes XORs between 64-bit words or a 1-bit
rotated value of the words (the ROTL64(w, 1) operation left-rotates a word w
of 1 bit).

e The second step, Rho Pi @, includes rotations of 64-bit words by constants
hardcoded in the keccakf_rotc[] array.

® The third step, chi @, includes more XORs, but also logical ANDs (the &
operator) between 64-bit words. These ANDs are the only nonlinear
operations in Keccak, and they bring with them cryptographic strength.



e The fourth step, Iota @, includes a XOR with a 64-bit constant, hardcoded
in the keccakf_rndc[].

These operations provide SHA-3 with a strong permutation algorithm free of
any bias or exploitable structure. SHA-3 is the product of more than a decade of
research, and hundreds of skilled cryptanalysts have failed to break it. It’s
unlikely to be broken anytime soon.

The BLAKE2 Hash Function

Security may matter most, but speed comes second. I've seen many cases where a
developer wouldn’t switch from MDS5 to SHA-1 simply because MDS5 is faster,
or from SHA-1 to SHA-2 because SHA-2 is noticeably slower than SHA-I.
Unfortunately, SHA-3 isn’t faster than SHA-2, and because SHA-2 is still
secure, there are few incentives to upgrade to SHA-3. So how to hash faster than
SHA-1 and SHA-2 and be even more secure? The answer lies in the hash
function BLAKE?2, released after the SHA-3 competition.

NOTE

Full disclosure: I'm a designer of BLAKE?2, together with Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein.

BLAKE?2 was designed with the following ideas in mind:

e It should be least as secure as SHA-3, if not stronger.
e It should be faster than all previous hash standards, including MDS5.

e It should be suited for use in modern applications, and able to hash large
amounts of data either as a few large messages or many small ones, with or
without a secret key.

e It should be suited for use on modern CPUs supporting parallel computing
on multicore systems as well as instruction-level parallelism within a single
core.

The outcome of the engineering process is a pair of main hash functions:

e BLAKE?b (or just BLAKE2), optimized for 64-bit platforms, produces
digests ranging from 1 to 64 bytes.



e BLAKE2s, optimized for 8- to 32-bit platforms, can produce digests
ranging from 1 to 32 bytes.

Each function has a parallel variant that can leverage multiple CPU cores.
The parallel counterpart of BLAKE2b, BLAKE2bp, runs on four cores, whereas
BLAKE2sp runs on eight cores. The former is the fastest on modern server and
laptop CPUs and can hash at close to 2 Gbps on a laptop CPU. In fact,
BLAKE? is the fastest secure hash available today, and its speed and features
have made it the most popular non-NIST-standard hash. BLAKE? is used in
countless software applications and has been integrated into major cryptography
libraries such as OpenSSL and Sodium.

NOTE

You can find BLAKEZ2’s specifications and reference code at https://blake2.net/,
and  you  can  download  optimized  code  and  libravies  from
https://github.com/BLAKE2/. The reference code also provides BLAKE2X, an
extension of BLAKE? that can produce hash values of arbitrary length.

M

Parameters ——a= M
Hr._ — %’HI.

Figure 6-8: BLAKEZ’s compression function. The two halves of the state are XORed
together after the block cipher.

BLAKE2’s compression function, shown in Figure 6-8, is a variant of the
Davies—Meyer construction that takes parameters as additional input—namely, a
counter (which ensures that each compression function behaves like a different
function) and a flzg (which indicates whether the compression function is
processing the last message block, for increased security).

The block cipher in BLAKE2’s compression function is based on the stream
cipher ChaCha, itself a variant of the Salsa20 stream cipher discussed in Chapter
5. Within this block cipher, BLAKE2b’s core operation is composed of the
following chain of operations, which transforms a state of four 64-bit words
using two message words, M; and M
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a=a+b+ M.

d =((d ® a) >>> 32)
c=c+d
b=((b®c)>>>24)
a=a+b+ M,

d =((d® a) >>>16)
r=¢+d

b=((b®c)>>>63)

BLAKE2s’s core operation is similar but works with 32-bit instead of 64-bit
words (and thus uses different rotation values).

How Things Can Go Wrong

Despite their apparent simplicity, hash functions can cause major security
troubles when used at the wrong place or in the wrong way—for example, when
weak checksum algorithms like CRCs are used instead of a crypto hash to check
file integrity in applications transmitting data over a network. However, this
weakness pales in comparison to some others, which can cause total compromise
in seemingly secure hash functions. We’ll see two examples of failures: the first
one applies to SHA-1 and SHA-2, but not to BLAKE2 or SHA-3, whereas the

second one applies to all of these four functions.

The Length-Extension Attack

The length-extension attack, shown in Figure 6-9, is the main threat to the
Merkle-Damgird construction.

MB
M, M, Compress = Hash(M, I M, 1| M,)

H

0

H, H = Hash(M, Il M)

Figure 6-9: The length-extension attack



Basically, if you know Hash(M) for some unknown message, M, composed of
blocks M, and M, (after padding), you can determine Hash(M; || M, || M)

for any block, Mj. Because the hash of M; || M, is the chaining value that
follows immediately after M,, you can add another block, Mj, to the hashed

message, even though you don’t know the data that was hashed. What’s more,
this trick generalizes to any number of blocks in the unknown message (M; ||

M, here) or in the suffix (M3).

The length-extension attack won’t affect most applications of hash functions,
but it can compromise security if the hash is used a bit too creatively.
Unfortunately, SHA-2 hash functions are vulnerable to the length-extension
attack, even though the NSA designed the functions and NIST standardized
them while both were well aware of the flaw. This flaw could have been avoided
simply by making the last compression function call different from all others (for
example, by taking a 1 bit as an extra parameter while the previous calls take a 0

bit). And that is in fact what BLAKE?2 does.
Fooling Proof-of-Storage Protocols

Cloud computing applications have used hash functions within proof-of-storage
protocols—that is, protocols where a server (the cloud provider) proves to a
client (a user of a cloud storage service) that the server does in fact store the files
that it’s supposed to store on behalf of the client.

In 2007, the paper “SafeStore: A Durable and Practical Storage System”
(bttps://www.cs.utexas.edu/~lorvenzo/papers/p129-kotla.pdf) by Ramakrishna Kotla,
Lorenzo Alvisi, and Mike Dahlin proposed a proof-of-storage protocol to verify
the storage of some file, M, as follows:

1. The client picks a random value, C, as a challenge.

2. The server computes Hash(M | | C) as a response and sends the result to the
client.

3. The client also computes Hash(M |1 C) and checks that it matches the
value received from the server.

The premise of the paper is that the server shouldn’t be able to fool the client
because if the server doesn’t know M, it can’t guess Hash(M | | C). But there’s a
catch: in reality, Hash will be an iterated hash that processes its input block by
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block, computing intermediate chaining values between each block. For
example, if Hash is SHA-256 and M is 512 bits long (the size of a block in SHA-
256), the server can cheat. How? The first time the server receives M, it
computes H; = Compress(H,, M;), the chaining value obtained from SHA-

256’s initial value, H, and from the 512-bit M. It then records H; in memory
and discards M, at which point it no longer stores M.

Now when the client sends a random wvalue, C, the server computes

Compress(H, (), after adding the padding to C to fill a complete block, and

returns the result as Hash(M || C). The client then believes that, because the
server returned the correct value of Hash(M |1 C), it holds the complete
message—except that it may not, as you’ve seen.

This trick will work for SHA-1, SHA-2, as well as SHA-3 and BLAKE?2. The
solution is simple: ask for Hash(C || M) instead of Hash(M | | C).

Further Reading

To learn more about hash functions, read the classics from the 1980s and 90s:
research articles like Ralph Merkle’s “One Way Hash Functions and DES” and
Ivan Damgird’s “A Design Principle for Hash Functions.” Also read the first
thorough study of block cipher-based hashing, “Hash Functions Based on Block
Ciphers: A Synthetic Approach” by Preneel, Govaerts, and Vandewalle.

For more on collision search, read the 1997 paper “Parallel Collision Search
with Cryptanalytic Applications” by van Oorschot and Wiener. To learn more
about the theoretical security notions that underpin preimage resistance and
collision resistance, as well as length-extension attacks, search for
indifferentiability.

For more recent research on hash functions, see the archives of the SHA-3
competition, which include all the different algorithms and how they were
broken. You'll find many references on the SHA-3 Zoo at
http://ebash.iaik.tugraz.at/wiki/The_SHA-3_Zoo, and on NIST’s  page,
http://esrc.nist.gov/groups/ST/hash/sha-3/.

For more on the SHA-3 winner Keccak and sponge functions, see
http://keccak.noekeon.org/ and http://sponge.noekeon.org/, the official pages of the
Keccak designers.

Last but not least, research these two real exploitations of weak hash
functions:
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® The nation-state malware Flame exploited an MD5 collision to make a
counterfeit certificate and appear to be a legitimate piece of software.
e The Xbox game console used a weak block cipher (called TEA) to build a

hash function, which was exploited to hack the console and run arbitrary
code on it.



7
KEYED HASHING

The hash functions discussed in Chapter 6 take a message and return its hash
value—typically a short string of 256 or 512 bits. Anyone can compute the hash
value of a message and verify that a particular message hashes to a particular
value because there’s no secret value involved, but sometimes you don’t want to
let just anyone do that. That’s where keyed hash functions come in, or hashing
with secret keys.

Keyed hashing forms the basis of two types of important cryptographic
algorithms: message authentication codes (MACs), which authenticate a message
and protect its integrity, and pseudorandom functions (PRFs), which produce
random-looking hash-sized values. We’ll look at how and why MACs and PRFs
are similar in the first section of this chapter; then we’ll review how real MACs
and PRFs work. Some MACs and PRFs are based on hash functions, some are
based on block ciphers, and still others are original designs. Finally, we’ll review
examples of attacks on otherwise secure MACs.

Message Authentication Codes (MACs)

A MAC protects a message’s integrity and authenticity by creating a value 7T =
MAC(K, M), called the authentication tag of the message, M (often confusingly
called the MAC of M). Just as you can decrypt a message if you know a cipher’s
key, you can validate that a message has not been modified if you know a MAC’s
key.

For example, say Alex and Bill share a key, K, and Alex sends a message, M, to
Bill along with its authentication tag, T = MAC(K, M). Upon receiving the
message and its authentication tag, Bill recomputes MAC(K, M) and checks that
it is equal to the authentication tag received. Because only Alex could have



computed this value, Bill knows that the message wasn’t corrupted in transit
(confirming integrity), whether accidentally or maliciously, and that Alex sent
that message (confirming authenticity).

MACs in Secure Communication

Secure communication systems often combine a cipher and a MAC to protect a
message’s confidentiality, integrity, and authenticity. For example, the protocols
in Internet Protocol Security (IPSec), Secure Shell (SSH), and Transport Layer
Security (TLS) generate a MAC for each network packet transmitted.

Not all communication systems use MACs. Sometimes an authentication tag
can add unacceptable overhead to each packet, typically in the range of 64 to 128
bits. For example, the 3G and 4G mobile telephony standards encrypt packets
encoding voice calls but they don’t authenticate them. An attacker can modify
the encrypted audio signal and the recipient wouldn’t notice. Thus, if an attacker
damages an encrypted voice packet, it will decrypt to noise, which would sound
like static.

Forgery and Chosen-Message Attacks

What does it mean for a MAC to be secure? First of all, as with a cipher, the
secret key should remain secret. If a MAC is secure, an attacker shouldn’t be able
to create a tag of some message if they don’t know the key. Such a made-up
message/tag pair is called a forgery, and recovering a key is just a specific case of a
more general class of attacks called forgery attacks. The security notion that posits
that forgeries should be impossible to find is called unforgeability. Obviously, it
should be impossible to recover the secret key from a list of tags; otherwise,
attackers could forge tags using the key.

What can an attacker do to break a MAC? In other words, what’s the attack
model? The most basic model is the known-message attack, which passively
collects messages and their associated tags (for example, by eavesdropping on a
network). But real attackers often launch more powerful attacks because they can
often choose the messages to be authenticated, and therefore get the MAC of
the message they want. The standard model is therefore that of chosen-message
attacks, wherein attackers get tags for messages of their choice.

Replay Attacks

MAC:s aren’t safe from attacks involving replays of tags. For example, if you were



to eavesdrop on Alex and Bill’s communications, you could capture a message
and its tag sent by Alex to Bill, and later send them again to Bill pretending to be
Alex. To prevent such replay attacks, protocols include a message number in each
message. This number is incremented for each new message and authenticated
along with the message. The receiving party gets messages numbered 1, 2, 3, 4,
and so on. Thus, if an attacker tries to send message number 1 again, the
receiver will notice that this message is out of order and that it’s a potential
replay of the earlier message number 1.

Pseudorandom Functions (PRFs)

A PREF is a function that uses a secret key to return PRF(K, M), such that the

output looks random. Because the key is secret, the output values are
unpredictable to an attacker.

Unlike MACs, PRFs are not meant to be used on their own but as part of a
cryptographic algorithm or protocol. For example, PRFs can be used to create
block ciphers within the Feistel construction discussed in “How to Construct
Block Ciphers” on page 55. Key derivation schemes use PRFs to generate
cryptographic keys from a master key or a password, and identification schemes
use PRFs to generate a response from a random challenge. (Basically, a server
sends a random challenge message, M, and the client returns PRF(K, M) in its
response to prove that it knows K.) The 4G telephony standard uses a PRF to
authenticate a SIM card and its service provider, and a similar PRF also serves to
generate the encryption key and MAC key to be used during a phone call. The
TLS protocol uses a PRF to generate key material from a master secret as well
as session-specific random values. There’s even a PRF in the noncryptographic
hash() function built into the Python language to compare objects.

PRF Security

In order to be secure, a pseudorandom function should have no pattern that sets
its outputs apart from truly random values. An attacker who doesn’t know the
key, K, shouldn’t be able to distinguish the outputs of PRF(K, M) from random
values. Viewed differently, an attacker shouldn’t have any means of knowing
whether they’re talking to a PRF algorithm or to a random function. The
erudite phrase for that security notion is indistinguishability from a random
function. (T'o learn more about the theoretical foundations of PRFs, see Volume
1, Section 3.6 of Goldreich’s Foundations of Cryptography.)



Why PRFs Are Stronger Than MACs

PRFs and MACs are both keyed hashes, but PRFs are fundamentally stronger
than MAC:s, largely because MACs have weaker security requirements. Whereas
a MAC is considered secure if tags can’t be forged—that is, if the MAC’s outputs
can’t be guessed—a PRF is only secure if its outputs are indistinguishable
random strings, which is a stronger requirement. If a PRF’s outputs can’t be
distinguished from random strings, the implication is that their values can’t be
guessed; in other words, any secure PRF is also a secure MAC.

The converse is not true, however: a secure MAC isn’t necessarily a secure

PRF. For example, say you start with a secure PRF, PRF1, and you want to
build a second PRF, PRF2, from it, like this:

PRF2(K, M) = PRF1(K, M) || 0

Because PRF2’s output is defined as PRF1’s output followed by one 0 bit, it
doesn’t look as random as a true random string, and you can distinguish its
outputs by that last 0 bit. Hence, PRF2 is not a secure PRF. However, because
PRF1 is secure, PRF2 would still make a secure MAC. Why? Because if you
were able to forge a tag, T = PRF2(K, M), for some M, then you’d also be able to
forge a tag for PRF1, which we know to be impossible in the first place because
PRF1 is a secare MAC. Thus, PRF2 is a keyed hash that’s a secure MAC but not
a secure PRF.

But don’t worry: you won’t find such MAC constructions in real applications.
In fact, many of the MACs deployed or standardized are also secure PRFs and
are often used as either. For example, TLS uses the algorithm HMAC-SHA-256
both as a MAC and as a PRF.

Creating Keyed Hashes from Unkeyed Hashes

Throughout the history of cryptography, MACs and PRFs have rarely been
designed from scratch but rather have been built from existing algorithms,
usually hash functions of block ciphers. One seemingly obvious way to produce a
keyed hash function would be to feed an (unkeyed) hash function a key and a
message, but that’s easier said than done, as I discuss next.

The Secret-Prefix Construction

The first technique we’ll examine, called the secret-prefix comnstruction, turns a



normal hash function into a keyed hash one by prepending the key to the
message and returning Hash(K || M). Although this approach is not always
wrong, it can be insecure when the hash function is vulnerable to length-
extension attacks (as discussed in “The Length-Extension Attack” on page 125)
and when the hash supports keys of different lengths.

Insecurity Against Length-Extension Attacks

Recall from Chapter 6 that hash functions of the SHA-2 family allow attackers
to compute the hash of a partially unknown message when given a hash of a
shorter version of that message. In formal terms, the length-extension attack

allows attackers to compute Hash(K || M; || M,) given only Hash(K || M)
and neither M| nor K. These functions allow attackers to forge valid MAC tags
for free because they’re not supposed to be able to guess the MAC of M; || M,
given only the MAC of M;. This fact makes the secret-prefix construction as
insecure as a MAC and PRF when, for example, it’s used with SHA-256 or
SHA-512. It is a weakness of Merkle-Damgard to allow length-extension
attacks, and none of the SHA-3 finalists do. The ability to thwart length-

extension attacks was mandatory for SHA-3 submissions.

Insecurity with Different Key Lengths

The secret-prefix construction is also insecure when it allows the use of keys of
different lengths. For example, if the key K is the 24-bit hexadecimal string
123abc and M is def00, then Hash() will process the value K || M =
123abcdef00. If K is instead the 16-bit string 123a and M is bcdef000, then
Hash() will process K || M = 123abcdef00, too. Therefore, the result of the

secret-prefix construction Hash(K | | M) will be the same for both keys.

This problem is independent of the underlying hash and can be fixed by
hashing the key’s length along with the key and the message, for example, by
encoding the key’s bit length as a 16-bit integer, L, and then hashing Hash(L | |
K Il M). But you shouldn’t have to do this. Modern hash functions such as
BLAKE?2 and SHA-3 include a keyed mode that avoids those pitfalls and yields a
secure PRF, and thus a secure MAC as well.

The Secret-Suffix Construction

Instead of hashing the key before the message as in the secret-prefix



construction, we can hash it after. And that’s exactly how the secret-suffix
construction works: by building a PRF from a hash function as Hash(M | | K).

Putting the key at the end makes quite a difference. For one thing, the length-
extension attack that works against secret-prefix MACs won’t work against the

secret suffix. Applying length extension to a secret-suffix MAC, you’d get
Hash(M,; || K || M,) from Hash(M; || K), but that wouldn’t be a valid attack

because Hash(M; || K || M,) isn’t a valid secret-suffix MAC; the key needs to
be at the end.

However, the secret-suffix construction is weaker against another type of
attack. Say you’ve got a collision for the hash Hash(M;) = Hash(),), where M,

and M, are two distinct messages, possibly of different sizes. In the case of a hash
function such as SHA-256, this implies that Hash(M; | | K) and Hash(M, | | K)

will be equal too, because internally K will be processed based on the data
hashed previously, namely Hash()), equal to Hash(},). Hence, you’d get the

same hash value whether you hash K after M, or after M,, regardless of the value
of K.

"To exploit this property, an attacker would:

1. Find two colliding messages, M, and M,
2. Request the MAC tag of M; Hash(M; | | K)

3. Guess that Hash(M, || K) is the same, thereby forging a valid tag and
breaking the MAC’s security

The HMAC Construction
The hash-based MAC (HMAC) construction allows us to build a MAC from a

hash function, which is more secure than either secret prefix or secret suffix.
HMAC vyields a secure PRF as long as the underlying hash is collision resistant,
but even if that’s not the case, HMAC will still yield a secure PRF if the hash’s
compression function is a PRF. The secure communication protocols IPSec,
SSH, and TLS have all used HMAC. (You'll find HMAC specifications in
NIST’s FIPS 198-1 standard and in RFC 2104.)

HMAC uses a hash function, Hash, to compute a MAC tag, as shown in
Figure 7-1 and according to the following expression:



Hash((K ® opad) Hash((K @ ipad) M))

The term opad (outer padding) is a string (5c3¢dc . . . 5¢) that is as long as
Hash’s block size. The key, K, is usually shorter than one block that is filled with
00 bytes and XORed with opad. For example, if K is the 1-byte string 00, then K
® opad = opad. (The same is true if K is the all-zero string of any length up to a
block’s length.) K @ opad is the first block processed by the outer call to Hash—
namely, the leftmost Hash in the preceding equation, or the bottom hash in
Figure 7-1.

The term ipad (inner padding) is a string (363636 . . . 36) that is as long as the
Hash’s block size and that is also completed with 00 bytes. The resulting block
is the first block processed by the inner call to Hash—namely, the rightmost
Hash in the equation, or the top hash in Figure 7-1.

K @ ipad M
H, H,’ Compress
K @ opad
H, H, HMAC-HIK, M)

Figure 7-1: The HMAC hash-based MAC construction

The envelope method is an even more secure construction than secret prefix and secret

suffix. It’s expressed as Hash(K |1 M || K), something called a sandwich MAC,
but it’s theoretically less secure than HMAC.

If SHA-256 is the hash function used as Hash, then we call the HMAC
instance HMAC-SHA-256. More generally, we call HMAC-Hash an HMAC
instance using the hash function Hash. That means if someone asks you to use

HMAC, you should always ask, “Which hash function?”



A Generic Attack Against Hash-Based MACs

There is one attack that works against all MACs based on an iterated hash
function. Recall the attack in “The Secret-Suffix Construction” on page 131
where we used a hash collision to get a collision of MACs. You can use the same
strategy to attack a secret-prefix MAC or HMAC, though the consequences are
less devastating.

To illustrate the attack, consider the secret-prefix MAC Hash(K || M), as
shown in Figure 7-2. If the digest is # bits, you can find two messages, M; and

M,, such that Hash(K || M;) = Hash(K || M,), by requesting approximately

272 MAC tags to the system holding the key. (Recall the birthday attack from
Chapter 6.) If the hash lends itself to length extension, as SHA-256 does, you
can then use M; and M, to forge MACs by choosing some arbitrary data, Mj,

and then querying the MAC oracle for Hash(K || M; || Mj), which is the
MAC of message M || M;. As it turns out, this is also the MAC of message M,
| I M3, because the hash’s internal state of M; and M3 and M, and Mj is the
same, and you’ve successfully forged a MAC tag. (The effort becomes infeasible
as 7 grows beyond, say, 128 bits.)

M, (one or more blocks)

MACIK, M, lIM,)
Compress = MAC(K, M, IIM,)

Collision

K M,

Figure 7-2: The principle of the generic forgery attack on hash-based MACs

This attack will work even if the hash function is not vulnerable to length
extension, and it will work for HMAC, too. The cost of the attack depends on
both the size of the chaining value and the MAC’s length: if a MAC’s chaining

value is 512 bits and its tags are 128 bits, a 25% computation would find a MAC

collision but probably not a collision in the internal state, since finding such a

2512/2 _ 256

collision would require operations on average.



Creating Keyed Hashes from Block Ciphers: CMAC

Recall from Chapter 6 that the compression functions in many hash functions
are built on block ciphers. For example, HMAC-SHA-256 PRF is a series of
calls to SHA-256’s compression function, which itself is a block cipher that
repeats a sequence of rounds. In other words, HMAC-SHA-256 is a block cipher
inside a compression function inside a hash inside the HMAC construction. So
why not use a block cipher directly rather than build such a layered
construction?

CMAC (which stands for cipher-based MIAC) is such a construction: it creates a
MAC given only a block cipher, such as AES. Though less popular than HMAC,
CMAC is deployed in many systems, including the Internet Key Exchange (IKE)
protocol, which is part of the IPSec suite. IKE, for example, generates key
material using a construction called AES-CMAC-PRF-128 as a core algorithm
(or CMAC based on AES with 128-bit output). CMAC is specified in RFC
4493.

Breaking CBC-MAC

CMAC was designed in 2005 as an improved version of CBC-MAC, a simpler
block cipher—based MAC derived from the cipher block chaining (CBC) block

cipher mode of operation (see “Modes of Operation” on page 65).

CBC-MAC, the ancestor of CMAC, is simple: to compute the tag of a
message, M, given a block cipher, E, you encrypt M in CBC mode with an all-
zero initial value (IV) and discard all but the last ciphertext block. That is, you
compute C; = E(K, M), C, = E(K, M, @ C)), C; = E(K, M3 ® C5), and so on for
each of M’s blocks and keep only the last C; your CBC-MAC tag for M—
simple, and simple to attack.

T'o understand why CBC-MAC is insecure, consider the CBC-MAC tag, 7| =
E(K, M,), of a single-block message, M, and the tag, 7> = E(K, M,), of another
single-block message, M,. Given these two pairs, (M;, T}) and (M,, T5), you can
deduce that 75 is also the tag of the two-block message M; || (M, © T}). Indeed,
if you apply CBC-MAC to M; Il (M, ® T}) and compute C; = E(K, M;) = T
followed by C, = E(K, (M, © T}) ® T) = E(K, M,) = T,, you can create a third
message/tag pair from two message/tag pairs without knowing the key. That is,



you can forge CBC-MAC tags, thereby breaking CBC-MAC’s security.

Fixing CBC-MAC

CMAC fixes CBC-MAC by processing the last block using a different key from
the preceding blocks. To do this, CMAC first derives two keys, K; and K,, from
the main key, K, such that K, K;, and K, will be distinct. In CMAC, the last
block is processed using either K; or K,, while the preceding blocks use K.

To determine K; and K,, CMAC first computes a temporary value, L = E(0,

K), where 0 acts as the key of the block cipher and K acts as the plaintext block.
Then CMAC sets the value of K| equal to (L << 1) if L’s most significant bit

(MSB) is 0, or equal to (L << 1) @ 87 if L’s MSB is 1. (The number 87 is carefully
chosen for its mathematical properties when data blocks are 128 bits; a value
other than 87 is needed when blocks aren’t 128 bits.)

The value of K, is set equal to (K| << 1) if K;’s MSB is 0, or K, = (K; << 1) ®@ 87
otherwise.

Given K; and K,, CMAC works like CBC-MAC, except for the last block. If
the final message chunk M, is exactly the size of a block, CMAC returns the
value E(K, My @ C, _; @ K;) as a tag, as shown in Figure 7-3. But if My has

fewer bits than a block, CMAC pads it with a 1 bit and zeros, and returns the
value E(K, M, ® C, _; ®© K,) as a tag, as shown in Figure 7-4. Notice that the first

case uses only K; and the second only K,, but both use only the main key K to
process the message chunks that precede the final one.

M M M
y Iz |3 K
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T

Figure 7-3: The CMAC block cipher-based MAC construction when the message is a
sequence of integral blocks



] M,  M,II100...00

—

Ey Ey E

i

T

Figure 7-4: The CMAC block cipher-based MAC construction when the last block of the
message has to be padded with a 1 bit and zeros to fill a block
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Note that unlike the CBC encryption mode, CMAC does not take an IV as a
parameter and is deterministicc CMAC will always return the same tag for a
given message, M, because the computation of CMAC(M) is not randomized—
and that’s fine, because unlike encryption, MAC computation doesn’t have to be
randomized to be secure, which eliminates the burden of having to choose
random IV.

Dedicated MAC Designs

You've seen how to recycle hash functions and block ciphers to build PRFs that
are secure as long as their underlying hash or cipher is secure. Schemes such as
HMAC and CMAC simply combine available hash functions or block ciphers to
yield a secure PRF or MAC. Reusing available algorithms is convenient, but is it
the most efficient approach?

Intuitively, PRFs and MACs should require less work than unkeyed hash
functions in order to be secure—their use of a secret key prevents attackers from
playing with the algorithm because they don’t have the key. Also, PRFs and
MAC:s only expose a short tag to attackers, unlike block ciphers, which expose a
ciphertext that is as long as the message. Hence, PRFs and MACs should not
need the whole power of hash functions or block ciphers, which is the point of
dedicated design—that is, algorithms created solely to serve as PRFs and/or
MAC:s.

The sections that follow focus on two such algorithms that are widely used:
Poly1305 and SipHash. I'll explain their design principles and why they are
likely secure.

Poly1305



The Poly1305 algorithm (pronounced poly-thirteen-o-five) was designed in 2005
by Daniel J. Bernstein (creator of the Salsa20 stream cipher discussed in Chapter
5 and the ChaCha cipher that inspired the BLAKE and BLAKE? hash functions
discussed in Chapter 6). Poly1305 is optimized to be super fast on modern
CPUs, and as I write this, it is used by Google to secure HI'TPS (HT'TP over
TLS) connections and by OpenSSH, among many other applications. Unlike
Salsa20, the design of Poly1305 is built on techniques dating back to the 1970s
—namely, universal hash functions and the Wegman—Carter construction.

Universal Hash Functions

The Poly1305 MAC uses a universal hash function internally that is much weaker
than a cryptographic hash function, but also much faster. Universal hash
functions don’t have to be collision resistant, for example. That means less work
is required to achieve their security goals.

Like a PRF, a universal hash is parameterized by a secret key: given a message,
M, and key, K, we write UH(K, M), which is the computation of the output of a
universal hash function, denoted UH. A universal hash function has only one
security requirement: for any two messages, M; and M,, the probability that

UH(K, M,) = UH(K, M,) must be negligible for a random key, K. Unlike a PRF,

a universal hash doesn’t need to be pseudorandom; there simply should be no
pair (M, M>) that gives the same hash for many different keys. Because their
security requirements are easier to satisfy, fewer operations are required and
therefore universal hash functions are considerably faster than PRFs.

You can use a universal hash as a MAC to authenticate no more than one
message, however. For example, consider the universal hash used in Poly1305,
called a polynomial-evaluation hash. (See the seminal 1974 article “Codes Which
Detect Deception” by Gilbert, MacWilliams, and Sloane for more on this
notion.) This kind of polynomial-evaluation hash is parameterized by a prime
number, p, and takes as input a key consisting of two numbers, R and K, in the
range [1, p] and a message, M, consisting of » blocks (M;, M,, . . ., M,). The

output of the universal hash is then computed as the following:

UH(R, K, M) = R+ MK + M3K* + M;K> + ... + M, K" mod p

The plus sign (+) denotes the addition of positive integers, K  is the number K



raised to the power 7, and “mod p” denotes the reduction modulo p of the result
(that is, the remainder of the division of the result by p; for example, 12 mod 10
=2,10mod 10 =0, 8 mod 10 = 8, and so on).

Because we want the hash to be as fast as possible, universal hash-based MACs
often work with message blocks of 128 bits and with a prime number, p, that is
slightly larger than 2128 such as 2128 + 51. The 128-bit width allows for very fast
implementations by efficiently using the 32- and 64-bit arithmetic units of
common CPUs.

Potential Vulnerabhilities

Universal hashes have one weakness: because a universal hash is only able to
securely authenticate one message, an attacker could break the preceding
polynomial-evaluation MAC by requesting the tags of only two messages.
Specifically, they could request the tags for a message where M; =M, =...=0
(that is, whose tag is UH(R, K, 0) = R) and then use the tags to find the secret
value R. Alternatively, they could request the tags for a message where M, = 1
and where M, = Mj = . .. = 0 (that is, whose tag is T'= R + K), which would allow
them to find K by subtracting R from 7. Now the attacker knows the whole key
(R, K) and they can forge MACs for any message.

Fortunately, there’s a way to go from single-message security to multi-
message security.

Wegman-Carter MACs

The trick to authenticating multiple messages using a universal hash function
arrived thanks to IBM researchers Wegman and Carter and their 1981 paper
“New Hash Functions and Their Use in Authentication and Set Equality.” The
so-called Wegman—Carter construction builds a MAC from a universal hash
function and a PRF, using two keys, K| and K,, and it returns

MAC(K|, K,, N, M) = UH(K|, M) + PRF(K,, N)

where N is a nonce that should be unique for each key, K,, and where PRF’s

output is as large as that of the universal hash function UH. By adding these two
values, PRF’s strong pseudorandom output masks the cryptographic weakness of
UH. You can see this as the encryption of the universal hash’s result, where the



PRF acts as a stream cipher and prevents the preceding attack by making it
possible to authenticate multiple messages with the same key, K;.

To recap, the Wegman—Carter construction UH(K|, M) + PRF(K,, N) gives a
secure MAC if we assume the following:

e UH is a secure universal hash.
PREF is a secure PRF.
Each nonce N is used only once for each key K,.

e The output values of UH and PRF are long enough to ensure high enough
security.

Now let’s see how Poly1305 leverages the Wegman—Carter construction to
build a secure and fast MAC.

Poly1305-AES

Poly1305 was initially proposed as Poly1305-AES, combining the Poly1305
universal hash with the AES block cipher. Poly1305-AES is much faster than
HMAC-based MACs, or even than CMAC:s, since it only computes one block of
AES and processes the message in parallel through a series of simple arithmetic
operations.

Given a 128-bit Kj, K5, and N, and message, M, Poly1305-AES returns the
following:

Poly 1305(K,, M) + AES(K,, N) mod 2!?8

The mod 2!?8 reduction ensures that the result fits in 128 bits. The message
M is parsed as a sequence of 128-bit blocks (M, M,, . .., M,), and a 129th bit is

appended to each block’s most significant bit to make all blocks 129 bits long. (If
the last block is smaller than 16 bytes, it’s padded with a 1 bit followed by 0 bits
before the final 129th bit.) Next, Poly1305 evaluates the polynomial to compute
the following:

Poly 1305(K,, M) = MK’ + M,K," '+ ... +M K, mod 2!3 - 5

The result of this expression is an integer that is at most 129-bits long. When



added to the 128-bit value AES(K,, N), the result is reduced modulo 2!?® to
produce a 128-bit MAC.

NOTE

AES isn’t a PRF; instead, it’s a pseudorandom permutation (PRP). However, that
doesn’t matter much bere because the Wegman—Carter construction works with a
PRP as well as with a PRE. This is because if you’re given a function that is either a

PRF of a PRP, it’s bard to determine whether it’s a PREF of a PRP just by looking at
the function’s output values.

The security analysis of Polyl1305-AES (see “The Polyl1305-AES Message-
Authentication Code” at http://cr.yp.to/mac/poly1305-20050329.pdf) shows that
Poly1305-AES is 128-bit secure as long as AES is a secure block cipher—and, of
course, as long as everything is implemented correctly, as with any cryptographic
algorithm.

The Poly1305 universal hash can be combined with algorithms other than
AES. For example, Poly1305 was used with the stream cipher ChaCha (see RFC
7539, “ChaCha20 and Poly1305 for IETF Protocols”). There’s no doubt that
Poly1305 will keep being used wherever a fast MAC is needed.

SipHash

Although Poly1305 is fast and secure, it has several downsides. For one, its
polynomial evaluation is difficult to implement efficiently, especially in the
hands of many who are unfamiliar with the associated mathematical notions.
(See examples at betps://github.com/floodyberry/poly1305-donna/). Second, on its
own, it’s secure for only one message unless you use the Wegman—Carter
construction. But in that case, it requires a nonce, and if the nonce is repeated,
the algorithm becomes insecure. Finally, Polyl1305 is optimized for long
messages, but it’s overkill if you process only small messages (say, fewer than 128
bytes). In such cases, SipHash is the solution.

I designed SipHash in 2012 with Dan Bernstein initially to address a
noncryptographic problem: denial-of-service attacks on hash tables. Hash tables
are data structures used to efficiently store elements in programming languages.
Prior to the advent of SipHash, hash tables relied on noncryptographic keyed
hash functions for which collisions were easy to find, and it was easy to exploit a
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remote system using a hash table by slowing it down with a denial-of-service
attack. We determined that a PRF would address this problem and thus set out
to design SipHash, a PRF suitable for hash tables. Because hash tables process
mostly short inputs, SipHash is optimized for short messages. However,
SipHash can be used for more than hash tables: it’s a full-blown PRF and MAC

that shines where most inputs are short.

How SipHash Works

SipHash uses a trick that makes it more secure than basic sponge functions:
instead of XORing message blocks only once before the permutation, SipHash
XORs them before and after the permutation, as shown in Figure 7-5. The 128-
bit key of SipHash is seen as two 64-bit words, K; and K,, XORed to a 256-bit

fixed initial state that is seen as four 64-bit words. Next, the keys are discarded,
and computing SipHash boils down to iterating through a core function called
SipRound and then XORing message chunks to modify the four-word internal
state. Finally, SipHash returns a 64-bit tag by XORing the four-state words

together.
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Figure 7-5: SipHash-2-4 processing a 15-byte message (a block, M1, of 8 bytes and a
block, Mo, of 7 bytes, plus 1 byte of padding)

2

The SipRound function uses a bunch of XORs together with additions and
word rotations to make the function secure. SipRound transforms a state of four
64-bit words (4, b, ¢, d) by performing the following operations, top to bottom.
The operations on the left and right are independent and can be carried out in
parallel:



a+=>b c+=d
hegg =19 d <<< =16
b @=a d P=c

a <<< =32

c+=1b a+=d
bt =17 d <<< =21
b ®=c d ®=a

€ <<< =32

Here, 2 += b is shorthand for 2 = 2 + b, and b <<< = 13 is shorthand for b = b
<<< 13 (the 64-bit word 4 left-rotated 13 bits.)

These simple operations on 64-bit words are almost all you need to
implement in order to compute SipHash—although you won’t have to
implement it yourself. You can find readily available implementations in most
languages, including C, Go, Java, JavaScript, and Python.

NOTE

We write SipHash-x-y as the SipHash version, meaning it makes x SipRounds
between each message block injection and then y rounds. More rounds require more
operations, which slows down operations but also increases security. The default
version is SipHash-2-4 (simply noted as SipHash), and it has so far resisted
cryptanalysis. However, you may want to be conservative and opt for SipHash-4-8
instead, which makes twice as mamny rounds and is therefore twice as slow.

How Things Can Go Wrong

Like ciphers and unkeyed hash functions, MACs and PRFs that are secure on
paper can be vulnerable to attacks when used in a real setting, against realistic
attackers. Let’s see two examples.

Timing Attacks on MAC Verification

Side-channel attacks target the implementation of a cryptographic algorithm
rather than the algorithm itself. In particular, timing attacks use an algorithm’s
execution time to determine secret information, such as keys, plaintext, and
secret random values. As you might imagine, variable-time string comparison



induces vulnerabilities not only in MAC verification, but also in many other
cryptographic and security functionalities.

MAC:s can be vulnerable to timing attacks when a remote system verifies tags
in a period of time that depends on the tag’s value, thereby allowing an attacker
to determine the correct message tag by trying many incorrect ones to
determine the one that takes the longest amount of time to complete. The
problem occurs when a server compares the correct tag with an incorrect one by
comparing the two strings byte per byte, in order, until the bytes differ. For
example, the Python code in Listing 7-1 compares two strings byte per byte, in
variable time: if the first bytes differ, the function will return after only one
comparison; if the strings x and y are identical, the function will make n
comparisons against the length of the strings.

def compare _mac(x, y, n):
for 1 in range(n):
if x[1] !'= y[1]:
return False
return True

Listing 7-1: Comparison of two n-byte strings, taking variable time

To demonstrate the vulnerability of the verify_mac() function, let’s write a
program that measures the execution time of 100000 calls to verify_mac(), first
with identical 10-byte x and y values and then with x and y values that differ in
their third byte. We should expect the latter comparison to take noticeably less
time than the former because verify_mac() will compare fewer bytes than the
identical x and y would, as shown in Listing 7-2.

from time import time

MAC1 '0123456789abcdef’
MAC2 '01X3456789abcdef’
TRIALS = 100000

# each call to verify_mac() will look at all eight bytes
start = time()
for 1 in range(TRIALS):
compare_mac(MAC1, MAC1, len(MAC1))
end = time()
print('%0.5f' % (end-start))

# each call to verify mac() will look at three bytes
start = time()
for 1 in range(TRIALS):



compare_mac(MAC1, MAC2, len(MAC1))
end = time()
print('%0.5f' % (end-start))

Listing 7-2: Measuring timing differences when executing compare_mac() from Listing 7-1

In my test environment, typical execution of the program in Listing 7-2 prints
execution times of around 0.215 and 0.095 seconds, respectively. That difference
is significant enough for you to identify what’s happening within the algorithm.
Now move the difference to other offsets in the string, and you’ll observe
different execution times for different offsets. If MAC1 is the correct MAC tag and
MAC2 is the one tried by the attacker, you can easily identify the position of the
first difference, which is the number of correctly guessed bytes.

Of course, if execution time doesn’t depend on a secret timing, timing attacks
won’t work, which is why implementers strive to write constant-time
implementations—that is, code that takes exactly the same time to complete for
any secret input value. For example, the C function in Listing 7-3 compares two
buffers of size bytes in constant time: the temporary variable result will be
nonzero if and only if there’s a difference somewhere in the two buffers.

int cmp_const(const void *a, const void *b, const size_t size)
const unsigned char *_a
const unsigned char *_b
unsigned char result = 0;
size_t i;

(const unsigned char *) a;
(const unsigned char *) b;

for (1 = 0; 1 < size; i++) {
result |= _a[i] ~ _b[i];
}

return result; /* returns 0 if *a and *b are equal, nonzero otherwise */

}

Listing 7-3: Constant-time comparison of two buffers, for safer MAC verification

When Sponges Leak

Permutation-based algorithms like SHA-3 and SipHash are simple, easy to
implement, and come with compact implementations, but they’re fragile in the
face of side-channel attacks that recover a snapshot of the system’s state. For
example, if a process can read the RAM and registers’ values at any time, or read
a core dump of the memory, an attacker can determine the internal state of
SHA-3 in MAC mode, or the internal state of SipHash, and then compute the



reverse of the permutation to recover the initial secret state. They can then forge
tags for any message, breaking the MAC’s security.

Fortunately, this attack will not work against compression function—based
MACs such as HMAC-SHA-256 and keyed BLAKE2 because the attacker
would need a snapshot of memory at the exact time when the key is used. The
upshot is that if you’re in an environment where parts of a process’s memory
may leak, you can use a MAC based on a noninvertible transform compression
function rather than a permutation.

Further Reading

The venerable HMAC deserves more attention than I have space for here, and
even more for the train of thought that led to its wide adoption, and eventually
to its demise when combined with a weak hash function. I recommend the 1996
paper “Keying Hash Functions for Message Authentication” by Bellare, Canetti,
and Krawczyk, which introduced HMAC and its cousin NMAC, and the 2006
follow-up paper by Bellare called “New Proofs for NMAC and HMAC: Security
Without Collision-Resistance,” which proves that HMAC doesn’t need a
collision-resistant hash, but only a hash with a compression function that is a
PRF. On the offensive side, the 2007 paper “Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5” by Fouque, Leurent, and Nguyen
shows how to attack HMAC and NMAC when they’re built on top of a brittle
hash function such as MD4 or MDS5. (By the way, HMAC-MD5 and HMAC-
SHA-1 aren’t totally broken, but the risk is high enough.)

The Wegman—Carter MACs are also worth more attention, both for their
practical interest and underlying theory. The seminal papers by Wegman and
Carter are available at hbetp://cr.yp.to/bib/entries.html. Other state-of-the-art
designs include UMAC and VMAC, which are among the fastest MACs on long
messages.

One type of MAC not discussed in this chapter is Pelican, which uses the AES
block cipher reduced to four rounds (down from 10 in the full block cipher) to
authenticate chunks of messages within a simplistic construction, as described in
https://eprint.iacr.org/2005/088/. Pelican is more of a curiosity, though, and it’s
rarely used in practice.

Last but not least, if you’re interested in finding vulnerabilities in

cryptographic software, look for uses of CBC-MAC, or for weaknesses caused by
HMAC handling keys of arbitrary sizes—taking Hash(K) as the key rather than
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K if K is too long, thus making K and Hash(K) equivalent keys. Or just look for
systems than don’t use MAC when they should—a frequent occurrence.

In Chapter 8, we’ll look at how to combine MACs with ciphers to protect a
message’s authenticity, integrity, and confidentiality. We’ll also look at how to
do it without MACs, thanks to authenticated ciphers, which are ciphers that
combine the functionality of a basic cipher with that of a MAC by returning a
tag along with each ciphertext.



8
AUTHENTICATED ENCRYPTION

This chapter is about a type of algorithm that protects not only a message’s
confidentiality but also its authenticity. Recall from Chapter 7 that message
authentication codes (MACs) are algorithms that protect a message’s
authenticity by creating a tag, which is a kind of signature. Like MACs, the
authenticated encryption (AE) algorithms we’ll discuss in this chapter produce
an authentication tag, but they also encrypt the message. In other words, a single

AE algorithm offers the features of both a normal cipher and a MAC.

Combining a cipher and a MAC can achieve varying levels of authenticated
encryption, as you’ll learn throughout this chapter. I’ll review several possible
ways to combine MACs with ciphers, explain which methods are the most
secure, and introduce you to ciphers that produce both a ciphertext and an
authentication tag. We’ll then look at four important authenticated ciphers:
three block cipher-based constructions, with a focus on the popular Advanced
Encryption Standard in Galois Counter Mode (AES-GCM), and a cipher that

uses only a permutation algorithm.

Authenticated Encryption Using MACs

As shown in Figure 8-1, MACs and ciphers can be combined in one of three
ways to both encrypt and authenticate a plaintext: encrypt-and-MAC, MAC-
then-encrypt, and encrypt-then-MAC.
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The three combinations differ in the order in which encryption is applied and
the authentication tag is generated. However, the choice of a specific MAC or
cipher algorithm is unimportant as long as each is secure in its own right, and
the MAC and cipher use distinct keys.

As you can see in Figure 8-1, in the encrypt-and-MAC composition, the
plaintext is encrypted and an authentication tag is generated from the plaintext
directly, such that the two operations (encryption and authentication) are
independent of each other and can therefore be computed in parallel. In the
MAC-then-encrypt scheme, the tag is generated from the plaintext first, and
then the plaintext and MAC are encrypted together. In contrast, in the case of
the encrypt-then-MAC method, the plaintext is encrypted first, and then the tag
is generated from the ciphertext.

All three approaches are about equally resource intensive. Let’s see which
method is likely to be the most secure.

Encrypt-and-MAC

The encrypt-and-MAC approach computes a ciphertext and a MAC tag
separately. Given a plaintext (P), the sender computes a ciphertext C = E(Kj, P),
where E is an encryption algorithm and C is the resulting ciphertext. The
authentication tag (7) is calculated from the plaintext as T'= MAC(Kj;, P). You
can compute C and 7 first or in parallel.

Once the ciphertext and authentication tag have been generated, the sender
transmits both to the intended recipient. When the recipient receives C and T,
they decrypt C to obtain the plaintext P by computing P = D(K;, C). Next, they



compute MAC(K,, P) using the decrypted plaintext and compare the result to

the 7T received. This verification will fail if either C or T was corrupted, and the
message will be deemed invalid.

At least in theory, encrypt-and-MAC is the least secure MAC and cipher
composition because even a secure MAC could leak information on P, which
would make P easier to recover. Because the goal of using MACs is simply to
make tags unforgeable, and because tags aren’t necessarily random looking, the
authentication tag (7) of a plaintext (P) could still leak information even though
the MAC is considered secure! (Of course, if the MAC is a pseudorandom
function, the tag won’t leak anything on P.)

Still, despite its relative weakness, encrypt-and-MAC continues to be
supported by many systems, including the secure transport layer protocol SSH,
wherein each encrypted packet C is followed by the tag T = MAC(K, N || P)
sent in the unencrypted plaintext packet P. N in this equation is a 32-bit
sequence number that is incremented for each sent packet, in order to help
ensure that the received packets are processed in the right order. In practice,
encrypt-and-MAC has proven good enough for use with SSH, thanks to the use
of strong MAC algorithms like HMAC-SHA-256 that don’t leak information on
P.

MAC-then-Encrypt

The MAC-then-encrypt composition protects a message, P, by first computing
the authentication tag T = MAC(K,, P). Next, it creates the ciphertext by

encrypting the plaintext and tag together, according to C = E(K;, P | | T).

Once these steps have been completed, the sender transmits only C, which
contains both the encrypted plaintext and tag. Upon receipt, the recipient
decrypts C by computing P || T = D(K;, C) to obtain the plaintext and tag 7.
Next, the recipient verifies the received tag 7" by computing a tag directly from
the plaintext according to MAC(K,, P) in order to confirm that the computed
tag is equal to the tag 7.

As with encrypt-and-MAC, when MAC-then-encrypt is used, the recipient
must decrypt C before they can determine whether they are receiving corrupted
packets—a process that exposes potentially corrupted plaintexts to the receiver.
Nevertheless, MAC-then-encrypt is more secure than encrypt-and-MAC
because it hides the plaintext’s authentication tag, thus preventing the tag from



leaking information on the plaintext.

MAC-then-encrypt has been used in the TLS protocol for years, but TLS 1.3

replaced MAC-then-encrypt with authenticated ciphers (see Chapter 13 for
more on TLS 1.3).

Encrypt-then-MAC

The encrypt-then-MAC composition sends two values to the recipient: the
ciphertext produced by C = E(K;, P) and a tag based on the ciphertext, T =

MAC(K,, C). The receiver computes the tag using MAC(K,, C) and verifies that

it equals the T received. If the values are equal, the plaintext is computed as P =
D(K;, C); if they are not equal, the plaintext is discarded.

One advantage with this method is that the receiver only needs to compute a
MAC in order to detect corrupt messages, meaning that there is no need to
decrypt a corrupt ciphertext. Another advantage is that attackers can’t send pairs
of C and T to the receiver to decrypt unless they have broken the MAC, which
makes it harder for attackers to transmit malicious data to the recipient.

This combination of features makes encrypt-then-MAC stronger than the
encrypt-and-MAC and MAC-then-encrypt approaches. This is one reason why
the widely used IPSec secure communications protocol suite uses it to protect
packets (for example, within VPN tunnels).

But then why don’t SSH and TLS use encrypt-then-MAC? The simple
answer is that when SSH and TLS were created, other approaches appeared
adequate—not because theoretical weaknesses didn’t exist but because
theoretical weaknesses don’t necessarily become actual vulnerabilities.

Authenticated Ciphers

Authenticated cipbers are an alternative to the cipher and MAC combinations.
They are like normal ciphers except that they return an authentication tag
together with the ciphertext.

The authenticated cipher encryption is represented as AE(K, P) = (C, T). The
term AE stands for authenticated encryption, which as you can see from this
equation is based on a key (K) and a plaintext (P) and returns a ciphertext (C) and
a generated authentication tag pair (7). In other words, a single authenticated
cipher algorithm does the same job as a cipher and MAC combination, making it
simpler, faster, and often more secure.



Authenticated cipher decryption is represented by AD(K, C, T) = P. Here, AD
stands for authenticated decryption, which returns a plainte (P) given a ciphertext
(0), tag (1), and key (K). If either or both C and T are invalid, AD will return an
error to prevent the recipient from processing a plaintext that may have been
forged. By the same token, if AD returns a plaintext, you can be sure that it has
been encrypted by someone or something that knows the secret key.

The basic security requirements of an authenticated cipher are simple: its
authentication should be as strong as a MAC’s, meaning that it should be
impossible to forge a ciphertext and tag pair (C, 7) that the decryption function
AD will accept and decrypt.

As far as confidentiality is concerned, an authenticated cipher is fundamentally
stronger than a basic cipher because systems holding the secret key will only
decrypt a ciphertext if the authentication tag is valid. If the tag is invalid, the
plaintext will be discarded. This characteristic prevents attackers from
performing chosen-ciphertext queries, an attack where they create ciphertexts
and ask for the corresponding plaintext.

Authenticated Encryption with Associated Data

Cryptographers define associated data as any data processed by an authenticated
cipher such that the data is authenticated (thanks to the authentication tag) but
not encrypted. Indeed, by default, all plaintext data fed to an authenticated
cipher is encrypted and authenticated.

But what if you simply want to authenticate all of a message, including its
unencrypted parts, but not encrypt the entire message? That is, you want to
authenticate and transmit data in addition to an encrypted message. For
example, if a cipher processes a network packet composed of a header followed
by a payload, you might choose to encrypt the payload to hide the actual data
transmitted, but not encrypt the header since it contains information required to
deliver the packet to its final recipient. At the same time, you might still like to
authenticate the header’s data to make sure that it is received from the expected
sender.

In order to accomplish these goals, cryptographers have created the notion of
authenticated encryption with associated data (AEAD). An AEAD algorithm
allows you to attach cleartext data to a ciphertext in such a way that if the
cleartext data is corrupted, the authentication tag will not validate and the
ciphertext will not be decrypted.



We can write an AEAD operation as AEAD(K, P, A) = (C, A, T). Given a key
(K), plaintext (P), and associated data (4), AEAD returns the ciphertext, the
unencrypted associated data A, and an authentication tag. AEAD leaves the
unencrypted associated data unchanged, and the ciphertext is the encryption of
plaintext. The authentication tag depends on both P and A, and will only be
verified as valid if neither C nor A has been modified.

Because the authenticated tag depends on A, decryption with associated data is
computed by ADAD(K, C, A, T) = (P, A). Decryption requires the key,
ciphertext, associated data, and tag in order to compute the plaintext and
associated data, and it will fail if either C or A4 has been corrupted.

One thing to note when using AEAD is that you can leave 4 or P empty. If
the associated data A is empty, AEAD becomes a normal authenticated cipher; if
P is empty, it’s just a MAC.

NOTE

As of this writing, AEAD is the current norm for authenticated encryption. Because
nearly all authenticated cipbers in use today support associated data, when referring
to authenticated ciphers throughout this book, I am referring to AEAD unless stated
otherwise. When discussing AEAD operations of encryption and decryption, I'll refer
to them as AE and AD, respectively.

Avoiding Predictability with Nonces

Recall from Chapter 1 that in order to be secure, encryption schemes must be
unpredictable and return different ciphertexts when called repeatedly to encrypt
the same plaintext—otherwise, an attacker can determine whether the same
plaintext was encrypted twice. In order to be unpredictable, block ciphers and
stream ciphers feed the cipher an extra parameter: the initial value (IV) or nonce
—a number that can be used only once. Authenticated ciphers use the same
trick. Thus, authenticated encryption can be expressed as AE(K, P, 4, N), where
N is a nonce. It’s up to the encryption operation to pick a nonce that has never
been used before with the same key.

As with block and stream ciphers, decryption with an authenticated cipher

requires the nonce used for encryption in order to perform correctly. We can
thus express decryption as AD(K, C, A, T, N) = (P, A), where N is the nonce used



to create C and 7.

What Makes a Good Authenticated Cipher?

Researchers have been struggling since the early 2000s to define what makes a
good authenticated cipher, and as I write this, the answer is still elusive. Because
of AEAD’s many inputs that play different roles, it’s harder to define a notion of
security than it is for basic ciphers that only encrypt a message. Nevertheless, in
this section, I'll summarize the most important criteria to consider when
evaluating the security, performance, and functionality of an authenticated

cipher.

Security Criteria

The most important criteria used to measure the strength of an authenticated
cipher are its ability to protect the confidentiality of data (that is, the secrecy of
the plaintext) and the authenticity and integrity of the communication (as with
the MAC’s ability to detect corrupted messages). An authenticated cipher must
compete in both leagues: its confidentiality must be as strong as that of the
strongest cipher, and its authenticity as strong as that of the best MAC. In other
words, if you remove the authentication part in an AEAD, you should get a
secure cipher, and if you remove the encryption part, you should get a strong

MAC.

Another measure of the strength of an authenticated cipher’s security is based
on something a bit more subtle—namely, its fragility when faced with repeated
nonces. For example, if a nonce is reused, can an attacker decrypt ciphertexts or
learn the difference between plaintexts?

Researchers call this notion of robustness misuse resistance, and have designed
misuse-resistant authenticated ciphers to weigh the impact of a repeated nonce
and attempt to determine whether confidentiality, authenticity, or both would
be compromised in the face of such an attack, as well as what information about

the encrypted data would likely be leaked.

Performance Criteria

As with every cryptographic algorithm, the throughput of an authenticated
cipher can be measured in bits processed per second. This speed depends on the
number of operations performed by the cipher’s algorithm and on the extra cost
of the authentication functionality. As you might imagine, the extra security



features of authenticated ciphers come with a performance hit. However, the
measure of a cipher’s performance isn’t just about pure speed. It’s also about
parallelizability, structure, and whether the cipher is streamable. Let’s examine
these notions more closely.

A cipher’s parallelizability is a measure of its ability to process multiple data
blocks simultaneously without waiting for the previous block’s processing to
complete. Block cipher-based designs can be easily parallelizable when each
block can be processed independently of the other blocks. For example, the
CTR block cipher mode discussed in Chapter 4 is parallelizable, whereas the
CBC encryption mode is not, because blocks are chained.

The internal structure of an authenticated cipher is another important
performance criteria. There are two main types of structure: one-layer and two-
layer. In a two-layer structure (for example, in the widely used AES-GCM), one
algorithm processes the plaintext and then a second algorithm processes the
result. Typically, the first layer is the encryption layer and the second is the
authentication layer. But as you might expect, a two-layer structure complicates
implementation and tends to slow down computations.

An authenticated cipher is streamable (also called an on/ine cipher) when it can
process a message block-by-block and discard any already-processed blocks. In
contrast, nonstreamable ciphers must store the entire message, typically because
they need to make two consecutive passes over the data: one from the start to the
end, and the other from the end to the start of the data obtained from the first
pass.

Due to potentially high memory requirements, some applications won’t work
with nonstreamable ciphers. For example, a router could receive an encrypted
block of data, decrypt it, and then return the plaintext block before moving on to
decrypt the subsequent block of the message, though the recipient of the
decrypted message would still have to verify the authentication tag sent at the
end of the decrypted data stream.

Functional Criteria

Functional criteria are the features of a cipher or its implementation that don’t
directly relate to either security or performance. For example, some
authenticated ciphers only allow associated data to precede the data to be
encrypted (because they need access to it in order to start encryption). Others
require associated data to follow the data to be encrypted or support the



inclusion of associated data anywhere—even between chunks of plaintext. This
last case is the best, because it enables users to protect their data in any possible
situation, but it’s also the hardest to design securely: as always, more features
often bring more complexity—and more potential vulnerabilities.

Another piece of functional criteria to consider relates to whether you can use
the same core algorithm for both encryption and decryption. For example, many
authenticated ciphers are based on the AES block cipher, which specifies the use
of two similar algorithms for encrypting and decrypting a block. As discussed in
Chapter 4, the CBC block cipher mode requires both algorithms, but the CTR
mode requires only the encryption algorithm. Likewise, authenticated ciphers
may not need both algorithms. Although the extra cost of implementing both
encryption and decryption algorithms won’t impact most software, it’s often
noticeable on low-cost dedicated hardware, where implementation cost is
measured in terms of logic gates, or the silicon area occupied by the

cryptography.

AES-GCM: The Authenticated Cipher Standard

AES-GCM is the most widely used authenticated cipher. AES-GCM is, of
course, based on the AES algorithm, and the Galois counter mode (GCM) of
operation is essentially a tweak of the CTR mode that incorporates a small and
efficient component to compute an authentication tag. As I write this, AES-
GCM is the only authenticated cipher that is a NIST standard (SP 800-38D).
AES-GCM is also part of NSA’s Suite B and of the Internet Engineering Task
Force (IETF) for the secure network protocols IPSec, SSH, and TLS 1.2.

Although GCM works with any block cipher, you’ll probably only see it used with
AES. Some people don’t want to use AES because it’s American, but they won’t use
GCM either, for the same reason. Therefore, GCM is rarely paired with other
ciphers.

GCM Internals: CTR and GHASH
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Figure 8-2: The AES-GCM mode, applied to one associated data block, Ay, and two
plaintext blocks, P1 and Po. The circled multiplication sign represents polynomial
multiplication by H, the authentication key derived from K.

Figure 8-2 shows how AES-GCM works: AES instances parameterized by a
secret key (K) transform a block composed of the nonce (V) concatenated with a
counter (starting here at 1, then incremented to 2, 3, and so on) and then XOR
the result with a plaintext block to obtain a ciphertext block. So far, that’s
nothing new compared to the CI'R mode.

Next, the ciphertext blocks are mixed using a combination of XORs and
multiplications (as you’ll see next). You can see AES-GCM as doing 1) an
encryption in CTR mode and 2) a MAC over the ciphertext blocks. Therefore,
AES-GCM is essentially an encrypt-then-MAC construction, where AES-CTR
encrypts using a 128-bit key (K) and a 96-bit nonce (NN), with the minor
difference that the counter starts from 1, not 0, as in normal CTR mode (which
doesn’t matter, as far as security is concerned).

To authenticate the ciphertext, GCM uses a Wegman—Carter MAC (see
Chapter 7) to authenticate the ciphertext, which XORs the value AES(K, N | | 0)
with the output of a universal hash function called GHASH. In Figure 8-2,
GHASH corresponds to the series of operations “®p;” followed by the XOR with

len(A) Il len(C), or the bit length of A (the associated data) followed by the bit



length of C (the ciphertext).

We can thus express the authentication tag’s value as T = GHASH(H, C) @
AES(K, N || 0), where C is the ciphertext and H is the hash key, or authentication
key. This key is determined as H = AES(K, 0), which is the encryption of the
block equal to a sequence of null bytes (this step does not appear in Figure 8-2,
for clarity).

NOTE

In GCM, GHASH doesn’t use K directly in order to ensure that if GHASH's key is

compromised, the master key K remains secret. Given K, you can get H by

computing AES(K, 0), but you can’t recover K from that value since K acts bere as
AES?’s key.

As Figure 8-2 shows, GHASH wuses polynomial notation to multiply each
ciphertext block with the authentication key H. This use of polynomial
multiplication makes GHASH fast in hardware as well as in software, thanks to a
special polynomial multiplication instruction available in many common
microprocessors (CLMUL, for carry-less multiplication).

Alas, GHASH is far from ideal. For one thing, its speed is suboptimal. Even
when the cLmuL instruction is used, the AES-CTR layer that encrypts the
plaintext remains faster than the GHASH MAC. Second, GHASH is painful to
implement correctly. In fact, even the experienced developers of the OpenSSL
project, by far the most-used cryptographic piece of software in the world, got
AES-GCM’s GHASH wrong. One commit had a bug in a function called
gcm_ghash_clmul that allowed attackers to forge valid MACs for the AES-GCM.
(Fortunately, the error was spotted by Intel engineers before the bug entered the
next OpenSSL release.)

( )

POLYNOMIAL MULTIPLICATION

While clearly more complicated for us than classic
integer arithmetic, polynomial multiplication is simpler
for computers because there are no carries. For example,
say we want to compute the product of the polynomials (1




+ X + X») and (X + X°). We first multiply the two
polynomials (1 + X + X?) and (X + X°) as though we were

doing normal polynomial multiplication, thus giving us
the following (the two terms X> cancel each other out):

1+X+X)e(X+X)=X+X+ X+ X+ X+ X =X+X+X+X

We now apply modulo reduction, reducing X + X? + X*
+X° modulo 1 + X? +X* to give us X?, because X + X? +

X*+ X canbewritten as X + X2 + X7+ X° = X0 (1 + X° +

X* + X?. In more general terms, A + BC modulo B is
equal to A, by definition of modular reduction.
. J

GCM Security

AES-GCM’s biggest weakness is its fragility in the face of nonce repetition. If
the same nonce N is used twice in an AES-GCM implementation, an attacker

can get the authentication key H and use it to forge tags for any ciphertext,
associated data, or combination thereof.

A look at the basic algebra behind AES-GCM’s computations (as shown in
Figure 8-2) will help make this fragility clear. Specifically, a tag (7) is computed
as T = GHASH(H, A4, C) @ AES(K, N |1 0), where GHASH is a universal hash

function with linearly related inputs and outputs.

Now what happens if you get two tags, 7 and 75, computed with the same
nonce N ? Right, the AES part will vanish. If we have two tags, T) = GHASH(H,
Ay, C)) @ AES(K, N 11 0) and T, = GHASH(H, A4, C)) @ AES(K, N || 0), then
XORing them together gives the following:

GHASH(H, 4,, C,) ® AES(K, N || 0)® GHASH( H, A,, C,)® AES(K, N ||0)

= GHASH(H, A,, C,)® GHASH(H, 4,, C,)® (AES(K, N || 0) ® AES(K, N [ 0))
= GHASH(H, A,, C,)® GHASH(H, A,, C,)

If the same nonce is used twice, an attacker can thus recover the value



GHASH(H, A4,, C) ® GHASH(H, A4,, C,) for some known A, C;, A5, and C5.
The linearity of GHASH then allows an attacker to easily determine H. (It

would have been worse if GHASH had used the same key K as the encryption
part, but because H = AES(K, 0), there’s no way to find K from H.)

As recently as 2016, researchers scanned the internet for instances of AES-
GCM exposed through HTTPS servers, in search of systems with repeating
nonces (see https://eprint.iacr.org/2016/4757). They found 184 servers with
repeating nonces, including 23 that always used the all-zero string as a nonce.

GCM Efficiency

One advantage of GCM mode is that both GCM encryption and decryption are
parallelizable, allowing you to encrypt or decrypt different plaintext blocks
independently. However, the AES-GCM MAC computation isn’t parallelizable,
because it must be computed from the beginning to the end of the ciphertext
once GHASH has processed any associated data. This lack of parallelizability
means that any system that receives the plaintext first and then the associated
data will have to wait until all associated data is read and hashed before hashing
the first ciphertext block.

Nevertheless, GCM is streamable: since the computations in its two layers can
be pipelined, there’s no need to store all ciphertext blocks before computing
GHASH because GHASH will process each block as it’s encrypted. In other
words, P; is encrypted to C, then GHASH processes C; while P, is encrypted to

C5, then Py and C| are no longer needed, and so on.

OCB: An Authenticated Cipher Faster than GCM

The acronym OCB stands for offset codebook (though its designer, Phil Rogaway,
prefers to simply call it OCB). First developed in 2001, OCB predates GCM,
and like GCM it produces an authenticated cipher from a block cipher, though it
does so faster and more simply. Then why hasn’t OCB seen wider adoption?
Unfortunately, until 2013, all uses of OCB required a license from the inventor.
Fortunately, as I write this, Rogaway grants free licenses for nonmilitary
software implementations (see http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm).
Therefore, although OCB is not yet a formal standard, perhaps we will begin to
see wider adoption.

Unlike GCM, OCB blends encryption and authentication into one processing
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layer that uses only one key. There’s no separate authentication component, so
OCB gets you authentication mostly for free and performs almost as many block
cipher calls as a non-authenticated cipher. Actually, OCB is almost as simple as
the ECB mode (see Chapter 4), except that it’s secure.

OCB Internals

Figure 8-3 shows how OCB works: OCB encrypts each plaintext block P to a
ciphertext block C = E(K, P ® O) ® O, where E is a block cipher encryption
function. Here, O (called the offser) is a value that depends on the key and the
nonce incremented for each new block processed.

To produce the authentication tag, OCB first XORs the plaintext blocks
together to compute S = P, © P, ® P; @ . . . (that is, the XOR of all plaintext

blocks). The authentication tag is then T = E(K, S ® O"), where O is an offset

value computed from the offset of the last plaintext block processed.

PmP
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Figure 8—3. The OCB encrypt/on process when run on two plaintext blocks, with no
associated data

Like AES-GCM, OCB also supports associated data as a series of blocks, A,
A5, and so on. When an OCB encrypted message contains associated data, the

authentication tag is calculated according to the formula
T=EK,SeO0)eEK, 4,©0,)®EK,4,®0,)® ...

where OCB specifies offset values that are different from those used to encrypt
P.

Unlike GCM and encrypt-then-MAC, which create an authentication tag by
combining ciphertext, OCB calculates the authentication tag by combining
plaintext data. There’s nothing wrong with this approach, and OCB is backed by



solid security proofs.

NOTE

For more on how to implement OCB correctly, see either RFC 7253 or the 2011
paper “The Software Performance of Authenticated-Encryption Modes” by Krovetz
and Rogaway, which covers the latest and best version of OCB, OCB3. For further
details on OCB, see the OCB FAQ at

http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm.

OCB Security

OCB is a bit less fragile than GCM against repeated nonces. For example, if a
nonce is used twice, an attacker that sees the two ciphertexts will notice that, say,
the third plaintext block of the first message is identical to the third plaintext
block of the second message. With GCM, attackers can find not only duplicates
but also XOR differences between blocks at the same position. The impact of
repeated nonces is therefore worse with GCM than it is with OCB.

As with GCM, repeated nonces can break the authenticity of OCB, though
less effectively. For example, an attacker could combine blocks from two
messages authenticated with OCB to create another encrypted message with the
same checksum and tag as one of the original two messages, but the attacker
would not be able to recover a secret key as with GCM.

OCB Efficiency

OCB and GCM are about equally fast. Like GCM, OCB is parallelizable and
streamable. In terms of raw efficiency, GCM and OCB will make about as many
calls to the underlying block cipher (usually AES), but OCB is slightly more
efficient than GCM because it simply XORs the plaintext rather than
performing something like the relatively expensive GHASH computation. (In
earlier generations of Intel microprocessors, AES-GCM used to be more than
three times slower than AES-OCB because AES and GHASH instructions had
to compete for CPU resources and couldn’t be run in parallel.)

One important difference between OCB and GCM implementations is that
OCB needs both the block cipher’s encryption and decryption functions in order
to encrypt and decrypt, which increases the cost of hardware implementations
when only limited silicon is available for crypto components. In contrast, GCM
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uses only the encryption function for both encryption and decryption.

SIV: The Safest Authenticated Cipher?

Synthetic IV, also known as SIV, is an authenticated cipher mode typically used
with AES. Unlike GCM and OCB;, SIV is secure even if you use the same nonce
twice: if an attacker gets two ciphertexts encrypted using the same nonce, they’ll
only be able to learn whether the same plaintext was encrypted twice. Unlike
with messages encrypted with GCM or OCB, the attacker would be unable to
tell whether the first block of the two messages is the same because the nonce
used to encrypt is first computed as a combination of the given nonce and the
plaintext.

The SIV construction specification is more general than that of GCM. Instead
of specifying detailed internals as with GCM’s GHASH, SIV simply tells you
how to combine a cipher (E) and a pseudorandom function (PRF) to get an
authenticated cipher. Specifically, you compute the tag 7= PRF(K;, N | | P) and

then compute the ciphertext C = E(K,, T, P), where T acts as the nonce of E.
Thus, SIV needs two keys (K and K,) and a nonce (N).

The major problem with SIV is that it’s not streamable: after computing 7, it
must keep the entire plaintext P in memory. In other words, in order to encrypt
a 100GB plaintext with SIV, you must first store the 100GB of plaintext so that
SIV encryption can read it.

The document RFC 5297, based on the 2006 paper “Deterministic
Authenticated-Encryption” by Rogaway and Shrimpton, specifies SIV as using
CMAC-AES (a MAC construction using AES) as a PRF and AES-CTR as a
cipher. In 2015, a more efficient version of SIV was proposed, called GCM-SIV,
that combines GCM’s fast GHASH function and SIV’s mode and is nearly as
fast as GCM. Like the original SIV, however, GCM-SIV isn’t streamable. (For
more information, see betps://eprint.iacr.org/2015/102/.)

Permutation-Based AEAD

Now for a totally different approach to building an authenticated cipher: instead
of building a mode of operation around a block cipher like AES, we’ll look at a
cipher that builds a mode around a permutation. A permutation simply
transforms an input to an output of the same size, reversibly, without using a
key, that’s the simplest component imaginable. Better still, the resulting AEAD
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is fast, provably secure, and more resistant to nonce reuse than GCM and OCB.

Figure 8-4 shows how a permutation-based AEAD works: from some fixed
initial state Hy, you XOR the key K followed by the nonce N to the internal
state, to obtain a new value of the internal state that is the same size as the
original. You then transform the new state with P and get another new value of
the state. Now you XOR the first plaintext block P; to the current state and take
the resulting value as the first ciphertext block Cy, where P; and C| are equal in
size but smaller than the state.

To encrypt a second block, you transform the state with P, XOR the next
plaintext block P, to the current state, and take the resulting value as C,. You
then iterate over all plaintext blocks and, following the last call to P, take bits
from the internal state as the authentication tag 7, as shown at the right of
Figure 8-4.

KIIN Py €, P, i€, T
Hy— P P P
- | -

Figure 8-4: Permutation-based authenticated cipher

The mode shown in Figure 8-4 can be adapted to support associated data, but the
g
process is a bit more complicated, so we’ll skip its description.

Designing permutation-based authenticated ciphers has certain requirements
in order to ensure security. For one thing, note that you only XOR input values
to a part of the state: the larger this part, the more control a successful attacker
has on the internal state, and thus the lower the cipher’s security. Indeed, all
security relies on the secrecy of the internal state.

Also, blocks must be padded properly with extra bits, in a way that ensures
that any two different messages will yield different results. As a counterexample,
if the last plaintext block is shorter than a complete block, it should not just be
padded with zeroes; otherwise, a plaintext block of, say, two bytes (0000) would



result in a complete plaintext block (0000 . . . 0000), as would a block of three
bytes (000000). As a result, you'd get the same tag for both messages, although
they differ in size.

What if a nonce is reused in such a permutation-based cipher? The good news
is that the impact isn’t as bad as with GCM or OCB—the strength of the
authentication tag won’t be compromised. If a nonce is repeated, a successful
attacker would only be able to learn whether the two encrypted messages begin
with the same value, as well as the length of this common value, or prefix. For
example, although encrypting the two six-block messages ABCXYZ and
ABCDYZ (each letter symbolizing a block here) with the same nonce might yield
the two ciphertexts JKLTUV and FKLMNO, which have identical prefixes,
attackers would not be able to learn that the two plaintexts shared the same final

two blocks (YZ).

In terms of performance, permutation-based ciphers offer the benefits of a
single layer of operations, streamable processing, and the use of a single core
algorithm for encryption and decryption. However, they are not parallelizable
like GCM or OCB because new calls to P need to wait for the previous call to
complete.

NOTE

If you’re tempted to pick your favorite permutation and make up your own
authenticated cipher, don’t. You’re likely to get the details wrong and end up with an
insecure cipher. Read the specifications written by experienced cryptographers for
algorithms such as Keyak (an algorithm derived from Keccak) and NORX (designed
by Philipp Fovanovic, Samuel Neves, and myself), and you’ll see that permutation-
based ciphers are way more complex than they may first appear.

How Things Can Go Wrong

Authenticated ciphers have a larger attack surface than hash functions or block
ciphers because they aim to achieve both confidentiality and authenticity. They
take several different input values, and must remain secure regardless of the
input—whether that contains only associated data and no encrypted data,
extremely large plaintexts, or different key sizes. They must also be secure for all
nonce values against attackers who collect numerous message/tag pairs and, to
some extent, against accidental repetition of nonces.



That’s a lot to ask, and as you’ll see next, even AES-GCM has several
imperfections.

AES-GCM and Weak Hash Keys

One of AES-GCM’s weaknesses is found in its authentication algorithm
GHASH: certain values of the hash key H greatly simplify attacks against
GCM'’s authentication mechanism. Specifically, if the value H belongs to some
specific, mathematically defined subgroups of all 128-bit strings, attackers might
be able to guess a valid authentication tag for some message simply by shuffling
the blocks of a previous message.

In order to understand this weakness, let’s look at how GHASH works.

GHASH Internals

As you saw in Figure 8-2, GHASH starts with a 128-bit value, H, initially set to
AES(K, 0), and then repeatedly computes

Xi=X;_,2C)eH

starting from X, = 0 and processing ciphertext blocks C}, C5, and so on. The
final X is returned by GHASH to compute the final tag.

Now say for the sake of simplicity that all C; values are equal to 1, so that for

any 7 we have this:
C,oe=19H=H
Next, from the GHASH equation
X=X, ®C)eH
we derive
X=Xy CpeH=0®1)eH=H
substituting X,, with 0 and C; with 1, to yield the following:

Oel)=1



Thanks to the distributive property of ® over @, we substitute X with H and C,

with 1 and then compute the next value X, as
X=X, eX,))eH=(He l)e H=H*e H

where H? is H squared, or H © H.
Now we derive X3 by substituting X, for its derivation, and obtain the
following:

X;=(GeCy)eH=(HeoHe)oH=HeH o H

Next, we derive X3 to be X, = H*® H?> e H? e H, and so on, and eventually
the last X is this:

X,=H'eoH lef 2o oHoH

Remember that we set all blocks C; equal to 1. If instead those values were

arbitrary values, we would end up with the following:
X =CleH'eC,oH" leC;H" 2e..0C,_H®C,®H

GHASH then would XOR the message’s length to this last X, multiply the

result by H, and then XOR this value with AES(K, N || 0) to create the final
authentication tag, 7.

Where Things Break

What can go wrong from here? Let’s look first at the two simplest cases:

e If H =0, then X, = 0 regardless of the C; values, and thus regardless of the

message. That is, all messages will have the same authentication tag if H is
0

e If H = 1, then the tag is just an XOR of the ciphertext blocks, and
reordering the ciphertext blocks will give the same authentication tag.

Of course, 0 and 1 are only two values of 21?8 possible values of H, so there is



only a 2/2128 = 1/2127 chance of these occurring. But there are other weak values
as well—namely, all values of H that belong to a short cycle when raised to ith
powers. For example, the value H = 10d04d25{93556e69£58ce2{8d035a4 belongs

to a cycle of length five, as it satisfies H °> = H, and therefore H* = H for any e
that is a multiple of five (the very definition of cycle with respect to fifth
powers). Consequently, in the preceding expression of the final GHASH value
X,, swapping the blocks C, (multiplied to H) and the block C, _ 4 (multiplied to

H °) will leave the authentication tag unchanged, which amounts to a forgery. An
attacker may exploit this property to construct a new message and its valid tag
without knowing the key, which should be impossible for a secure authenticated
cipher.

The preceding example is based on a cycle of length five, but there are many
cycles of greater length and therefore many values of H that are weaker than
they should be. The upshot is that, in the unlikely case that H belongs to a short
cycle of values and attackers can forge as many authentication tags as they want,
unless they know H or K, they cannot determine H’s cycle length. So although
this vulnerability can’t be exploited, it could have been avoided by more carefully
choosing the polynomial used for modulo reductions.

NOTE

For further details on this attack, read “Cycling Attacks on GCM, GHASH and
Other Polynomial MACs and Hashes” by Markku-fubani O. Saarinen, available
at https://eprint.iacr.org/2011/202/.

AES-GCM and Small Tags

In practice, AES-GCM usually returns 128-bit tags, but it can produce tags of
any length. Unfortunately, when shorter tags are used, the probability of forgery
increases significantly.

When a 128-bit tag is used, an attacker who attempts a forgery should succeed
with a probability of 1/2128 because there are 2!2® possible 128-bit tags.
(Generally, with an 7-bit tag, the probability of success should be 1/2” where 2

is the number of possible values of an #-bit tag.) But when shorter tags are used,

the probability of forgery is much higher than 1/2” due to weaknesses in the
structure of GCM that are beyond the scope of this discussion. For example, a
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32-bit tag will allow an attacker who knows the authentication tag of some 2MB
message to succeed with a chance of 1/21 instead of 1/232.

Generally, with n-bit tags, the probability of forgery isn’t 1/2” but rather
2"/2" where 2” is the number of blocks of the longest message for which a
successful attacker observed the tag. For example, if you use 48-bit tags and
process messages of 4GB (or 22 blocks of 16 bytes each), the probability of a
forgery will be 228/2% = 1/220 or about one chance in a million. That’s a
relatively high chance as far as cryptography is concerned. (For more

information on this attack, see the 2005 paper “Authentication Weaknesses in
GCM?” by Niels Ferguson.)

Further Reading

To learn more about authenticated ciphers, visit the home page of CAESAR, the
Competition for Authenticated Encryption: Security, Applicability, and
Robustness (bttp://competitions.cr.yp.to/caesar.btml). Begun in 2012, CAESAR is a
crypto competition in the style of the AES and SHA-3 competitions, though it
isn’t organized by NIST.

The CAESAR competition has attracted an impressive number of innovative
designs: from OCB-like modes to permutation-based modes, as well as new core
algorithms. Examples include the previously mentioned NORX and Keyak
permutation-based authenticated ciphers; AEZ (as in AEasy), which is built on a
nonstreamable two-layer mode that makes it misuse resistant; AEGIS, a
beautifully simple authenticated cipher that leverages AES’s round function.

In this chapter, I've focused on GCM, but a handful of other modes are used
in real applications as well. Specifically, the counter with CBC-MAC (CCM)
and EAX modes competed with GCM for standardization in the early 2000s,
and although GCM was selected, the two competitors are used in a few
applications. For example, CCM is used in the WPA2 Wi-Fi encryption
protocol. You may want to read these ciphers’ specifications and review their
relative security and performance merits.

This concludes our discussion of symmetric-key cryptography! You’ve seen
block ciphers, stream ciphers, (keyed) hash functions, and now authenticated
ciphers—or all the main cryptography components that work with a symmetric
key, or no key at all. Before we move to asymmetric cryptography, Chapter 9 will
focus more on computer science and math, to provide background for
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asymmetric schemes such as RSA (Chapter 10) and Diffie-Hellman (Chapter
11).



9
HARD PROBLEMS

Hard computational problems are the cornerstone of modern cryptography.
They’re problems that are simple to describe yet practically impossible to solve.
These are problems for which even the best algorithm wouldn’t find a solution
before the sun burns out.

In the 1970s, the rigorous study of hard problems gave rise to a new field of
science called computational complexity theory, which would dramatically
impact cryptography and many other fields, including economics, physics, and
biology. In this chapter, I'll give you the conceptual tools from complexity
theory necessary to understand the foundations of cryptographic security, and
I'll introduce the hard problems behind public-key schemes such as RSA
encryption and Diffie-Hellman key agreement. We’ll touch on some deep
concepts, but I'll minimize the technical details and only scratch the surface.
Stil, T hope you’ll see the beauty in the way cryptography leverages
computational complexity theory to maximize security.

Computational Hardness

A computational problem is a question that can be answered by doing enough
computation, for example, “Is 2017 a prime number?” or “How many 7 letters
are there in incomprebensibilities?” Computational hardness is the property of
computational problems for which there is no algorithm that will run in a
reasonable amount of time. Such problems are also called intractable problems and
are often practically impossible to solve.

Surprisingly, computational hardness is independent of the type of computing
device used, be it a general-purpose CPU, an integrated circuit, or a mechanical
Turing machine. Indeed, one of the first findings of computational complexity
theory is that all computing models are equivalent. If a problem can be solved



efficiently with one computing device, it can be solved efficiently on any other
device by porting the algorithm to the other device’s language—an exception is
quantum computers, but these do not exist (yet). The upshot is that we won’t
need to specify the underlying computing device or hardware when discussing
computational hardness; instead, we’ll just discuss algorithms.

To evaluate hardness, we’ll first find a way to measure the complexity of an
algorithm, or its running time. We’ll then categorize running times as hard or
easy.

Measuring Running Time

Most developers are familiar with computational complexity, or the approximate
number of operations done by an algorithm as a function of its input size. The
size is counted in bits or in the number of elements taken as input. For example,
take the algorithm shown in Listing 9-1, written in pseudocode. It searches for a
value, x, within an array of 7 elements and then returns its index position.

search(x, array, n):
for 1 from 1 to n {
if (array[i] == x) {
return i;
}
}

return 0;

}

Listing 9-1: A simple search algorithm, written in pseudocode, of complexity linear with
respect to the array length n. The algorithm returns the index where the value x is found in
[1,n], or O ifx isn’t found in the array.

In this algorithm, we use a for loop to find a specific value, x, by iterating
through an array. On each iteration, we assign the variable / a number starting
with 1. Then we check whether the value of position 7 in array is equal to the
value of w. If it is, we return the position 7. Otherwise, we increment 7 and try the
next position until we reach #, the length of the array, at which point we return
0.

For this kind of algorithm, we count complexity as the number of iterations of
the for loop: 1 in the best case (if « is equal to array[1]), 7 in the worst case (if «x
is equal to array[n] or if x is not in found in array), and 7#/2 on average if x is
randomly distributed in one of the 7 cells of the array. With an array 10 times as
large, the algorithm will be 10 times as slow. Complexity is therefore



proportional to 7, or “linear” in #. A complexity linear in 7 is considered fast, as
opposed to complexities exponential in 7. Although processing larger input
values will be slower, it will make a difference of at most just seconds for most
practical uses.

But many useful algorithms are slower than that and have a complexity higher
than linear. The textbook example is sorting algorithms: given a list of 7 values
in a random order, you’ll need on average # x log # basic operations to sort the
list, which is sometimes called linearithmic complexity. Since n x log n grows faster
than 7, sorting speed will slow down faster than proportionally to #. Yet such
sorting algorithms will remain in the realm of practical computation, or
computation that can be carried out in a reasonable amount of time.

At some point, we’ll hit the ceiling of what’s feasible even for relatively small
input lengths. Take the simplest example from cryptanalysis: the brute-force
search for a secret key. Recall from Chapter 1 that given a plaintext P and a
ciphertext C = E(K, P), it takes at most 2” attempts to recover an z-bit symmetric
key because there are 2” possible keys—an example of a complexity that grows
exponentially. For complexity theorists, exponential complexity means a problem
that is practically impossible to solve, because as # grows, the effort very rapidly
becomes infeasible.

You may object that we’re comparing oranges and apples here: in the search()
function in Listing 9-1, we counted the number of if (array[i] == x) operations,
whereas key recovery counts the number of encryptions, each thousands of times
slower than a single == comparison. This inconsistency can make a difference if
you compare two algorithms with very similar complexities, but most of the time
it won’t matter because the number of operations will have a greater impact than
the cost of an individual operation. Also, complexity estimates ignore constant
factors: when we say that an algorithm takes time in the order of #* operations
(which is quadratic complexity), it may actually take 41 x #° operations, or 12345 x

n’ operations—but again, as # grows, the constant factors lose significance to the
point that we can ignore them. Complexity analysis is about theoretical hardness
as a function of the input size; it doesn’t care about the exact number of CPU
cycles it will take on your computer.

You’ll often find the O() notation (“big O”) used to express complexities. For
example, O(#’) means that complexity grows no faster than #°, ignoring
potential constant factors. O() denotes the wupper bound of an algorithm’s



complexity. The notation O(1) means that an algorithm runs in constant time—
that is, the running time doesn’t depend on the input length! For example, the
algorithm that determines an integer’s parity by looking at its least significant bit
(LSB) and returning “even” if it’s zero and “odd” otherwise will do the same
thing at the same cost whatever the integer’s length.

To see the difference between linear, quadratic, and exponential time
complexities, look at how complexity grows for O(n) (linear) versus O(n?)
(quadratic) versus O(2”) (exponential) in Figure 9-1.
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Figure 9-1: Growth of exponential, quadratic, and linear complexities, from the fastest to
the slowest growing

Exponential complexity means the problem is practically impossible to solve,
and linear complexity means the solution is feasible, whereas quadratic
complexity is somewhere between the two.

Polynomial vs. Superpolynomial Time



The O(n?) complexity discussed in the last section (the middle curve in Figure 9-
1) is a special case of the broader class of polynomial complexities, or O(x*),
where £ is some fixed number such as 3, 2.373, 7/10, or the square root of 17.
Polynomial-time algorithms are eminently important in complexity theory and
in crypto because they’re the very definition of practically feasible. When an
algorithm runs in polynomial time, or polytime for short, it will complete in a
decent amount of time even if the input is large. That’s why polynomial time is
synonymous with “efficient” for complexity theorists and cryptographers.

In contrast, algorithms running in superpolynomial time—that is, in O(f(n)),
where f(zn) is any function that grows faster than any polynomial—are viewed as
impractical. 'm saying superpolynomial, and not just exponential, because there
are complexities in between polynomial and the well-known exponential
complexity O(2”), such as O(#'°8®), as Figure 9-2 shows.
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Figure 9-2: Growth of the 2", nl°8(N) and n2 functions, from the fastest to the slowest
growing




Exponential complexity O(2") is not the worst you can get. Some complexities grow

even faster and thus characterize algorithms even slower to compute—for example,
f(n -

the complexity O(n™) or the exponential factorial O(nf® = V), where for any x, the
function f is here recursively defined as f(x) = x™™ = D, In practice, yow’ll never

encounter algorithms with such preposterous complexities.

On?) or O(n*) may be efficient, but On"?7999999) obviously isn’t. In other

words, polytime is fast as long as the exponent isn’t too large. Fortunately, all
polynomial-time algorithms found to solve actual problems do have small

exponents. For example, O(n!%6) is the time for multiplying two n-bit integers,
or O(n?373) for multiplying two # x n matrices. The 2002 breakthrough polytime
algorithm for identifying prime numbers initially had a complexity O(z'?), but it
was later improved to O(%). Polynomial time thus may not be the perfect
definition of a practical time for an algorithm, but it’s the best we have.

By extension, a problem that can’t be solved by a polynomial-time algorithm is
considered impractical, or hard. For example, for a straightforward key search,
there’s no way to beat the O(2”) complexity unless the cipher is somehow
broken.

We know for sure that there’s no way to beat the O(2 ) complexity of a brute-
force key search (as long as the cipher is secure), but we don’t always know what
the fastest way to solve a problem is. A large portion of the research in
complexity theory is about proving complexity bounds on the running time of
algorithms solving a given problem. To make their job easier, complexity
theorists have categorized computational problems in different groups, or classes,
according to the effort needed to solve them.

Complexity Classes

In mathematics, a class is a group of objects with some similar attribute. For
example, all computational problems solvable in time O(»?), which complexity
theorists simply denote TIME(%?), are one class. Likewise, TIME(#?) is the
class of problems solvable in time O(z’), TIME(2y) is the class of problems



solvable in time O(2yy), and so on. For the same reason that a supercomputer can

compute whatever a laptop can compute, any problem solvable in O(x?) is also
solvable in O(n). Hence, any problem in the class TIME(%?) also belongs to the
class TIME(%?), which both also belong to the class TIME(%*), and so on. The

union of all these classes of problems, TIME(#*), where £ is a constant, is called
P, which stands for polynomial time.

If you've ever programmed a computer, you'll know that seemingly fast
algorithms may still crash your system by eating all its memory resources. When
selecting an algorithm, you should not only consider its time complexity but also
how much memory it uses, or its space complexity. This is especially important
because a single memory access is usually orders of magnitudes slower than a
basic arithmetic operation in a CPU.

Formally, you can define an algorithm’s memory consumption as a function of
its input length, 7, in the same way we defined time complexity. The class of
problems solvable using fiz) bits of memory is SPACE(f(n)). For example,
SPACE(#’) is the class of problems solvable using of the order of #* bits of
memory. Just as we had P as the union of all TIME(%*), the union of all
SPACE(#*) problems is called PSPACE.

Obviously, the lower the memory the better, but a polynomial amount of
memory doesn’t necessarily imply that an algorithm is practical. Why? Well,
take for example a brute-force key search: again, it takes only negligible memory
but is slow as hell. More generally, an algorithm can take forever, even if it uses
just a few bytes of memory.

Any problem solvable in time f{z) needs at most f{z) memory, so TIME(f(n))
is included in SPACE(f(n)). In time f{(z), you can only write up to f{n) bits, and
no more, because writing (or reading) 1 bit is assumed to take one unit of time;
therefore, any problem in TIME(f{(n#)) can’t use more than f(n) space. As a
consequence, P is a subset of PSPACE.

Nondeterministic Polynomial Time

NP is the second most important complexity class, after the class P of all
polynomial-time algorithms. No, NP doesn’t stand for non-polynomial time,
but for nondeterministic polynomial time. What does that mean?

NP is the class of problems for which a solution can be verified in polynomial
time—that is, efficiently—even though the solution may be hard to find. By



verified, | mean that given a potential solution, you can run some polynomial-
time algorithm that will verify whether you’ve found an actual solution. For
example, the problem of recovering a secret key with a known plaintext is in NP,
because given P, C = E(K, P), and some candidate key K, you can check that K|,

is the correct key by verifying that E(K,, P) equals C. The process of finding a

potential key (the solution) can’t be done in polynomial time, but checking
whether the key is correct is done using a polynomial-time algorithm.

Now for a counterexample: what about known-ciphertext attacks? This time,
you only get some E(K, P) values for random unknown plaintext Ps. If you don’t
know what the Ps are, then there’s no way to verify whether a potential key, K,

is the right one. In other words, the key-recovery problem under known-
ciphertext attacks is not in NP (let alone in P).

Another example of a problem not in NP is that of verifying the absence of a
solution to a problem. Verifying that a solution is correct boils down to
computing some algorithm with the candidate solution as an input and then
checking the return value. However, to verify that 7o solution exists, you may
need to go through all possible inputs. And if there’s an exponential number of
inputs, you won’t be able to efficiently prove that no solution exists. The absence
of a solution is hard to show for the hardest problems in the class NP—the so-
called NP-complete problems, which we’ll discuss next.

NP-Complete Problems

The hardest problems in the class NP are called NP-complete; we don’t know
how to solve these problems in polynomial time. And as complexity theorists
discovered in the 1970s when they developed the theory of NP-completeness,
NP’s hardest problems are all equally hard. This was proven by showing that
any efficient solution to any of the NP-complete problems can be turned into an
efficient solution for any of the other NP-complete problems. In other words, if
you can solve any NP-complete problem efficiently, you can solve all of them, as
well as all problems in NP. How can this be?

NP-complete problems come in different disguises, but they’re fundamentally
similar from a mathematical perspective. In fact, you can reduce any NP-
complete problem to any other NP-complete problem such that solving the first
one depends on solving the second.

Here are some examples of NP-complete problems:



The traveling salesman problem Given a set of points on a map (cities,
addresses, or other geographic locations) and the distances between each
point from each other point, find a path that visits every point such that the
total distance is smaller than a given distance of .

The clique problem Given a number, x, and a graph (a set of nodes
connected by edges, as in Figure 9-3), determine if there’s a set of x points or
less such that all points are connected to each other.

The knapsack problem Given two numbers, x and y, and a set of items, each
of a known value and weight, can we pick a group of items such that the total
value is at least v and the total weight at most y?

Figure 9-3: A graph containing a clique of four points. The general problem of finding a
clique (set of nodes all connected to each other) of given size in a graph is NP-complete.

Such NP-complete problems are found everywhere, from scheduling
problems (given jobs of some priority and duration, and one or more processors,
assign jobs to the processors by respecting the priority while minimizing total
execution time) to constraint-satisfaction problems (determine values that satisfy
a set of mathematical constraints, such as logical equations). Even the task of
winning in certain video games can sometimes be proven to be NP-complete
(for famous games including Tezris, Super Mario Bros., Pokémon, and Candy Crush
Saga). For example, the article “Classic Nintendo Games Are (Computationally)



Hard” (bttps://arxiv.org/abs/1203.1895) considers “the decision problem of
reachability” to determine the possibility of reaching the goal point from a
particular starting point.

Some of these video game problems are actually even harder than INP-
complete and are called NP-hard. We say that a problem is NP-hard when it’s at
least as hard as NP-complete problems. More formally, a problem is NP-hard if
what it takes to solve it can be proven to also solve NP-complete problems.

I have to mention an important caveat. Not all instances of NP-complete
problems are actually hard to solve. Some specific instances, because they’re
small or because they have a specific structure, may be solved efficiently. Take,
for example, the graph in Figure 9-3. By just looking at it for a few seconds
you’ll spot the clique, which is the top four connected nodes—even though the
aforementioned clique problem is NP-hard, there’s nothing hard here. So being
NP-complete doesn’t mean that all instances of a given problem are hard, but
that as the problem size grows, many of them are.

The P vs. NP Problem

If you could solve the hardest NP problems in polynomial time, then you could
solve a// NP problems in polynomial time, and therefore NP would equal P.
That sounds preposterous; isn’t it obvious that there are problems for which a
solution is easy to verify but hard to find? For example, isn’t it obvious that
exponential-time brute force is the fastest way to recover the key of a symmetric
cipher, and therefore that the problem can’t be in P? It turns out that, as crazy as
it sounds, no one has proved that P is different from NP, despite a bounty of
literally one million dollars.

The Clay Mathematics Institute will award this bounty to anyone who proves
that either P # NP or P = NP. This problem, known as P vs. NP, was called
“one of the deepest questions that human beings have ever asked” by renowned
complexity theorist Scott Aaronson. Think about it: if P were equal to NP, then
any easily checked solution would also be easy to find. All cryptography used in
practice would be insecure, because you could recover symmetric keys and invert
hash functions efficiently.
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Figure 9-4: The classes NP, P, and the set of NP-complete problems

But don’t panic: most complexity theorists believe P isn’t equal to NP, and
therefore that P is instead a strict subset of NP, as Figure 9-4 shows, where NP-
complete problems are another subset of NP not overlapping with P. In other
words, problems that look hard actually are hard. It’s just difficult to prove this
mathematically. While proving that P = NP would only need a polynomial-time
algorithm for an NP-complete problem, proving the nonexistence of such an
algorithm is fundamentally harder. But this didn’t stop wacky mathematicians
from coming up with simple proofs that, while usually obviously wrong, often
make for funny reads; for an example, see “The P-versus-NP page”
(bttps://www.win.tue.nl/~gwoegi/P-versus-NP.btm).

Now if we’re almost sure that hard problems do exist, what about leveraging
them to build strong, provably secure crypto? Imagine a proof that breaking
some cipher is NP-complete, and therefore that the cipher is unbreakable as
long as P isn’t equal to NP. But reality is disappointing: NP-complete problems
have proved difficult to use for crypto purposes because the very structure that
makes them hard in general can make them easy in specific cases—cases that
sometimes occur in crypto. Instead, cryptography often relies on problems that
are probably not NP-hard.

The Factoring Problem

The factoring problem consists of finding the prime numbers p and ¢ given a
large number, N = p x ¢. The widely used RSA algorithms are based on the fact
that factoring a number is difficult. In fact, the hardness of the factoring problem
is what makes RSA encryption and signature schemes secure. But before we see
how RSA leverages the factoring problem in Chapter 10, I'd like to convince you
that this problem is indeed hard, yet probably not NP-complete.
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First, some kindergarten math. A prime number is a number that isn’t divisible
by any other number but itself and 1. For example, the numbers 3, 7, and 11 are
prime; the numbers 4 =2 x 2, 6 =2 x 3, and 12 = 2 x 2 x 3 are not prime. A
fundamental theorem of number theory says that any integer number can be
uniquely written as a product of primes, a representation called the factorization
of that number. For example, the factorization of 123456 is 26 x 3 x 643; the
factorization of 1234567 is = 127 x 9721; and so on. Any integer has a unique
factorization, or a unique way to write it as a product of prime numbers. But
how do we know that a given factorization contains only prime numbers or that
a given number is prime? The answer is found through polynomial-time
primality testing algorithms, which allow us to efficiently test whether a given
number is prime. Getting from a number to its prime factors, however, is
another matter.

Factoring Large Numbers in Practice

So how do we go from a number to its factorization—namely, its decomposition
as a product of prime numbers? The most basic way to factor a number, N, is to
try dividing it by all the numbers lower than it until you find a number, «, that
divides N. Then attempt to divide N with the next number, x + 1, and so on.
You’ll end up with a list of factors of N. What’s the time complexity of this?
First, remember that we express complexities as a function of the input’s length.
The bit length of the number N is » = log, N. By the basic definition of
logarithm, this means that N = 2. Because all the numbers less than N/2 are
reasonable guesses for possible factors of N, there are about N/2 = 2,/2 values to
try. The complexity of our naive factoring algorithm is therefore O(2y), ignoring
the 1/2 coefficient in the O() notation.

Of course, many numbers are easy to factor by first finding any small factors
(2, 3, 5, and so on) and then iteratively factoring any other nonprime factors. But
here we’re interested in numbers of the form N = p x ¢, where p and ¢ are large,
as found in cryptography.

Let’s be a bit smarter. We don’t need to test all numbers lower than N/2, but
rather only the prime numbers, and we can start by trying only those smaller
than the square root of N. Indeed, if N is not a prime number, then it has to have
at least one factor lower than its square root VN. This is because if both of N’s
factors p and g are greater than \N, then their product would be greater than YN



x YN = N, which is impossible. For example, if we say N = 100, then its factors p
and ¢ can’t both be greater than 10 because that would result in a product
greater than 100. Either p or ¢ has to be smaller than yN.

So what’s the complexity of testing only the primes less than YN? The prime
number theorem states that there are approximately N/log N primes less than N.
Hence, there are approximately YN/log N primes less than YN. Expressing this
value, we get approximately 2”/?/n possible prime factors and therefore a
complexity of OQ2"?/n), since YN = 2"/? and 1/logyN = 1/(n/2) = 2n. This is
faster than testing all prime numbers, but it’s still painfully slow—on the order
of 2120 operations for a 256-bit number. That’s quite an impractical
computational effort.

The fastest factoring algorithm is the general number field sieve (GNFS), which
I won’t describe here because it requires the introduction of several advanced
mathematical concepts. A rough estimate of GNFS’s complexity is exp(1.91 x
n'3 (log n)*’?), where exp(. . .) is just a different notation for the exponential
function ¢, with e the exponential constant approximately equal to 2.718.
However, it’s difficult to get an accurate estimate of GNFS’s actual complexity
for a given number size. Therefore, we have to rely on heuristical complexity
estimates, which show how security increases with a longer 7. For example:

e Factoring a 1024-bit number, which would have two prime factors of
approximately 500 bits each, will take on the order of 27Y basic operations.
e Factoring a 2048-bit number, which would have two prime factors of

approximately 1000 bits each, will take on the order of 2°° basic operations,
which is about a million times slower than for a 1024-bit number.

And we estimate that at least 4096 bits are needed to reach 128-bit security.
Note that these values should be taken with a grain of salt, and researchers don’t
always agree on these estimates. Take a look at these experimental results to see
the actual cost of factoring:

e In 2005, after about 18 months of computation—and thanks to the power of
a cluster of 80 processors, with a total effort equivalent to 75 years of
computation on a single processor—a group of researchers factored a 663-
bit (200-decimal digit) number.

e In 2009, after about two years and using several hundred processors, with a



total effort equivalent to about 2,000 years of computation on a single
processor, another group of researchers factored a 768-bit (232-decimal
digit) number.

As you can see, the numbers actually factored by academic researchers are
shorter than those in real applications, which are at least 1024-bit and often
more than 2048-bit. As I write this, no one has reported the factoring of a 1024-
bit number, but many speculate that well-funded organizations such as the NSA
can do it.

In sum, 1024-bit RSA should be viewed as insecure, and RSA should be used
with at least a 2048-bit value—and preferably a 4096-bit one to ensure higher
security.

Is Factoring NP-Complete?

We don’t know how to factor large numbers efficiently, which suggests that the
factoring problem doesn’t belong to P. However, factoring is clearly in NP,
because given a factorization, we can verify the solution by checking that all
factors are prime numbers, thanks to the aforementioned primality testing
algorithm, and that when multiplied together, the factors do give the expected
number. For example, to check that 3 x 5 is the factorization of 15, you’ll check
that both 3 and 5 are prime and that 3 times 5 equals 15.

So we have a problem that is in NP and that looks hard, but is it as hard as the
hardest NP problems? In other words, is factoring NP-complete? Spoiler alert:
probably not.

There’s no mathematical proof that factoring isn’t NP-complete, but we have
a few pieces of soft evidence. First, all known NP-complete problems can have
one solution, but can also have more than one solution, or no solution at all. In
contrast, factoring always has exactly one solution. Also, the factoring problem
has a mathematical structure that allows for the GINFS algorithm to significantly
outperform a naive algorithm, a structure that NP-complete problems don’t
have. Factoring would be easy if we had a quantum computer, a computing model
that exploits quantum mechanical phenomena to run different kinds of
algorithms and that would have the capability to factor large numbers efficiently
(not because it’d run the algorithm faster, but because it could run a quantum
algorithm dedicated to factoring large numbers). A quantum computer doesn’t
exist yet, though—and might never exist. Regardless, a quantum computer



would be useless in tackling NP-complete problems because it’d be no faster
than a classical one (see Chapter 14).

Factoring may then be slightly easier than NP-complete in theory, but as far
as cryptography is concerned, it’s hard enough, and even more reliable than INP-
complete problems. Indeed, it’s easier to build cryptosystems on top of the
factoring problem than NP-complete problems, because it’s hard to know
exactly how hard it is to break a cryptosystem based on some NP-complete
problems—in other words, how many bits of security you’d get.

The factoring problem is just one of several problems used in cryptography as
a bardness assumption, which is an assumption that some problem is
computationally hard. This assumption is used when proving that breaking a
cryptosystem’s security is at least as hard as solving said problem. Another
problem used as a hardness assumption, the discrete logarithm problem (DLP), is
actually a family of problems, which we’ll discuss next.

The Discrete Logarithm Problem

The DLP predates the factoring problem in the official history of cryptography.
Whereas RSA appeared in 1977, a second cryptographic breakthrough, the
Diffie-Hellman key agreement (covered in Chapter 11), came about a year
earlier, grounding its security on the hardness of the DLP. Like the factoring
problem, the DLP deals with large numbers, but it’s a bit less straightforward—
it will take you a few minutes rather than a few seconds to get it and requires a
bit more math than factoring. So let me introduce the mathematical notion of a
group in the context of discrete logarithms.

What Is a Group?

In mathematical context, a group is a set of elements (typically, numbers) that are
related to each other according to certain well-defined rules. An example of a
group is the set of nonzero integers (between 1 and p — 1) modulo some prime

number p, which we write Zp*. For p = 5, we get the group Z; = {1,2,3,4}. In the
group Zs , operations are carried out modulo 5; hence, we don’t have 3 x 4 = 12

but instead have 3 x 4 = 2, because 12 mod 5 = 2. We nonetheless use the same
sign (x) that we use for normal integer multiplication. Likewise, we also use the
exponent notation to denote a group element’s multiplication with itself mod p,

a common operation in cryptography. For example, in the context of Zs ', 23 = 2



x 2 x 2 =3 rather than 8, because 8 mod 5 is equal to 3.

To be a group, a mathematical set should have the following characteristics,
called group axioms:

Closure For any two x and y in the group, & x y is in the group too. In Z;, 2
x 3 =1 (because 6 = 1 mod 5), 2 x 4 = 3, and so on.

Associativity For any x, y, z in the group, (x x y) x z = x x (y x 2). In Zs, (2 x
Ix4=1x4=2xBx4)=2x2=4.

Identity existence There’s an element e such thate xx =& x e =x. Inany Z,,

the identity element is 1.

Inverse existence For any x in the group, there’s a y such thatx x y =y x x =
e. In Z;', the inverse of 2 is 3, and the inverse of 3 is 2, while 4 is its own

inverse because 4 x 4 =16 =1 mod 5.

In addition, a group is called commutative if x x y = y x x for any group
elements x and y. That’s also true for any multiplicative group of integers Zp*. In

particular, Zs is commutative: 3 x4 =4 x 3,2 x 3 =3 x 2, and so on.

A group is called cyclic if there’s at least one element g such that its powers (g,
g%, ¢}, and so on) mod p span all distinct group elements. The element g is then
called a generator of the group. Zs is cyclic and has two generators, 2 and 3,
because 2! =2,22=4,27=3,2%=1,and 3! =3,37=4,3°=2,3%= 1.

Note that I'm using multiplication as a group operator, but you can also get
groups from other operators. For example, the most straightforward group is the
set of all integers, positive and negative, with addition as a group operation. Let’s
check that the group axioms hold with addition, in the preceding order: clearly,
the number x + y is an integer if x and y are integers (closure); (x +y) + 2 =x + (y
+ z) for any x, y, and z (associativity); zero is the identity element; and the inverse
of any number « in the group is —x because x + (—x) = 0 for any integer «x. A big
difference, though, is that this group of integers is of infinite size, whereas in
crypto we’ll only deal with finite groups, or groups with a finite number of
elements. Typically, we’ll use groups Zp*, where p is thousands of bits long (that

is, groups that contain on the order of 2, numbers).

The Hard Thing



The DLP consists of finding the y for which ¢ = «, given a base number g within
some group Zp*, where p is a prime number, and given a group element x. The

DLP is called discrete because we'’re dealing with integers as opposed to real
numbers (continuous), and it’s called a logarithm because we’re looking for the
logarithm of x in base g. (For example, the logarithm of 256 in base 2 is 8
because 28 = 256.)

People often ask me whether factoring or a discrete logarithm is more secure
—or in other words, which problem is the hardest? My answer is that they’re
about equally hard. In fact, algorithms to solve DLP bear similarities with those
factoring integers, and you get about the same security level with 7-bit hard-to-
factor numbers as with discrete logarithms in an z-bit group. And for the same
reason as factoring, DLP isn’t NP-complete. (Note that there are certain groups
where the DLP is easier to solve, but here I'm only referring to the case of DLP
groups consisting of a number modulo a prime.)

How Things Can Go Wrong

More than 40 years later, we still don’t know how to efficiently factor large
numbers or solve discrete logarithms. Amateurs may argue that someone may
eventually break factoring—and we have no proof that it’ll never be broken—but
we also don’t have proof that P # NP. Likewise, you can speculate that P may be
equal to NP; however, according to experts, that surprise is unlikely. So there’s
no need to worry. And indeed all the public-key crypto deployed today relies on
either factoring (RSA) or DLP (Diffie-Hellman, ElGamal, elliptic curve
cryptography). However, although math may not fail us, real-world concerns
and human error can sneak in.

When Factoring Is Easy

Factoring large numbers isn’t always hard. For example, take the 1024-bit
number N, which is equal to the following:

179769313486231590772930519078902473361797697894230657273430081157739343819933

842986982557174198257278917258638193709265819186026626180659730665062710995556

578639447715608415186895652841691982921107202317165369124890481512388558039053
427125099290315449262324709315263256083132540461407052872832790915388014592

For 1024-bit numbers used in RSA encryption or signature schemes where N



= pq, we expect the best factoring algorithms to need around 27°

operations, as
we discussed earlier. But you can factor this sample number in seconds using
SageMath, a piece of Python-based mathematical software. Using SageMath’s
factor() function on my 2015 MacBook, it took less than five seconds to find the

following factorization:

259 x 641 x 6700417 x 167773885276849215533569
x 37414057161322375957408148834323969

Right, I cheated. This number isn’t of the form N = pg because it doesn’t have
just two large prime factors but rather five, including very small ones, which
makes it easy to factor. First, you’ll identify the 2800 x 641 x 6700417 part by
trying small primes from a precomputed list of prime numbers, which leaves you
with a 192-bit number that’s much easier to factor than a 1024-bit number with
two large factors.

But factoring can be easy not only when 7 has no small prime factors, but also
when N or its factors p and ¢ have particular forms—for example, when N = pg
with p and ¢ both close to some 2¢, when N = pg and some bits of p or ¢ are
known, or when N is of the form N = p’¢® and 7 is greater than log p. However,
detailing the reasons for these weaknesses is way too technical for this book.

The upshot here is that the RSA encryption and signature algorithms (covered
in Chapter 10) will need to work with a value of N = pg, where p and ¢ are
carefully chosen, to avoid easy factorization of N, which can result in security
disaster.

Small Hard Problems Aren’t Hard

Computationally hard problems become easy when they’re small enough, and
even exponential-time algorithms become practical as the problem size shrinks.
A symmetric cipher may be secure in the sense that there’s no faster attack than
the 2”-time brute force, but if the key length is z = 32, you’ll break the cipher in
minutes. This sounds obvious, and you’d think that no one would be naive
enough to use small keys, but in reality there are plenty of reasons why this
could happen. The following are two true stories.

Say you’re a developer who knows nothing about crypto but has some API to
encrypt with RSA and has been told to encrypt with 128-bit security. What RSA
key size would you pick? I've seen real cases of 128-bit RSA, or RSA based on a



128-bit number N = pg. However, although factoring is impractically hard for an
N thousands of bits long, factoring a 128-bit number is easy. Using the
SageMath software, the commands shown in Listing 9-2 complete
instantaneously.

sage: p = random_prime(2**64)

sage: q = random_prime(2**64)

sage: factor(p*q)

6822485253121677229 * 17596998848870549923

Listing 9-2: Generating an RSA modulus by picking two random prime numbers and
factoring it instantaneously

Listing 9-2 shows that a 128-bit number taken randomly as the product of two
64-bit prime numbers can be easily factored on a typical laptop. However, if 1
chose 1024-bit prime numbers instead by using p = random_prime(2**1024), the
command factor(p*q) would never complete, at least not in my lifetime.

To be fair, the tools available don’t help prevent the naive use of insecurely
short parameters. For example, the OpenSSL toolkit lets you generate RSA keys
as short as 31 bits without any warning; obviously, such short keys are totally
insecure, as shown in Listing 9-3.

$ openssl genrsa 31

Generating RSA private key, 31 bit long modulus

R b b o T ST

A

e i1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----
MCsCAQACBHHQFUUCAWEAAQIEP6zEJQIDANATAGMA jCcCAWCSBWICTGsCAhpp
----- END RSA PRIVATE KEY-----

Listing 9-3: Generating an insecure RSA private key using the OpenSSL toolkit

When reviewing cryptography, you should not only check the type of
algorithms used, but also their parameters and the length of their secret values.
However, as you'll see in the following story, what’s secure enough today may be
Insecure tOmMorrow.

In 2015, researchers discovered that many HTTPS servers and email servers
still supported an older, insecure version of the Diffie-Hellman key agreement
protocol. Namely, the underlying TLS implementation supported Diffie—
Hellman within a group, Zp*, defined by a prime number, p, of only 512 bits,

where the discrete logarithm problem was no longer practically impossible to



compute.

Not only did servers support a weak algorithm, but attackers could force a
benign client to use that algorithm by injecting malicious traffic within the
client’s session. Even better for attackers, the largest part of the attack could be
carried out once and recycled to attack multiple clients. After about a week of

computations to attack a specific group, Zp*, it took only 70 seconds to break

individual sessions of different users.

A secure protocol is worthless if it’s undermined by a weakened algorithm,
and a reliable algorithm is useless if sabotaged by weak parameters. In
cryptography, you should always read the fine print.

For more details about this story, check the research article “Imperfect
Forward ~ Secrecy: =~ How  Diffie-Hellman  Fails in  Practice”
(bttps://weakdh.org/imperfect-forward-secrecy-ces15.pdf).

Further Reading

I encourage you to look deeper into the foundational aspects of computation in
the context of computability (what functions can be computed?) and complexity
(at what cost?), and how they relate to cryptography. I've mostly talked about the
classes P and NP, but there are many more classes and points of interest for
cryptographers. I highly recommend the book Quantum Computing Since
Democritus by Scott Aaronson (Cambridge University Press, 2013). It’s in large
part about quantum computing, but its first chapters brilliantly introduce
complexity theory and cryptography.

In the cryptography research literature you’ll also find other hard
computational problems. I’ll mention them in later chapters, but here are some
examples that illustrate the diversity of problems leveraged by cryptographers:

e 'The Diffie-Hellman problem (given g* and g7, find g") is a variant of the
discrete logarithm problem, and is widely used in key agreement protocols.

e Lattice problems, such as the shortest vector problem (SVP) and the
learning with errors (LWE) problem, are the only examples of NP-hard
problems successfully used in cryptography.

e Coding problems rely on the hardness of decoding error-correcting codes
with insufficient information, and have been studied since the late 1970s.

e Multivariate problems are about solving nonlinear systems of equations and


../../../../../https@weakdh.org/imperfect-forward-secrecy-ccs15.pdf

are potentially NP-hard, but they’ve failed to provide reliable cryptosystems
because hard versions are too big and slow, and practical versions were
found to be insecure.

In Chapter 10, we’ll keep talking about hard problems, especially factoring
and its main variant, the RSA problem.



10
RSA

The Rivest-Shamir—Adleman (RSA) cryptosystem revolutionized cryptography
when it emerged in 1977 as the first public-key encryption scheme; whereas
classical, symmetric-key encryption schemes use the same secret key to encrypt
and decrypt messages, public-key encryption (also called asymmetric encryption)
uses two keys: one is your public key, which can be used by anyone who wants to
encrypt messages for you, and the other is your private key, which is required in
order to decrypt messages encrypted using the public key. This magic is the
reason why RSA came as a real breakthrough, and 40 years later, it’s still the
paragon of public-key encryption and a workhorse of internet security. (One
year prior to RSA, Diffie and Hellman had introduced the concept of public-key
cryptography, but their scheme was unable to perform public-key encryption.)

RSA is above all an arithmetic trick. It works by creating a mathematical
object called a trapdoor permutation, a function that transforms a number x to a
number y in the same range, such that computing y from x is easy using the
public key, but computing x from y is practically impossible unless you know the
private key—the #rapdoor. (Think of x as a plaintext and y as a ciphertext.)

In addition to encryption, RSA is also used to build digital signatures, wherein
the owner of the private key is the only one able to sign a message, and the
public key enables anyone to verify the signature’s validity.

In this chapter, I explain how the RSA trapdoor permutation works, discuss
RSA’s security relative to the factoring problem (discussed in Chapter 9), and
then explain why the RSA trapdoor permutation alone isn’t enough to build
secure encryption and signatures. I also discuss ways to implement RSA and
demonstrate how to attack it.

We begin with an explanation of the basic mathematical notions behind RSA.



The Math Behind RSA

When encrypting a message, RSA sees the message as a big number, and
encryption consists essentially of multiplications of big numbers. Therefore, in
order to understand how RSA works, we need to know what kind of big numbers
it manipulates and how multiplication works on those numbers.

RSA sees the plaintext that it’s encrypting as a positive integer between 1 and
n — 1, where 7 is a large number called the modulus. More precisely, RSA works
on the numbers less than 7 that are co-prime with 7 and therefore that have no
common prime factor with z. Such numbers, when multiplied together, yield
another number that satisfies these criteria. We say that these numbers form a
group, denoted Zy;, and call the multiplicative group of integers modulo 7. (See
the mathematical definition of a group in “What Is a Group?” on page 174.)

For example, consider the group Z, of integers modulo 4. Recall from

Chapter 9 that a group must include an identity element (that is, 1) and that each
number x in the group must have an inverse, a number y such that x x y = 1.

How do we determine that set that makes up Z, ? Based on our definitions, we
know that 0 is not in the group Z, because multiplying any number by 0 can

never give 1, so 0 has no inverse. By the same token, the number 1 belongs to
Z, because 1 x 1 = 1, so 1 is its own inverse. However, the number 2 does not

belong in this group because we can’t obtain 1 by multiplying 2 with another
element of Z," (the reason is that 2 isn’t co-prime with 4, because 4 and 2 share
the factor of 2.) The number 3 belongs in the group Z, because it is its own
inverse within Z, . Thus, we have Z, = {1, 3}.

Now consider Z;', the multiplicative group of integers modulo 5. What
numbers does this set contain? The number 5 is prime, and 1, 2, 3, and 4 are all
co-prime with 5, so the set of Zs is {1, 2, 3, 4}. Let’s verify this: 2 x 3 mod § = 1,

therefore, 2 is 3’s inverse, and 3 is 2’s inverse; note that 4 is its own inverse
because 4 x 4 mod 5 = 1; finally, 1 is again its own inverse in the group.

In order to find the number of elements in a group Z,” when 7 isn’t prime, we

use Euler’s totient function, which is written as Q(n), with @ representing the
Greek letter phi. This function gives the number of elements co-prime with 7,

which is the number of elements in Z,". As a rule, if # is a product of prime



numbers 7 = p; x p; X . . . X p,,, the number of elements in the group Z,,” is the

following:
om)=@—D>x@p— ) *x..x(p,—1)

RSA only deals with numbers # that are the product of two large primes,
usually noted as # = pg. The associated group Z,; will then contain Q(z) = (p — 1)
(¢ — 1) elements. By expanding this expression, we get the equivalent definition
Pn)=n—-p—qg+1,or ®n) = ® + 1) — (p + ¢), which expresses more intuitively
the value of @(n) relative to 7. In other words, all but (p + ¢) numbers between 1
and 7 — 1 belong to Zx; and are “valid numbers” in RSA operations.

The RSA Trapdoor Permutation

The RSA trapdoor permutation is the core algorithm behind RSA-based
encryption and signatures. Given a modulus # and number e, called the public
exponent, the RSA trapdoor permutation transforms a number x from the set Z,,°

into a number y = ¥* mod #. In other words, it calculates the value that’s equal to
x multiplied by itself e times modulo 7 and then returns the result. When we use
the RSA trapdoor permutation to encrypt, the modulus # and the exponent e
make up the RSA public key.

In order to get x back from y, we use another number, denoted d, to compute
the following:

¥ mod n = (x¢)? mod n = x*“ mod n =x

Because d is the trapdoor that allows us to decrypt, it is part of the private key
in an RSA key pair, and, unlike the public key, it should always be kept secret.
The number d is also called the secret exponent.

Obviously, 4 isn’t just any number; it’s the number such that e multiplied by 4
is equivalent to 1, and therefore such that 4/ mod # = x for any x. More
precisely, we must have ed = 1 mod @(z) in order to get ¥/ = x! = x and to
decrypt the message correctly. Note that we compute modulo ¢(z) and not

modulo 7 here because exponents behave like the indexes of elements of Z,

rather than as the elements themselves. Because Z, has ((z) elements, the index



must be less than @(#).

The number @(z) is crucial to RSA’s security. In fact, finding @(#) for an RSA
modulus 7 is equivalent to breaking RSA, because the secret exponent d can
easily be derived from @(#) and e, by computing ¢’s inverse. Hence p and ¢
should also be secret, since knowing p or ¢ gives (1) by computing (p — 1)(g — 1)

= Q(n).

NOTE

®() is also called the order of the group Z

characteristic of a group, which is also essential to other public-key systems such as
Diffie—Hellman and elliptic curve cryptography.

*

n s the order is am important

RSA Key Generation and Security

Key generation is the process by which an RSA key pair is created, namely a
public key (modulus 7 and public exponent ¢) and its private key (secret exponent
d). The numbers p and ¢ (such that » = pg) and the order () should also be
secret, so they’re often seen as part of the private key.

In order to generate an RSA key pair, we first pick two random prime
numbers, p and ¢, and then compute Q(n) from these, and we compute d as the
inverse of e. To show how this works, Listing 10-1 uses SageMath
(http://fwww.sagemath.org/), an open-source Python-like environment that
includes many mathematical packages.

O sage: p = random_prime(2+32); p
1103222539

sage: q = random_prime(2732); q
17870599

sage: n = p*q; n

C

sage: phi = (p-1)*(q-1); phi
36567230045260644

sage: e = random_prime(phi); e
13771927877214701

sage: d = xgcd(e, phi)[1]; d
15417970063428857

sage: mod(d*e, phi)

1

O © 9 © & ©
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Listing 10-1: Generating RSA parameters using SageMath

NOTE

In order to avoid multiple pages of output, I've used a 64-bit modulus n in Listing
10-1, but in practice an RSA modulus should be at least 2048 bits.

We use the random_prime() function to pick random primes p @ and q @, which
are lower than a given argument. Next, we multiply p and q to get the modulus n
® and @(n), which is the variable phi @. We then generate a random public
exponent, e ®, by picking a random prime less than phi in order to ensure that e
will have an inverse modulo phi. We then generate the associated private
exponent d by using the xgecd() function from Sage @. This function computes
the numbers s and ¢ given two numbers, # and b, with the extended Euclidean
algorithm such that as + bt = GCD(g, b). Finally, we check that ed mod @(n) = 1
@, to ensure that d will work correctly to invert the RSA permutation.

Now we can apply the trapdoor permutation, as shown in Listing 10-2.

O sage: x = 1234567

® sage: y = power_mod(x, e, n); vy
19048323055755904

® sage: power_mod(y, d, n)
1234567

Listing 10-2: Computing the RSA trapdoor permutation back and forth

We assign the integer 1234567 to x @ and then use the function power_mod(x,
e, n), the exponentiation modulo 7, or x* mod # in equation form, to calculate y
®. Having computed y = «° mod 7, we compute ¢ mod » ® with the trapdoor d
to return the original x.

But how hard is it to find x without the trapdoor d? An attacker who can factor
big numbers can break RSA by recovering p and ¢ and then @(#) in order to
compute d from e. But that’s not the only risk. Another risk to RSA lies in an
attacker’s ability to compute x from x° mod 7, or e th roots modulo 7, without
necessarily factoring n. Both risks seem closely connected, though we don’t
know for sure whether they are equivalent.

Assuming that factoring is indeed hard and that finding e th roots is about as



hard, RSA’s security level depends on three factors: the size of 7, the choice of p
and ¢, and how the trapdoor permutation is used. If # is too small, it could be
factored in a realistic amount of time, revealing the private key. To be safe, n
should at least be 2048 bits long (a security level of about 90 bits, requiring a
computational effort of about 20 operations), but preferably 4096 bits long (a
security level of approximately 128 bits). The values p and ¢ should be unrelated
random prime numbers of similar size. If they are too small, or too close
together, it becomes easier to determine their value from z. Finally, the RSA
trapdoor permutation should not be used directly for encryption or signing, as
I'll discuss shortly.

Encrypting with RSA

Typically, RSA is used in combination with a symmetric encryption scheme,
where RSA is used to encrypt a symmetric key that is then used to encrypt a
message with a cipher such as the Advanced Encryption Standard (AES). But
encrypting a message or symmetric key with RSA is more complicated than
simply converting the target to a number x and computing ¢ mod 7.

In the following subsections, I explain why a naive application of the RSA
trapdoor permutation is insecure, and how strong RSA-based encryption works.

Breaking Textbook RSA Encryption’s Malleability

Textbook RSA encryption is the phrase used to describe the simplistic RSA
encryption scheme wherein the plaintext contains only the message you want to
encrypt. For example, to encrypt the string RSA, we would first convert it to a
number by concatenating the ASCII encodings of each of the three letters as a
byte: R (byte 52), S (byte 53), and A (byte 41). The resulting byte string 525341 is
equal to 5395265 when converted to decimal, which we might then encrypt by
computing 5395265¢ mod n. Without knowing the secret key, there would be no
way to decrypt the message.

However, textbook RSA encryption is deterministic: if you encrypt the same
plaintext twice, you’ll get the same ciphertext twice. That’s one problem, but
there’s a bigger problem—given two textbook RSA ciphertexts y; = x; mod #

and y, = x,° mod 7, you can derive the ciphertext of x; x x, by multiplying these

two ciphertexts together, like this:



y1 X yomod n=x;° % x,°mod n=(x; Xx,)°modn

The result is (x; x x,)° mod 7, the ciphertext of the message x; x x; mod 7.
Thus an attacker could create a new valid ciphertext from two RSA ciphertexts,
allowing them to compromise the security of your encryption by letting them
deduce information about the original message. We say that this weakness makes
textbook RSA encryption malleable. (Of course, if you know x; and x,, you can

compute (x; x x,)° mod 7, too, but if you only know y; and y,, you should not be
able to multiply ciphertexts and get a ciphertext of the multiplied plaintexts.)

Strong RSA Encryption: OAEP

In order to make RSA ciphertexts nonmalleable, the ciphertext should consist of
the message data and some additional data called padding, as shown in Figure 10-
1. The standard way to encrypt with RSA in this fashion is to use Optimal
Asymmetric Encryption Padding (OAEP), commonly referred to as RSA-OAEP.
This scheme involves creating a bit string as large as the modulus by padding the
message with extra data and randomness before applying the RSA function.
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Figure 10-1: Encrypting a symmetric key, K, with RSA using (n, e) as a public key

NOTE

OAEP is referred to as RSAES-OAEP in official documents such as the PKCS#1
standard by the RSA company and NIST’s Special Publication §00-56B. OAEP
improves on the earlier method now called PKCS#1 v1.5, which is one of the first in
a series of Public-Key Cryptography Standards (PKCS) created by RSA. It is
markedly less secure than OAEP, yet is still used in many systems.

OAEP’s Security



OAEP wuses a pseudorandom number generator (PRNG) to ensure the
indistinguishability and nonmalleability of ciphertexts by making the encryption
probabilistic. It has been proven secure as long as the RSA function and the
PRING are secure and, to a lesser extent, as long as the hash functions aren’t too
weak. You should use OAEP whenever you need to encrypt with RSA.

How OAEP Encryption Works

In order to encrypt with RSA in OAEP mode, you need a message (typically a
symmetric key, K), a PRNG, and two hash functions. To create the ciphertext,
you use a given modulus # long of 7 bytes (that is, 8 bits, and therefore an »
lower than 287). To encrypt K, the encoded message is formed as M = H |1 00 . . .
00 11 01 I'l K, where H is an h-byte constant defined by the OAEP scheme,
followed by as many 00 bytes as needed and a 01 byte. This encoded message,
M, is then processed as described next and as depicted in Figure 10-2.

———— [ ————— -
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Figure 10-2: Encrypting a symmetric key, K, with RSA-OAEP, where H is a fixed parameter
and R is random bits

Next, you generate an h-byte random string R and set M = M ® Hash1(R),
where Hash1(R) is as long as M. You then set R = R ® Hash2(M), where
Hash2(M) is as long as R. Now you use these new values of M and R to form an
m-byte string P =00 || M || R, which is as long as the modulus 7 and which can
be converted to an integer number less than n. The result of this conversion is



the number x, which is then used to compute the RSA function x* mod 7 to get
the ciphertext.

To decrypt a ciphertext y, you would first compute x = y¥ mod # and, from
this, recover the final values of M and R. Next, you would retrieve M’s initial
value by computing M © Hash1(R © Hash2(M)). Finally, you would verify that
M is of the form H I1 00 ...00 Il 01 Il K, with an h-byte H and 00 bytes
followed by a 01 byte.

In practice, the parameters 7 and /b (the length of the modulus and the length
of Hash2’s output, respectively) are typically 7 = 256 bytes (for 2048-bit RSA)
and / = 32 (using SHA-256 as Hash2). This leaves 7 — b — 1 = 223 bytes for M,
of which up to 7z — 2h — 2 = 190 bytes are available for K (the “— 2” is due to the
separator 01 byte in M). The Hash1 hash value is then composed of 2 —h — 1 =
223 bytes, which is longer than the hash value of any common hash function.

NOTE

In order to build a hash with such an unusual output length, the RSA standard
documents specify the use of the mask generating function technique to create hash
functions that veturn arbitrarily lavge bash values from any bash function.

Signing with RSA

Digital signatures can prove that the holder of the private key tied to a particular
digital signature signed some message and that the signature is authentic.
Because no one other than the private key holder knows the private exponent d,
no one can compute a signature y = &4 mod » from some value «, but everyone
can verify y* mod 7 = x given the public exponent e. That verified signature can
be used in a court of law to demonstrate that the private-key holder did sign
some particular message—a property of undeniability called nonrepudiation.

It’s tempting to see RSA signatures as the converse of encryption, but they are
not. Signing with RSA is not the same as encrypting with the private key.
Encryption provides confidentiality whereas a digital signature is used to prevent
forgeries. The most salient example of this difference is that it’s okay for a
signature scheme to leak information on the message signed, because the
message is not secret. For example, a scheme that reveals parts of the messages
could be a secure signature scheme but not a secure encryption scheme.



Due to the processing overhead required, public-key encryption can only
process short messages, which are usually secret keys rather than actual
messages. A signature scheme, however, can process messages of arbitrary sizes
by using their hash values Hash(M) as a proxy, and it can be deterministic yet
secure. Like RSA-OAEP, RSA-based signature schemes can use a padding
scheme, but they can also use the maximal message space allowed by the RSA
modulus.

Breaking Textbook RSA Signatures

What we call a textbook RSA signature is the method that signs a message, x, by
directly computing y = ¥/ mod 7, where x can be any number between 0 and 7 —
1. Like textbook encryption, textbook RSA signing is simple to specify and
implement but also insecure in the face of several attacks. One such attack
involves a trivial forgery: upon noticing that 0 mod » = 0, 1¥mod » = 1, and (# —
1) mod # = n — 1, regardless of the value of the private key d, an attacker can
forge signatures of 0, 1, or z — 1 without knowing d.

More worrying is the blinding attack. For example, say you want to get a third
party’s signature on some incriminating message, M, that you know they would
never knowingly sign. To launch this attack, you could first find some value, R,
such that R°M mod #» is a message that your victim would knowingly sign. Next,
you would convince them to sign that message and to show you their signature,
which is equal to S = (R ‘M)? mod », or the message raised to the power d. Now,
given that signature, you can derive the signature of M, namely M ¢, with the aid
of some straightforward computations.

Here’s how this works: because S can be written as (R ‘M)¢ = R“M 4, and
because R = R is equal to R = R (by definition), we have S = (R ‘M)? = RM “.
To obtain M ¢, we simply divide S by R, as follows, to obtain the signature:

S/IR=RMYR=M1

As you can see, this is a practical and powerful attack.

The PSS Signature Standard
‘The RSA Probabilistic Signature Scheme (PSS) is to RSA signatures what OAEP is

to RSA encryption. It was designed to make message signing more secure,
thanks to the addition of padding data.



As shown in Figure 10-3, PSS combines a message narrower than the modulus
with some random and fixed bits before RSAing the results of this padding
process.

- | Lo |
I Hash(M) 1 Il I
I I I
e . Padd I I
aceing | gl plL__ ! RSA(n,d) —»! 5!

algorithm : : : :

(| (.

(| (.

b R

Figure 10-3: Signing a message, M, with RSA and with the PSS standard, where (n, d) is
the private key

Like all public-key signature schemes, PSS works on a message’s hash rather
than on the message itself. Signing Hash(M) is secure as long as the hash
function is collision resistant. One particular benefit of PSS is that you can use it
to sign messages of any length, because after hashing a message, you’ll obtain a
hash value of the same length regardless of the message’s original length. The
hash’s length is typically 256 bits, with the hash function SHA-256.

Why not sign by just running OAEP on Hash(M)? Unfortunately, you can’t.
Although similar to PSS, OAEP has only been proven secure for encryption, not
for signature.

Like OAEP, PSS also requires a PRNG and two hash functions. One, Hashl,
is a typical hash with h-byte hash values such as SHA-256. The other, Hash2, is
a wide-output hash like OAEP’s Hash2.

The PSS signing procedure for message M works as follows (where 5 is
Hash1’s output length):

1. Pick an 7-byte random string R using the PRNG.

2. Form an encoded message M’ = 0000000000000000 || Hash1(M) || R,
long of b + 7 + 8 bytes (with eight zero bytes at the beginning).

3. Compute the h-byte string H = Hash1(M").
4. Set L=00...00 1101 I'l R, or a sequence of 00 bytes followed by a 01

byte and then R, with a number of 00 bytes such that L is long of w2 — b — 1
bytes (the byte width 7 of the modulus minus the hash length » minus 1).



5. Set L = L ® Hash2(H), thus replacing the previous value of L with a new
value.

6. Convert the m-byte string P=L || H || BC to a number, x, lower than 7.
Here, the byte BC is a fixed value appended after H.

7. Given the value of x just obtained, compute the RSA function ## mod # to
obtain the signature.

To verify a signature given a message, M, you compute Hash1(M) and use the
public exponent e to retrieve L and H and then M’ from the signature, checking
the padding’s correctness at each step.

In practice, the random string R (called a sa/r in the RSA-PSS standard) is
usually as long as the hash value. For example, if you use 7z = 2048 bits and SHA-
256 as the hash, the value L is long of m —h -1 =256 — 32 — 1 =223 bytes, and
the random string R would typically be 32 bytes.

Like OAEP, PSS is provably secure, standardized, and widely deployed. Also
like OAEP, it looks needlessly complex and is prone to implementation errors
and mishandled corner cases. But unlike RSA encryption, there’s a way to get
around this extra complexity with a signature scheme that doesn’t even need a

PRING, thus reducing the risk of insecure RSA signatures caused by an insecure
PRNG, as discussed next.

Full Domain Hash Signatures

Full Domain Hash (FDH) is the simplest signature scheme you can imagine. To
implement it, you simply convert the byte string Hash(}M) to a number, x, and
create the signature y = ¢ mod 7, as shown in Figure 10-4.
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Figure 10-4: Signing a message with RSA using the Full Domain Hash technique

Signature verification is straightforward, too. Given a signature that is a



number y, you compute x = y* mod 7 and compare the result with Hash(}). It’s
boringly simple, deterministic, yet secure. So why bother with the complexity of
PSS?

The main reason is that PSS was released after FDH, in 1996, and it has a
security proof that inspires more confidence than FDH. Specifically, its proof
offers slightly higher security guarantees than the proof of FDH, and its use of
randomness helped strengthen that proof.

These stronger theoretical guarantees are the main reason cryptographers
prefer PSS over FDH, but most applications using PSS today could switch to
FDH with no meaningful security loss. In some contexts, however, a viable
reason to use PSS instead of FDH is that PSS’s randomness protects it from
some attacks on its implementation, such as the fault attacks we’ll discuss in
“How Things Can Go Wrong” on page 196.

RSA Implementations

I sincerely hope you’ll never have to implement RSA from scratch. If you’re
asked to, run as fast as you can and question the sanity of the person who asked
you to do so. It took decades for cryptographers and engineers to develop RSA
implementations that are fast, sufficiently secure, and hopefully free of
debilitating bugs, so you really don’t want to reinvent RSA. Even with all the
documentation available, it would take months to complete this daunting task.

Typically, when implementing RSA, you’ll use a library or API that provides
the necessary functions to carry out RSA operations. For example, the Go
language has the following function in its crypto package (from
https://www.golang.org/src/crypto/rsa/rsa.go):

func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte,
label []byte) (out []byte, err error)

The function EncryptoAeP() takes a hash value, a PRNG, a public key, a
message, and a label (an optional parameter of OAEP), and returns a signature
and an error code. When you call Encrypt0AEP(), it calls encrypt() to compute the
RSA function given the padded data, as shown in Listing 10-3.

func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
e := big.NewInt(int64(pub.E))
c.Exp(m, e, pub.N)
return c
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}

Listing 10-3: Implementing the core RSA encryption function from the Go language
cryptography library

The main operation shown in Listing 10-3 is c.Exp(m, e, pub.N), which raises
a message, m, to the power e modulo pub.N, and assigns the result to the variable
C.

If you choose to implement RSA instead of using a readily available library
function, be sure to rely on an existing big-number library, which is a set of
functions and types that allow you to define and compute arithmetic operations
on large numbers thousands of bits long. For example, you might use the GNU
Multiple Precision (GMP) arithmetic library in C, or Go’s big package. (Believe
me, you don’t want to implement big-number arithmetic yourself.)

Even if you just use a library function when implementing RSA, be sure that
you understand how the internals work in order to measure the risks.

Fast Exponentiation Algorithm: Square-and-Multiply

The operation of raising « to the power ¢, when computing x¢ mod #, is called
exponentiation. When we’re working with big numbers, as with RSA, this
operation can be extremely slow if naively implemented. But how do we do this
efficiently?

The naive way to compute x° mod 7 takes e — 1 multiplications, as shown in
the pseudocode algorithm in Listing 10-4.

expModNaive(x, e, n) {

y =X

for i=1toe-1{
y=y *x mod n

}

return y

}

Listing 10-4: A naive exponentiation algorithm in pseudocode

This algorithm is simple but highly inefficient. One way to get the same result
exponentially faster is to square rather than multiply exponents until the correct
value is reached. This family of methods is called square-and-multiply, or
exponentiation by squaring or binary exponentiation.

For example, say that we want to compute 3937 mod 36567232109354321.



(The number 65537 is the public exponent used in most RSA implementations.)
We could multiply the number 3 by itself 65536 times, or we could approach

this problem with the understanding that 65537 can be written as 216 + 1 and use
a series of squaring operations. Essentially, we do the following:

Initialize a variable, y = 3, and then compute the following squaring (y?)
operations:

Set y = y> mod 7 (now y = 32 mod n).

Set y = y> mod 7 (now y = (3%)* mod % = 3* mod »).
Set y = y> mod 7 (now y = (3*)? = 3% mod n).

Set y = y> mod 7 (now y = (3%)? = 316 mod #).

U B N U R S R

Set y =y mod 7 (now y = (3'6)%= 332 mod #).

And so on until y = 39336 by performing 16 squarings.

To get the final result, we return 3 x y mod # = 39°% mod n =
26652909283612267. In other words, we compute the result with only 17
multiplications rather than 65536 with the naive method.

More generally, a square-and-multiply method works by scanning the
exponent’s bits one by one, from left to right, computing the square for each
exponent’s bit to double the exponent’s value, and multiplying by the original
number for each bit with a value of 1 encountered. In the preceding example, the
exponent 65537 is 10000000000000001 in binary, and we squared y for each new
bit and multiplied by the original number 3 only for the very first and last bits.

Listing 10-5 shows how this would work as a general algorithm in pseudocode
to compute x° mod 7 when the exponent e consists of bitse,, _ (e, _ > . . . e1ep,

where ¢ is the least significant bit.

expMod(x, e, n) {
y = X
for i=m-1to0 {

y *y mod n

if ey == 1 then

y=y *x modn

}

return y

}

Listing 10-5: A fast exponentiation algorithm in pseudocode



The expMod() algorithm shown in Listing 10-5 runs in time O(rz), whereas the
naive algorithm runs in time O(2”), where 7 is the bit length of the exponent.
Here, O() is the asymptotic complexity notation introduced in Chapter 9.

Real systems often implement variants of this simplest square-and-multiply
method. One such variant is the s/iding window method, which considers blocks
of bits rather than individual bits to perform a given multiplication operation.
For example, see the function expNN() of the Go language, whose source code is
available at bttps://golang.org/src/math/big/nat.go.

How secure are these square-and-multiply exponentiation algorithms?
Unfortunately, the tricks to speed the process up often result in increased
vulnerability against some attacks. Let’s see what can go wrong.

The weakness in these algorithms is due to the fact that the exponentiation
operations are heavily dependent on the exponent’s value. The if operation
shown in Listing 10-5 takes a different branch based on whether an exponent’s
bitis 0 or 1. If a bit is 1, an iteration of the for loop will be slower than it will be
for 0, and attackers who monitor the execution time of the RSA operation can
exploit this time difference to recover a private exponent. This is called a timing
attack. Attacks on hardware can distinguish 1 bit from 0 bits by monitoring the
device’s power consumption and observing which iterations perform an extra
multiplication to reveal which bits of the private exponent are 1.

Only a minority of cryptographic libraries implement effective defenses
against timing attacks, let alone against such power-analysis attacks.

Small Exponents for Faster Public-Key Operations

Because an RSA computation is essentially the computation of an
exponentiation, its performance depends on the value of the exponents used.
Smaller exponents require fewer multiplications and therefore can make the
exponentiation computation much faster.

The public exponent e can in principle be any value between 3 and ¢(z) — 1, as
long as e and Q() are co-prime. But in practice you’ll only find small values of e,
and most of the time e = 65537 due to concerns with encryption and signature
verification speed. For example, the Microsoft Windows CryptoAPI only
supports public exponents that fit in a 32-bit integer. The larger the e, the slower
it is to compute x° mod 7.

Unlike the size of the public exponent, the private exponent 4 will be about as
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large as 7, making decryption much slower than encryption, and signing much
slower than verification. Indeed, because 4 is secret, it must be unpredictable and
therefore can’t be restricted to a small value. For example, if ¢ is fixed to 65537,
the corresponding 4 will usually be of the same order of magnitude as the

modulus 7, which would be close to 229%8 if » is 2048 bits long.

As discussed in “Fast Exponentiation Algorithm: Square-and-Multiply” on
page 192, raising a number to the power 65537 will only take 17 multiplications,
whereas raising a number to the power of some 2048-bit number will take on the
order of 3000 multiplications.

One way to determine the actual speed of RSA is to use the OpenSSL toolkit.
For example, Listing 10-6 shows the results of 512-, 1024-, 2048-, and 4096-bit

RSA operations on my MacBook, which is equipped with an Intel Core i5-
5257U clocked at 2.7 GHz.

$ openssl speed rsa512 rsal024 rsa2048 rsa4096
Doing 512 bit private rsa's for 10s: 161476 512 bit private RSA's in 9.59s
Doing 512 bit public rsa's for 10s: 1875805 512 bit public RSA's in 9.68s
Doing 1024 bit private rsa's for 10s: 51500 1024 bit private RSA's in 8.97s
Doing 1024 bit public rsa's for 10s: 715835 1024 bit public RSA's in 8.45s
Doing 2048 bit private rsa's for 10s: 13111 2048 bit private RSA's in 9.65s
Doing 2048 bit public rsa's for 10s: 288772 2048 bit public RSA's in 9.68s
Doing 4096 bit private rsa's for 10s: 1273 4096 bit private RSA's in 9.71s
Doing 4096 bit public rsa's for 10s: 63987 4096 bit public RSA's in 8.50s
OpenSSL 1.0.2g 1 Mar 2016
--snip--

sign verify sign/s verify/s
rsa 512 bits 0.000059s 0.000005s 16838.0 193781.5
rsa 1024 bits 0.000174s 0.000012s 5741.4 84714.2
rsa 2048 bits 0.000736s 0.000034s 1358.7 29831.8
rsa 4096 bits 0.007628s 0.000133s 131.1 7527.9

Listing 10-6: Benchmarks of RSA operations using the OpenSSL toolkit

How much slower is verification compared to signature generation? To get an
idea, we can compute the ratio of the verification time over signature time. The
benchmarks in Listing 10-6 show that I've got verification-over-signature speed
ratios of approximately 11.51, 14.75, 21.96, and 57.42 for 512-, 1024-, 2048-,
and 4096-bit moduli sizes, respectively. The gap grows with the modulus size
because the number of multiplications for e operations will remain constant with
respect to the modulus size (for example, 17 when e = 65537), while private-key
operations will always need more multiplications for a greater modulus because 4
will grow accordingly.



But if small exponents are so nice, why use 65537 and not something like 3? It
would actually be fine (and faster) to use 3 as an exponent when implementing
RSA with a secure scheme such as OAEP, PSS, or FDH. Cryptographers avoid
doing so, however, because when ¢ = 3, less secure schemes make certain types of
mathematical attacks possible. The number 65537 is large enough to avoid such
low-exponent attacks, and it has just one instance in which a bit is 1, thanks to its
low Hamming weight, which decreases the computational time. 65537 is also
special for mathematicians: it’s the fourth Fermat number, or a number of the
form

20m + 1

because it’s equal to 2'6 + 1, where 16 = 2%, but that’s just a curiosity mostly
irrelevant for cryptographic engineers.

The Chinese Remainder Theorem

The most common trick to speed up decryption and signature verification (that
is, the computation of y? mod #) is the Chinese remainder theorem (CRT). It makes
RSA about four times faster.

The Chinese remainder theorem allows for faster decryption by computing
two exponentiations, modulo p and modulo ¢, rather than simply modulo 7.
Because p and ¢ are much smaller than #z, it’s faster to perform two “small”
exponentiations than a single “big” one.

The Chinese remainder theorem isn’t specific to RSA. It’s a general
arithmetic result that, in its simplest form, states that if » = n;mn5 . . . , where
the n;s are pairwise co-prime (that is, GCD(n;, ) = 1 for any distinct 7 and j),
then the value x mod 7 can be computed from the values x mod 7, x mod #,, x
mod 73, . . . . For example, say we have n = 1155, which we write as the product

of prime factors 3 x 5 x 7 x 11. We want to determine the number « that satisfies
xmod3=2,xmod5 =1, xmod 7 =6, and x mod 11 = 8. (I've chosen 2, 1, 6,
and 8 arbitrarily.)

To find x using the Chinese remainder theorem, we can compute the sum
P(ny) + P(n,) + . . ., where P(n,) is defined as follows:

P(n;)=(xmodn;)*n/n;x(1/(n/n;))modn;) modn



Note that the second term, n/n,, is equal to the product of all other factors
than this #,.
To apply this formula to our example and recover our ¥ mod 1155, we take

the arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(8); and
then we add them together to get the following expression:

2><385><(1;”385m0c13)+1><231><(1;’231m0d5)+6 P
mod n
x 165 x (1/165 mod 7) + 8 x 105 x (1/105 mod 11)

Here, I've just applied the preceding definition of P(n,). (The math behind the
way each number was found is straightforward, but I won’t detail it here.) This
expression can then be reduced to [770 + 231 + 1980 + 1680] mod 7 = 41, and

indeed 41 is the number I had picked for this example, so we’ve got the correct
result.

Applying the CRT to RSA is simpler than the previous example, because there
are only two factors for each # (namely p and ¢). Given a ciphertext y to decrypt,

instead of computing y¢ mod 7, you use the CRT to compute x, =y mod p,
where s = d mod (p - 1) and xy = y' mod ¢, where ¢ = d mod (g - 1). You now

combine these two expressions and compute x to be the following:
x =x, % q % (1/g mod p) +x,x p > (1/p mod ¢g) mod n

And that’s it. This is faster than square-and-multiply because the
multiplication-heavy operations are carried out on modulo p and ¢, numbers that
are twice as small as 7.

NOTE

In the final operation, the two numbers q x (1/q mod p) and p x (1/p mod q) can be
computed in advance, which means only two multiplications and an addition of
modulo n need to be computed to find x.

Unfortunately, there’s a security caveat attached to these techniques, as I'll
discuss next.

How Things Can Go Wrong



Even more beautiful than the RSA scheme itself is the range of attacks that work
either because the implementation leaks (or can be made to leak) information on
its internals or because RSA is used insecurely. I discuss two classic examples of
these types of attacks in the sections that follow.

The Bellcore Attack on RSA-CRT

The Bellcore attack on RSA is one of the most important attacks in the history
of RSA. When first discovered in 1996, it stood out because it exploited RSA’s
vulnerability to fault injections—attacks that force a part of the algorithm to
misbehave and thus yield incorrect results. For example, hardware circuits or
embedded systems can be temporarily perturbed by suddenly altering their
voltage supply or by beaming a laser pulse to a carefully chosen part of a chip.
Attackers can then exploit the resulting faults in an algorithm’s internal
operation by observing the impact on the final result. For example, comparing
the correct result with a faulty one can provide information on the algorithm’s
internal values, including secret values.

The Bellcore attack is such a fault attack. It works on RSA signature schemes
that use the Chinese remainder theorem and that are deterministic—meaning
that it works on FDH, but not on PSS, which is probabilistic.

To understand how the Bellcore attack works, recall from the previous section
that with CRT, the result that is equal to 44 mod # is obtained by computing the

following, where x, = y’ mod p and x, = y' mod ¢:
x =x, % q % (1/qg mod p) +x,x p > (1/p mod ¢g) mod n

Now assume that an attacker induces a fault in the computation of x, so that
you end up with some incorrect value, which differs from the actual x,. Let’s call

this incorrect value xq' and call the final result obtained x’. The attacker can then

subtract the incorrect signature x” from the correct signature x to factor », which
results in the following:

x—x = (x, —x,) *x p *(1/p mod g) mod n

The value x — x’ is therefore a multiple of p, so p is a divisor of x — x’. Because
p is also a divisor of 7, the greatest common divisor of 7 and x — x" yields p,
GCD(x — &', n) = p. We can then compute ¢ = #/p and d, resulting in a total



break of RSA signatures.

A variant of this attack works when you don’t know the correct signature but
only know the message is signed. There’s also a similar fault attack on the
modulus value, rather than on the CRT values computation, but I won’t go into
detail on that here.

Sharing Private Exponents or Moduli

Now I’ll show you why your public key shouldn’t have the same modulus 7 as
that of someone else.

Different private keys belonging to different systems or persons should
obviously have different private exponents, d, even if the keys use different
moduli, or you could try your own value of 4 to decrypt messages encrypted for
other entities, until you hit one that shares the same d. By the same token,
different key pairs should have different » values, even if they have different ds,
because p and ¢ are usually part of the private key. Hence, if we share the same »
and thus the same p and ¢, I can compute your private key from your public key ¢
using p and g.

What if my private key is simply the pair (n, d;), and your private key is (», d,)
and your public key is (n, e;)? Say that I know 7z but not p and ¢, so I can’t
directly compute your private exponent 4, from your public exponent e,. How
would you compute p and ¢ from a private exponent 4 only? The solution is a bit
technical, but elegant.

Remember that d and e satisfy ed = kp(n) + 1, where p(n) is secret and could
give us p and ¢ directly. We don’t know & or @(n), but we can compute ,Q(n) =
ed— 1.

What can we do with this value #Q(#)? A first observation is that, according to
Euler’s theorem, we know that for any number # co-prime with #, 29() = 1 mod

n. Therefore, modulo # we have the following:

akgo(n) — (a(p(n))k =1k=1

A second observation is that, because k() is an even number, we can write it
as 2°t for some numbers s and #. That is, we’ll be able to write 2™ = 1 mod »

under the form x* = 1 mod 7 for some x easily computed from k(). Such an x
is called a root of unity.



The key observation is that > = 1 mod # is equivalent to saying that the value
x> =1 =(x — 1)(x + 1) divides #. In other words, x — 1 or x + 1 must have a
common factor with z, which can give us the factorization of #.

Listing 10-7 shows a Python implementation of this method where, in order
to find the factors p and ¢ from 7 and d, we use small, 64-bit numbers for the
sake of simplicity.

from math import gcd

n = 36567232109354321
e = 13771927877214701
d = 15417970063428857
@ kphi = d*e - 1
t = kphti

O while t % 2 == 0:
t = divmod(t, 2)[0]

® a=2
while a < 100:
O k=t

while k < kphti:
x = pow(a, k, n)

®@ if x ' =1and x ! = (n - 1) and pow(x, 2, n) == 1:
® p =gcd(x - 1, n)
break
k = k*2
a=a+?2
q=n//p

© assert (p*q) == n

print('p ="', p)
print('q » Q)

Listing 10-7: A python program that computes the prime factors p and q from the private
exponent d

This program determines #Q(n) from e and d @ by finding the number # such
that k(n) = 2°t, for some s ®. Then it looks for # and % such that (#¥)? = 1 mod »
®, using ¢ as a starting point for £ @. When this condition is satisfied &, we’ve
found a solution. It then determines the factor p ® and verifies @ that the value
of pg equals the value of z. It then prints the resulting values of p and ¢:



2046223079
17870599

falhol

The program correctly returns the two factors.

Further Reading

RSA deserves a book by itself. I had to omit many important and interesting
topics, such as Bleichenbacher’s padding oracle attack on OAEP’s predecessor
(the standard PKCS#1 v1.5), an attack similar in spirit to the padding oracle
attack on block ciphers seen in Chapter 4. There’s also Wiener’s attack on RSA
with low private exponents, and attacks using Coppersmith’s method on RSA
with small exponents that potentially also have insecure padding.

To see research results related to side-channel attacks and defenses, view the
CHES  workshop  proceedings that have run since 1999 at
http://www.chesworkshop.org/. One of the most useful references while writing this
chapter was Boneh’s “I'wenty Years of Attacks on the RSA Cryptosystem,” a
survey that reviews and explains the most important attacks on RSA. For
reference specifically on timing attacks, the paper “Remote Timing Attacks Are
Practical” by Brumley and Boneh, is a must-read, both for its analytical and
experimental contributions. To learn more about fault attacks, read the full
version of the Bellcore attack paper “On the Importance of Eliminating Errors
in Cryptographic Computations” by Boneh, DeMillo, and Lipton.

The best way to learn how RSA implementations work, though sometimes
painful and frustrating, is to review the source code of widely used
implementations. For example, see RSA and its underlying big-number
arithmetic implementations in OpenSSL, in NSS (the library used by the
Morzilla Firefox browser), in Crypto++, or in other popular software, and
examine their implementations of arithmetic operations as well as their defenses
against timing and fault attacks.
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11
DIFFIE-HELLMAN

In November 1976, Stanford researchers Whitfield Diffie and Martin Hellman
published a research paper titled “New Directions in Cryptography” that
revolutionized cryptography forever. In their paper, they introduced the notion
of public-key encryption and signatures, though they didn’t actually have any of
those schemes; they simply had what they termed a public-key distribution scheme,
a protocol that allows two parties to establish a shared secret by exchanging

information visible to an eavesdropper. This protocol is now known as the
Diffie—Hellman (DH) protocol.

Prior to Diffie-Hellman, establishing a shared secret required performing
tedious procedures such as manually exchanging sealed envelopes. Once
communicating parties have established a shared secret value with the DH
protocol, that secret can be used to establish a secure channel by turning the secret
into one or more symmetric keys that are then used to encrypt and authenticate
subsequent communication. The DH protocol—and its variants—are therefore
called key agreement protocols.

In the first part of this chapter, I review the mathematical foundations of the
Diffie-Hellman protocol, including the computational problems that DH relies
on to perform its magic. I then describe different versions of the Diffie-Hellman
protocol used to create secure channels in the second part of this chapter.
Finally, because Diffie-Hellman schemes are only secure when their parameters
are well chosen, I conclude the chapter by examining scenarios where Diffie—
Hellman can fail.

Diffie and Hellman received the prestigious Turing Award in 2015 for their



invention of public-key cryptography and digital signatures, but others deserve credit
as well. In 1974, two years before the seminal Diffie—Hellman paper, computer
scientist Ralph Merkle introduced the idea of public-key cryptography with what are
now called Merkle’s puzzles. Around that same vyear, researchers at GCHQ
(Government Communications Headgquarters), the British equivalent of the NSA,
had also discovered the principles bebind RSA and Diffie—Hellman key agreement,
though that fact would only be declassified decades later.

The Diffie—Hellman Function

In order to understand DH key agreement protocols, you must first understand
their core operation, the DH function. The DH function will usually work with

groups denoted Zp*. Recall from Chapter 9 that these groups are formed of

nonzero integer numbers modulo a prime number, denoted p. Another public
parameter is the base number, g. All arithmetic operations are performed modulo
p.

The DH function involves two private values chosen randomly by the two
communicating parties from the group Zp*, denoted # and b. A private value #

has a public value associated with 4 = g* mod p, or g raised to the power #
modulo p. This value is sent to the other party through a message that is visible
to eavesdroppers. The public value associated with & is B = ¢’ mod p, or g raised
to the power # modulo p, which is sent to the owner of # through a publicly
readable message.

DH works its magic by combining either public value with the other private
value, such that the result is the same in both cases: A” = (g%)? = ¢” and B “ = (¢*)*
= g% = g 'The resulting value, g%, is the shared secret; it is then passed to a key
derivation function (KDF) in order to generate one or more shared symmetric
keys. A KDF is a kind of hash function that will return a random-looking string
the size of the desired key length.

And that’s it. Like many great scientific discoveries (gravity, relativity,
quantum computing, or RSA), the Diffie-Hellman trick is terribly simple in
hindsight.

Diffie-Hellman’s simplicity can be deceiving, however. For one thing, it won’t
work with just any prime p or base number g. For example, some values of g will
restrict the shared secrets g to a small subset of possible values, whereas you’d



expect to have about as many possible values as elements in Z,", and therefore as

many possible values for the shared secret. To ensure the highest security, safe
DH parameters should work with a prime p such that (p — 1) / 2 is also prime.
Such a safe prime guarantees that the group doesn’t have small subgroups that
would make DH easier to break. With a safe prime, DH can notably work with g
= 2, which makes computations slightly faster. But generating a safe prime p
takes more time than generating a totally random prime.

For example, the dhparam command of the OpenSSL toolkit will only generate
safe DH parameters, but the extra checks built into the algorithm result increase
the execution time considerably, as shown in Listing 11-1.

$ time openssl dhparam 2048

Generating DH parameters, 2048 bit long safe prime, generator 2
This 1s going to take a long time

--snip--

----- BEGIN DH PARAMETERS-----
MIIBCAKCAQEA0SIbyA9e844q7V89rcoEV8vd/12svwhIIjGIEPWWWr7FkfYhYkU9
fRNttmilGCTfxc9EDf+4dzw+AbRBCc600L9gxUoPn0d1/G/YDYgyplF5M3xeswqea
SD+B7628pWTaCZGKZham7vmiN8azGeaYAucckTkjVWceHVIVXe5fvU74k7+C2wKk
11yMFm8th2zm9IW/shiKNV2+SsHtD6r3ZC2/hfu7Xd0I4iT61se83YicU/cRaDmK6
zgBKn3S1CjwL4M3+m1J+VhOUFz /nWTJ1IWAVC+aoLK8upgRgApOgHkVqzP /CgwBw
XAOE8NncQqroJOmUSB5eLqfpAvyBWpkrwQwIBAg==

----- END DH PARAMETERS-----

openssl dhparam 2048 154.53s user 0.86s system 99% cpu 2:36.85 total

Listing 11-1: Measuring the execution time of generating 2048-bit Diffie—-Hellman
parameters with the OpenSSL toolkit

As you can see in Listing 11-1, it took 154.53 seconds to generate the DH
parameters using the OpenSSL toolkit. Now, for the sake of comparison, Listing
11-2 shows how long it takes on the same system to generate RSA parameters of
the same size (that is, two prime numbers, p and ¢, each half the size of the p
used for DH).

$ time openssl genrsa 2048
Generating RSA private key, 2048 bit long modulus

e 1s 65537 (0x10001)

----- BEGIN RSA PRIVATE KEY-----

--snip--

----- END RSA PRIVATE KEY-----

openssl genrsa 2048 0.16s user 0.01s system 95% cpu 0.171 total




Listing 11-2: Generating 2048-bit RSA parameters while measuring the execution time

Generating DH parameters took about 1000 times longer than generating
RSA parameters of the same security level, mainly due to the extra constraint
imposed on the prime generated to create DH parameters.

The Diffie—Hellman Problems

The security of DH protocols relies on the hardness of computational problems,
especially on that of the discrete logarithm problem (DLP) introduced in
Chapter 9. Clearly, DH can be broken by recovering the private value # from its
public value g#, which boils down to solving a DLP instance. But we don’t care
only about the discrete logarithm problem when using DH to compute shared
secrets. We also care about two DH-specific problems, as explained next.

The Computational Diffie-Hellman Problem

The computational Diffie—Hellman (CDH) problem is that of computing the
shared secret g given only the public values g” and g?, and not any of the secret
values # or b. The motivation is obviously to ensure that even if an eavesdropper
captures g” and g”, they should not be able to determine the shared secret g®.

If you can solve DLP, then you can also solve CDHj to put it simply, if you
can solve DLP, then given g and g/, you’ll be able to derive # and 4 to compute
g"b. In other words, DLP is at least as hard as CDH. But we don’t know for sure
whether CDH is at least as hard as DLP, which would make the problems
equally hard. In other words, DLP is to CDH what the factoring problem is to
the RSA problem. (Recall that factoring allows you to solve the RSA problem,
but not necessarily the converse.)

Diffie-Hellman shares another similarity with RSA in that DH will deliver the
same security level as RSA for a given modulus size. For example, the DH
protocol with a 2048-bit prime p will get you about the same security that RSA
with a 2048-bit modulus 7 offers, which is about 90 bits. Indeed, the fastest way
we know to break CDH is to solve DLP using an algorithm called the number
field sieve, a method similar but not identical to the fastest one that breaks RSA
by factoring its modulus: the general number field sieve (GNFS).

The Decisional Diffie—Hellman Problem

Sometimes we need something stronger than CDH’s hardness assumption. For



example, imagine that an attacker can compute the first 32 bits of g% given the
2048-bit values of g” and g”, but that they can’t compute all 2048 bits. Although
CDH would still be unbroken because 32 bits aren’t enough to completely
recover g the attacker would still have learned something about the shared
secret, which might still allow them to compromise an application’s security.

To ensure that an attacker can’t learn anything about the shared secret g,
this value needs only to be indistinguishable from a random group element, just
as an encryption scheme is secure when ciphertexts are indistinguishable from
random strings. The computational problem formalizing this intuition is called
the decisional Diffie~Hellman (DDH) problem. Given g“, ¢%, and a value that is
either g or g* for some random ¢ (each of the two with a chance of 1/2), the
DDH problem consists of determining whether g% (the shared secret
corresponding to g’ and g’) was chosen. The assumption that no attacker can
solve DDH efficiently is called the decisional Diffie—Hellman assumption.

If DDH is hard, then CDH is also hard, and you can’t learn anything about
¢, But if you can solve CDH, you can also solve DDH: given a triplet (g“, g,
), you would be able to derive g’ from g” and g” and check whether the result is
equal to the given g‘. The bottom line is that DDH is fundamentally less hard
than CDH, yet DDH hardness is a prime assumption in cryptography, and one
of the most studied. We can be confident that both CDH and DDH are hard
when Diffie—-Hellman parameters are well chosen.

More Diffie—Hellman Problems

Sometimes cryptographers devise new schemes and prove that they are at least as
hard to break as it is to solve some problem related to CDH or DDH but not
identical to either of these. Ideally, we’d like to demonstrate that breaking a
cryptosystem is as hard as solving CDH or DDH, but this isn’t always possible
with advanced cryptographic mechanisms, typically because such schemes
involve more complex operations than basic Diffie-Hellman protocols.

For example, in one DH-like problem, given g”, an attacker would attempt to

1/a

compute g/ %, where 1 / 4 is the inverse of # in the group (typically Zp* for some

prime p). In another, an attacker might distinguish the pairs (¢%, g*) from the

pairs (g, g!' / %) for random # and &. Finally, in what is called the twin Diffie—
Hellman problem, given g, ¢’, and g*, an attacker would attempt to compute the



two values g” and g”. Sometimes such DH variants turn out to be as hard as
CDH or DDH, and sometimes they’re fundamentally easier—and therefore

provide lower security guarantees. As an exercise, try to find connections
between the hardness of these problems and that of CDH and DDH. (Twin
Diffie-Hellman is actually s hard as CDH, but that isn’t easy to prove!)

Key Agreement Protocols

The Diffie-Hellman problem is designed to build secure key agreement
protocols—protocols designed to secure communication between two or more
parties communicating over a network with the aid of a shared secret. This
secret is turned into one or more session keys—symmetric keys used to encrypt
and authenticate the information exchanged for the duration of the session. But
before studying actual DH protocols, you should know what makes a key
agreement protocol secure or insecure, and how simpler protocols work. We’ll

begin our discussion with a widely used key agreement protocol that doesn’t rely
on DH.

An Example of Non-DH Key Agreement

To give you a sense of how a key agreement protocol works and what it means
for it to be secure, let’s look at the protocol used in the 3G and 4G
telecommunications standards to establish communication between a SIM card
and a telecom operator. The protocol is often referred to as AKA, for
authenticated key agreement. It doesn’t use the Diffie-Hellman function, but
instead uses only symmetric-key operations. The details are a bit boring, but
essentially the protocol works as shown in Figure 11-1.



Operator Messages visible SIM card
(knows the SIM's key, K) to an attacker (holds a secret key, K)

Pick a random value, R.

'

Compute the two values: :
N Using R, compute SK = PRFO (K, R)
-SK - PRFD [K; E] — | S'End R ﬂnd V]. — - ﬂnd ‘ferih’r H_.C“ v] et PRF-I [K, E]

V, = PRF1 (K, R)

Verify that V, = PRF2 (K, R). f«¢——— Send V. f«#———— Compute V, = PRF2 (K, R).

'

Enable communications
using keys SK.

Figure 11-1: The authenticated key agreement protocol in 3G and 4G telecommunication

In this implementation of the protocol, the SIM card has a secret key, K, that
the operator knows. The operator begins the session by selecting a random
value, R, and then computes two values, SK and V|, based on two pseudorandom

functions, PRF0 and PRF1. Next, the operator sends a message to the SIM card
containing the values R and Vj, which are visible to attackers. Once the SIM

card has R, it has what it needs in order to compute SK with PRFO0, and it does
so. The two parties in this session end up with a shared key, SK, that attackers
are unable to determine by simply looking at the messages exchanged between
the parties, or even by modifying them or injecting new ones. The SIM card
verifies that it’s talking to the operator by recomputing '} with PRF1, K, and R,

and then checking to make sure that the calculated V/; matches the V/; sent by
the operator. The SIM card then computes a verification value, V,, with a new
function, PRF2, with K and R as input, and sends }’, to the operator. The
operator verifies that the SIM card knows K by computing }; and checking that
the computed value matches the V it received.

But this protocol is not immune to all kinds of attacks: in principle there’s a

way to fool the SIM card with a replay attack. Essentially, if an attacker captures
a pair (R, V), they may send it to the SIM card and trick the SIM into believing

that the pair came from a legitimate operator that knows K. To prevent this
attack, the protocol includes additional checks to ensure that the same R isn’t



reused.

Problems can also arise if K is compromised. For example, an attacker who
compromises K can perform a man-in-the-middle attack and listen to all
cleartext communication. Such an attacker could send messages between the two
parties while pretending to be both the legitimate SIM card operator and the
SIM card. The greater risk is that an attacker can record communications and
any messages exchanged during the key agreement, and later decrypt those
communications by using the captured R values. An attacker could then
determine the past session keys and use them to decrypt the recorded traffic.

Attack Models for Key Agreement Protocols

There is no single definition of security for key agreement protocols, and you
can never say that a key protocol is completely secure without context and
without considering the attack model and the security goals. You can, for
example, argue that the previous 3G/4G protocol is secure because a passive
attacker won’t find the session keys, but you could also argue that it’s insecure
because once the key K leaks, then all previous and future communications are
compromised.

There are different notions of security in key agreement protocols as well as
three main attack models that depend on the information the protocol leaks.
From weakest to strongest, these are the eavesdropper, the data leak, and the
breach:

The eavesdropper This attacker observes the messages exchanged between
the two legitimate parties running a key agreement protocol and can record,
modify, drop, or inject messages. To protect against an eavesdropper, a key
agreement protocol must not leak any information on the shared secret

established.

The data leak In this model, the attacker acquires the session key and all
temporary secrets (such as SK in the telecom protocol example discussed
previously) from one or more executions of the protocol, but not the long-
term secrets (like K in that same protocol).

The breach (or corruption) In this model, the attacker learns the long-term
key of one or more of the parties. Once a breach occurs, security is no longer
attainable because the attacker can impersonate one or both parties in
subsequent sessions of the protocol. Nonetheless, the attacker shouldn’t be



able to recover secrets from sessions executed before gathering the key.

Now that we’ve looked at the attack models and seen what an attacker can do,
let’s explore the security goals—that is, the security guarantees that the protocol
should offer. A key agreement protocol can be designed to satisfy several security
goals. The four most relevant ones are described here, in order from simplest to
most sophisticated.

Authentication Each party should be able to authenticate the other party.
That is, the protocol should allow for mutual authentication. Authenticated key
agreement (AKA) occurs when a protocol authenticates both parties.

Key control Neither party should be able to choose the final shared secret or
coerce it to be in a specific subset. The 3G/4G key agreement protocol
discussed earlier lacks this property because the operator chooses the value for
R that entirely determines the final shared key.

Forward secrecy This is the assurance that even if all long-term secrets are
exposed, shared secrets from previous executions of the protocol won’t be able
to be computed, even if an attacker records all previous executions or is able
to inject or modify messages from previous executions. A forward-secret
protocol guarantees that even if you have to deliver your devices and their
secrets to some authority or other, they won’t be able to decrypt your prior
encrypted communications. (The 3G/4G key agreement protocol doesn’t
provide forward secrecy.)

Resistance to key-compromise impersonation (KCI) KCI occurs when an
attacker compromises a party’s long-term key and is able to use it to
impersonate another party. For example, the 3G/4G key agreement protocol
allows trivial key-compromise impersonation because both parties share the
same key K. A key agreement protocol should ideally prevent this kind of
attack.

Performance

To be useful, a key agreement protocol should be not only secure but also
efficient. Several factors should be taken into account when considering a key
agreement protocol’s efficiency, including the number of messages exchanged,
the length and number of messages, the computational effort to implement the
protocol, and whether precomputations can be made to save time. A protocol is



generally more efficient if fewer, shorter messages are exchanged, and it’s best if
interactivity is kept minimal so that neither party has to wait to receive a
message before sending the next one. A common measure of a protocol’s
efficiency is its duration in terms of round trips, or the time it takes to send a
message and receive a response.

Round-trip time is usually the main cause of latency in protocols, but the
amount of computation to be carried out also counts; the fewer the
computations required the better, and the more precomputations that can be
done in advance, the better.

For example, the 3G/4G key agreement protocol discussed earlier exchanges
two messages of a few hundred bits each, which must be sent in a certain order.
Pre-computation can be used with this protocol to save time since the operator
can pick many values of R in advance; precompute the matching values of SK,
V|, and V5; and store them all in a database. In this case, precomputation has the

advantage of reducing the exposure of the long-term key.

Diffie—Hellman Protocols

The Diffie-Hellman function is the core of most of the deployed public-key
agreement protocols. However, there is no single Diffie-Hellman protocol, but
rather a variety of ways to use the DH function in order to establish a shared
secret. We'll review three of those protocols in the sections that follow. In each
discussion, I'll stick to the usual crypto placeholder names and call the two
parties Alice and Bob, and the attacker Eve. I'll write g as the basis of the group
used for arithmetic operations, a value fixed and known in advance to Alice and

Bob.

Anonymous Diffie—Hellman

Anonymous Diffie—Hellman is the simplest of the Diffie-Hellman protocols. It’s
called anonymous because it’s not authenticated; the participants have no
identity that can be verified by either party, and neither party holds a long-term
key. Alice can’t prove to Bob that she’s Alice, and vice versa.

In anonymous Diffie-Hellman, each party picks a random value (2 for Alice
and b for Bob) to use as a private key, and sends the corresponding public key to
the other peer. Figure 11-2 shows the process in a bit more detail.



Alice Messages visible Bob

Pick @ random to an attacker Pick a random
exponent a. exponent b.
Set A = g©. | Send A. ——m| Compute AP = [gof = gob.
Compute B° = (g°)° = g** = g*. |¢——] Send B. Set B = g°.

Figure 11-2: The anonymous Diffie-Hellman protocol

As you can see, Alice uses her exponent # and the group basis g to compute A
= g, which she sends to Bob. Bob receives 4 and computes 4%, which is equal to
(g¢”)’. Bob now obtains the value g” and computes B from his random exponent &
and the value g. He then sends B to Alice and she uses it to compute g”. Alice
and Bob end up with the same value, g?, after performing similar operations,
which involve raising both g and the value received to their private exponent’s
power. Pure, simple, but only secure against the laziest of attackers.

Anonymous DH can be taken down with a man-in-the-middle attack. An
eavesdropper simply needs to intercept messages and pretend to be Bob (to
Alice) and pretend to be Alice (to Bob), as shown in Figure 11-3.



Alice Attacker Eve Bob

Pick @ random Pick a random
exponent a. exponent b.
Set A = g°. | Drop A.
Pick a random Believes he received
exponent c. — C from Alice.
Send C = g to Bob. Compute C? = [go]b = gt=.

|

-——— SetB =g,

Drop B.
Compute B® = g,

'

Pick a random

- - exponent d.
Compute D° = (g7} = g~. = Compute A® = g™.

Send D = g to Alice.

Figure 11-3: A man-in-the-middle attack on the anonymous Diffie-Hellman protocol

As in the previous exchange, Alice and Bob pick random exponents, # and 5.
Alice now computes and sends A, but Eve intercepts and drops the message. Eve
then picks a random exponent, ¢, and computes C = g° to send to Bob. Because
this protocol has no authentication, Bob believes he is receiving C from Alice
and goes on to compute g%. Bob then computes B and sends that value to Alice,
but Eve intercepts and drops the message again. Eve now computes g%, picks a
new exponent, d, computes g’¢, computes D from g% and sends D to Alice. Alice
then computes g as well.

As a result of this attack, the attacker Eve ends up sharing a secret with Alice
(g"%) and another secret with Bob (¢%), though Alice and Bob believe that they’re
sharing a single secret with each other. After completing the protocol execution,
Alice will derive symmetric keys from g in order to encrypt data sent to Bob,
but Eve will intercept the encrypted messages, decrypt them, and re-encrypt
them to Bob using another set of keys derived from g¥—after potentially
modifying the cleartext. All of this happens with Alice and Bob unaware. That is,
they’re doomed.



To foil this attack, you need a way to authenticate the parties so that Alice can
prove that she’s the real Alice and Bob can prove that he’s the real Bob.
Fortunately, there is a way to do so.

Authenticated Diffie—Hellman

Authenticated Diffie—Hellman was developed to address the sort of man-in-the-
middle attacks that can affect anonymous DH. Authenticated DH equips the two
parties with both a private and a public key, thereby allowing Alice and Bob to
sign their messages in order to stop Eve from sending messages on their behalf.
Here, the signatures aren’t computed with a DH function, but a public-key
signature scheme such as RSA-PSS. As a result, in order to successfully send
messages on behalf of Alice, an attacker would need to forge a valid signature,
which is impossible with a secure signature scheme.

Figure 11-4 shows how authenticated DH works.

Alice (priv,, pub,) Messages visible Bob (priv,, pub,)
Pick a random et Pick a random
exponent a. exponent b.
Sef A+= 7 Verify sig, using pub,.

Set sig, = sign(priv,, A). — | Send A and sig,. [ Abéijéﬁf;ﬁﬁ:l;;;}js:i;ghd.

Y

Verify sig, using pub,. Set B = g*
Abort if the signature is invalid. |«¢— Send B and sig,. |-e—— i sig-n {P‘;FVB: B).

Compute B = [gf)o = gPo = g.
Figure 11-4: The authenticated Diffie—Hellman protocol

The Alice (priv4, pubp) label on the first line means that Alice holds her own
private key, priv4, as well as Bob’s public key, pubp. This sort of priv/pub key pair

is called a Jlomg-term key because it’s fixed in advance and remains constant
through consecutive runs of the protocol. Of course, these long-term private
keys should be kept secret, while the public keys are considered to be known to
an attacker.

Alice and Bob begin by picking random exponents, # and 4, as in anonymous
DH. Alice then calculates 4 and a signature sig4 based on a combination of her



signing function sign, her private key priv4, and A. Now Alice sends A and sig4
to Bob, who verifies sig, with her public key pub 4. If the signature is invalid, Bob
knows that the message didn’t come from Alice, and he discards A.

If the signature is correct, Bob will compute g? from A and his random
exponent b. He would then compute B and his own signature from a
combination of the sign function, his private key privp, and B. Now he sends B

and sigp to Alice, who attempts to verify sigp with Bob’s public key pubp. Alice
will only compute g?” if Bob’s signature is successfully verified.

Security Against Eavesdroppers

Authenticated DH is secure against eavesdroppers because attackers can’t learn
any bit of information on the shared secret g since they ignore the DH
exponents. Authenticated DH also provides forward secrecy: even if an attacker
corrupts any of the parties at some point, as in the breach attack model discussed
earlier, they would learn the private signing keys but not any of the ephemeral
DH exponents; hence, they’d be unable to learn the value of any previously
shared secrets.

Authenticated DH also prevents any party from controlling the value of the
shared secret. Alice can’t craft a special value of # in order to predict the value of
g” because she doesn’t control 4, which influences g’ as much as # does. (One
exception would be if Alice were to choose = 0, in which case we’d have g = 1
for any 4. But 0 isn’t an authorized value and should be rejected by the protocol.)

That said, authenticated DH isn’t secure against all types of attack. For one
thing, Eve can record previous values of A and sig 4 and replay them later to Bob,

in order to pretend to be Alice. Bob will then believe that he’s sharing a secret
with Alice when he isn’t, even though Eve would not be able to learn that secret.
This risk is eliminated in practice by adding a procedure called key confirmation,
wherein Alice and Bob prove to each other that they own the shared secret. For
example, Alice and Bob may perform key confirmation by sending respectively

Hash(pub, || pubp, g**) and Hash(puby || pub,, ¢*) for some hash function
Hash; when Bob receives Hash(pub 4 | | pubg, g*) and Alice receives Hash(puby
|| pub,, g, both can verify the correctness of these hash values using pub
pubp, and g”. The different order of public keys (pub, | | pubg and pubg || pub )



ensures that Alice and Bob will send different values, and that an attacker can’t
pretend to be Alice by copying Bob’s hash value.

Security Against Data Leaks

Authenticated DH’s vulnerability to data leak attackers is of greater concern. In
this type of attack, the attacker learns the value of ephemeral, short-term secrets
(namely, the exponents # and /) and uses that information to impersonate one of
the communicating parties. If Eve is able to learn the value of an exponent 4
along with the matching values of A and sig4 sent to Bob, she could initiate a

new execution of the protocol and impersonate Alice, as shown in Figure 11-5.

Attacker Eve (a, A, sig,, pub,) Bob (priv,, pub,)

Pick a random
exponent b.

Verify sig, using pub,.
—»| Send A and sig,. || Abort if the signature is invalid.
Compute A? = [g°)f = g*®.

Y

Verify sig, using pub,. SetB=g*
Abort if the signature is invalid. |=— Send B and sig,. |-— S aigs- signlprive; ]

Compuhe B = [fle = g= = g~

Figure 11-5: An impersonation attack on the authenticated Diffie—Hellman protocol

In this attack scenario, Eve learns the value of an 4 and replays the
corresponding A and its signature sig4, pretending to be Alice. Bob verifies the

signature and computes g’ from A4 and sends B and sigp, which Eve then uses to
compute g, using the stolen 4. This results in the two having a shared secret.

Bob now believes he is talking to Alice.

One way to make authenticated DH secure against the leak of ephemeral
secrets is to integrate the long-term keys into the shared secret computation so
that the shared secret can’t be determined without knowing the long-term
secret.

Menezes—Qu-Vanstone (MQV)
The Menezes—Qu—Vanstone (MQV) protocol is a milestone in the history of DH-



based protocols. Designed in 1998, MQV had been approved to protect most
critical assets when the NSA included it in its Suite B, a portfolio of algorithms
designed to protect classified information. (NSA eventually dropped MQYV,
allegedly because it wasn’t used. I’ll discuss the reasons why in a bit.)

MQV is Diffie-Hellman on steroids. It’s more secure than authenticated DH,
and it improves on authenticated DH’s performance properties. In particular,
MQV allows users to send only two messages, independently of each other, in
arbitrary order. Other benefits are that users can send shorter messages than
they would be able to with authenticated DH, and they don’t need to send
explicit signature or verification messages. In other words, you don’t need to use
a signature scheme in addition to the Diffie-Hellman function.

As with authenticated DH, in MQV Alice and Bob each hold a long-term
private key as well as the long-term public key of the other party. The difference
is that the MQV keys aren’t signing keys: the keys used in MQV are composed
of a private exponent, x, and a public value, g*. Figure 11-6 shows the operation

of the MQV protocol.

Alice [x, Y = g Messages visible Bob [y, X = ¢
Pick a random R Pick a random
exponent a. exponent b.

Set A =g°. p——————=| Send A. Set B = gb.
Compute (B x Y¥jo+x4 |-a——— Send B. >(Compuie (A% YA,

Figure 11-6: The MQV protocol

The x and y in Figure 11-6 are Alice and Bob’s respective long-term private
keys, and X and Y are their public keys. Bob and Alice start out with their own
private keys and each other’s public keys, which are g to the power of a private
key. Each chooses a random exponent, and then Alice calculates 4 and sends it
to Bob. Bob then calculates B and sends it to Alice. Once Alice gets Bob’s
ephemeral public key B, she combines it with her long-term private key x, her
ephemeral private key 4, and Bob’s long-term public key ¥ by calculating the
result of (B x Y?)*+*4 a5 defined in Figure 11-6. Developing this expression, we
obtain the following:



(B % YB)a +x4 — (gb % (gy)B)a +x4 — (gb +yB)a +x4 — g(b + yB)(a + xA4)

Meanwhile, Bob calculates the result of (4 x X)? +7B and we can verify that
it’s equal to the value calculated by Alice:

AXXA b+yB _ X A\b +yB — +xA\b +yB — (a+xA)b+yB) — ,(b+yB)a+xA)
( ) (g" > (g)7) &) g g

As you can see, we get the same value for both Alice and Bob, namely g 5
+x4) This tells us that Alice and Bob share the same secret.

Unlike authenticated DH, MQV can’t be broken by a mere leak of the
ephemeral secrets. Knowledge of # or # won’t let an attacker determine the final
shared secret because they would need the long-term private keys to compute it.

What happens in the strongest attack model, the breach model, where a long-
term key is compromised? If Eve compromises Alice’s long-term private key «x,
the previously established shared secrets are safe because their computation also
involved Alice’s ephemeral private keys.

However, MQV doesn’t provide perfect forward secrecy because of the
following attack. Say, for example, that Eve intercepts Alice’s A4 message and
replaces it with her A = g” for some # that Eve has chosen. In the meantime, Bob
sends B to Alice (and Eve records B’s value) and computes the shared key. If Eve
later compromises Alice’s long-term private key x, she can determine the key
that Bob had computed during this session. This breaks forward secrecy, since
Eve has now recovered the shared secret of a previous execution of the protocol.
In practice, however, the risk can be eliminated by a key-confirmation step that
would have Alice and Bob realize that they don’t share the same key, and they
would therefore abort the protocol before deriving any session keys.

Despite its elegance and security, MQV is rarely used in practice. One reason
is because it used to be encumbered by patents, which hampered its widespread
adoption. Another reason is that it’s harder than it looks to get MQV right in
practice. In fact, when weighed against its increased complexity, MQV’s security

benefits are often perceived as low in comparison to the simpler authenticated
DH.

How Things Can Go Wrong

Diffie-Hellman protocols can fail spectacularly in a variety of ways. I highlight



some of the most common ones in the next sections.

Not Hashing the Shared Secret

I've alluded to the fact that the shared secret that concludes a DH session
exchange (g” in our examples) is taken as input to derive session keys but is not a
key itself. And it shouldn’t be. A symmetric key should look random, and each
bit should either be 0 or 1 with the same probability. But g” is not a random
string; it’s a random element within some mathematical group whose bits may
be biased toward 0 or 1. And a random group element is different from a
random string of bits.

Imagine, for example, that we’re working within the multiplicative group Z3"
={1,2,3,..., 12} using g = 2 as a generator of the group, meaning that g’ spans
all values of Z;3 foriin1,2,...12: gl=2,g°=4,g=8,g%=13,and so on. If
¢’s exponent is random, you’ll get a random element of Z;3, but the encoding of
a Z,; element as a 4-bit string won’t be uniformly random: not all bits will have

the same probability of being a 0 or a 1. In Z,3, seven values have 0 as their

most significant bit (the numbers from 1 to 7 in the group), but only five have 1
as their most significant bit (from 8 to 12). That is, this bit is O with probability 7
/ 12 = 0.58, whereas, ideally, a random bit should be 0 with probability 0.5.
Moreover, the 4-bit sequences 1101, 1110, and 1111 will never appear.

T'o avoid such biases in the session keys derived from a DH shared secret, you
should use a cryptographic hash function such as BLAKE2 or SHA-3—or, better
yet, a key derivation function (KDF). An example of KDF construction is
HKDF, or HMAC-based KDF (as specified in RFC 5869), but today BLAKE?2
and SHA-3 feature dedicated modes to behave as KDFs.

Legacy Diffie—Hellman in TLS

The TLS protocol is the security behind HT'T'PS secure websites as well as the
secure mail transfer protocol (SM'TP). TLS takes several parameters, including
the type of Diffie-Hellman protocol it will use, though most TLS
implementations still support anonymous DH for legacy reasons, despite its
insecurity.

Unsafe Group Parameters
In January 2016, the maintainers of the OpenSSL toolkit fixed a high-severity



vulnerability (CVE-2016-0701) that allowed an attacker to exploit unsafe Diffie—
Hellman parameters. The root cause of the vulnerability was that OpenSSL
allowed users to work with unsafe DH group parameters (namely, an unsafe
prime p) instead of throwing an error and aborting the protocol altogether
before performing any arithmetic operation.

Essentially, OpenSSL accepted a prime number p whose multiplicative group
Zp* (where all DH operations happen) contained small subgroups. As you

learned at the beginning of this chapter, the existence of small subgroups within
a larger group in a cryptographic protocol is bad because it confines shared
secrets to a much smaller set of possible values than if it were to use the whole
group Zp*. Worse still, an attacker can craft a DH exponent x that, when

combined with the victim’s public key ¢, will reveal information on the private
key y and eventually its entirety.

Although the actual vulnerability is from 2016, the principle the attack used
dates back to the 1997 paper “A Key Recovery Attack on Discrete Log-based
Schemes Using a Prime Order Subgroup” by Lim and Lee. The fix for the
vulnerability is simple: when accepting a prime p as group modulus, the protocol
must check that p is a safe prime by verifying that (p — 1) / 2 is prime as well in
order to ensure that the group Zp* won’t have small subgroups, and that an

attack on this vulnerability will fail.

Further Reading

Here’s a rundown of some things that I didn’t cover in this chapter but are
useful to learn about.

You can dig deeper into the DH key agreement protocols by reading a
number of standards and official publications, including ANSI X9.42, RFC 2631

and RFC 5114, IEEE 1363, and NIST SP 800-56A. These serve as references to
ensure interoperability, and to provide recommendations for group parameters.
To learn more about advanced DH protocols (such as MQV and its cousins
HMQV and OAKE, among others) and their security notions (such as
unknown-key share attacks and group representation attacks), read the 2005
article “HMQV: A High-Performance Secure Diffie-Hellman Protocol” by
Hugo Krawczyk (bttps://eprint.iacr.org/2005/176/) and the 2011 article “A New
Family of Implicitly Authenticated Diffie-Hellman Protocols” by by Andrew C.
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Yao and Yunlei Zhao (https://eprint.iacr.org/2011/035/). You’'ll notice in these
articles that Diffie-Hellman operations are expressed differently than in this
chapter. For example, instead of g%, you’ll find the shared secret represented as
xP. Generally, you’ll find multiplication replaced with addition and
exponentiation replaced with multiplication. The reason is that those protocols
are usually not defined over groups of integers, but over elliptic curves, as
discussed in Chapter 12.
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12
ELLIPTIC CURVES

The introduction of elliptic curve cryptography (ECC) in 1985 revolutionized the
way we do public-key cryptography. ECC is more powerful and efficient than
alternatives like RSA and classical Diffie-Hellman (ECC with a 256-bit key is
stronger than RSA with a 4096-bit key), but it’s also more complex.

Like RSA, ECC multiplies large numbers, but unlike RSA it does so in order
to combine points on a mathematical curve, called an elliptic curve (which has
nothing to do with an ellipse, by the way). To complicate matters, there are
many different types of elliptic curves—simple and sophisticated ones, efficient
and inefficient ones, and secure and insecure ones.

Although first introduced in 1985, ECC wasn’t adopted by standardization
bodies until the early 2000s, and it wasn’t seen in major toolkits until much later:
OpenSSL added ECC in 2005, and the OpenSSH secure connectivity tool
waited until 2011. But modern systems have few reasons not to use ECC, and
you’ll find it used in Bitcoin and many security components in Apple devices.
Indeed, elliptic curves allow you to perform common public-key cryptography
operations such as encryption, signature, and key agreement faster than their
classical counterparts. Most cryptographic applications that rely on the discrete
logarithm problem (DLP) will also work when based on its elliptic curve

counterpart, ECDLP, with one notable exception: the Secure Remote Password
(SRP) protocol.

"This chapter focuses on applications of ECC and discusses why you would use
ECC rather than RSA or classical Diffie-Hellman, as well as how to choose the
right elliptic curve for your application.

What Is an Elliptic Curve?



An elliptic curve is a cwrve on a plane—a group of points with x and y
coordinates. A curve’s equation defines all the points that belong to that curve.
For example, the curve y = 3 is a horizontal line with the vertical coordinate 3,
curves of the form y = ax + b with fixed numbers # and & are straight lines, 4% + y?
=1 is a circle of radius 1 centered on the origin, and so on. Whatever the type of
curve, the points on a curve are all (x, y) pairs that satisty the curve’s equation.

An elliptic curve as used in cryptography is typically a curve whose equation is

3+ ax + b (known as the Weierstrass form), where the constants &

of the form y? = x
and b define the shape of the curve. For example, Figure 12-1 shows the elliptic

curve that satisfies the equation y? = x° — 4.

=3 -2 -1 0 ] 2 3 4
Figure 12-1: An elliptic curve with the equation y2 = x3 — 4x, shown over the real numbers

In this chapter, I focus on the simplest, most common type of elliptic curves—namely,



those with an equation that looks like y* = x> + ax + b—but there are types of elliptic

curves with equations in other forms. For example, Edwards curves are elliptic

2

curves whose equation is of the form x> + y> = 1 + dx’y*. Edwards curves are

sometimes used in cryptography (for example, in the Ed25519 scheme).

Figure 12-1 shows all the points that make up the curve for x between -3 and
4, be they points on the left side of the curve, which looks like a circle, or on the
right side, which looks like a parabola. All these points have (x, y) coordinates
that satisfy the curve’s equation y* = x> — 4x. For example, when « = 0, then y? =
&3 —4x =03 -4 x 0 = 0; hence, y = 0 is a solution, and the point (0, 0) belongs to
the curve. Likewise, if x = 2, the solution to the equation is y = 0, meaning that
the point (2, 0) belongs to the curve.

It is crucial to distinguish points that belong to the curve from other points,
because when using elliptic curves for cryptography, we’ll be working with
points from the curve, and points off the curve often present a security risk.
However, note that the curve’s equation doesn’t always admit solutions, at least
not in the natural number plane. For example, to find points with the horizontal
coordinate x = 1, we solve y? = &3 — 4w for y? with &’ —4x = 13 -4 x 1, giving a
result of —3. But y> = -3 doesn’t have a solution because there is no number for
which y?> = =3. (There is a solution in the complex numbers, but elliptic curve
cryptography will only deal with natural numbers—more precisely, integers
modulo a prime.) Because there is no solution to the curve’s equation for x = 1,

the curve has no point at that position on the x-axis, as you can see in Figure 12-
1.

What if we try to solve for x = —1? In this case, we get the equation y* = -1 + 4
= 3, which has two solutions (y = V3 and y = —/3), the square root of three and its
negative value. Squaring a number always gives a positive number, so y> = (=)’
for any real number y, and as you can see, the curve in Figure 12-1 is symmetric
with respect to the x-axis for all points that solve its equation (as are all elliptic

3

curves of the form y? = ° + ax + b).

Elliptic Curves over Integers

Now here’s a bit of a twist: the curves used in elliptic curve cryptography
actually don’t look like the curve shown in Figure 12-1. They look instead like
Figure 12-2, which is a cloud of points rather than a curve. What’s going on



here?

Figures 12-1 and 12-2 are actually based on the same curve equation, y* = x° —

4x, but they show the curve’s points with respect to different sets of numbers:
Figure 12-1 shows the curve’s points over the set of real numbers, which includes
negative numbers, decimals, and so on. For example, as a continuous curve, it
shows the points at x = 2.0, x = 2.1, x = 2.00002, and so on. Figure 12-2, on the
other hand, shows only integers that satisty this equation, which excludes decimal
numbers. Specifically, Figure 12-2 shows the curve y* = &* — 4x with respect to
the integers modulo 191: 0, 1, 2, 3, up to 190. This set of numbers is denoted
Z,;. (There’s nothing special with 191 here, except that it’s a prime number. I
picked a small number to avoid having too many points on the graph.) The
points shown on Figure 12-2 therefore all have x and y coordinates that are
integers modulo 191 and that satisfy the equation y?> = +° — 4x. For example, for «
= 2, we have y? = 0, for which y = 0 is a valid solution. This tells us that the point
(2, 0) belongs to the curve.
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Figure 12-2: The elliptic curve with the equation y2 = x3 — 4x over Z 191, the set of integers
modulo 191

What if = 3?2 We get the equation y* = 27 — 12 = 15, which admits two
solutions to y? = 15 (namely, 46 and 145), because 46 mod 191 = 15 and 1452
mod 191 = 15 both equal 15 in Z;4;. Thus, the points (3, 46) and (3, 145) belong

to the curve and appear as shown in Figure 12-2 (the two points highlighted at
the left).

Figure 12-2 considers points from the set denoted Z19; = {0, 1, 2, . . ., 190}, which

includes zero. This differs from the groups denoted Zp* (with a star superscript) that

we discussed in the context of RSA and Diffie—Hellman. The reason for this
difference is that we’ll both multiply and add numbers, and we therefore need to
ensure that the set of numbers includes addition’s identity element (namely 0, such




that x + 0 = x for every x in Zy91). Also, every number x bhas an inverse with respect

to addition, denoted —x, such that x + (—x) = 0. For example, the inverse of 100 in
Zy91 is 91, because 100 + 91 mod 191 = 0. Such a set of numbers, where addition

and multiplication are possible and where each element x admits an inverse with
respect to addition (denoted —x) as well as an inverse with respect to multiplication
(denoted 1 / x), is called a field. When a field has a finite number of elements, as in

219y and as with all fields used for elliptic curve cryptography, it is called a finite
field.

Adding and Multiplying Points
We've seen that the points on an elliptic curve are all coordinates (x, y) that

3

satisfy the curve’s equation, y? = #° + ax + b. In this section, we look at how to

add elliptic curve points, a rule called the addition law.

Adding Two Points

Say that we want to add two points on the elliptic curve, P and Q, to give a new
point, R, that is the sum of these two points. The simplest way to understand
point addition is to determine the position of R = P + Q on the curve relative to P
and Q based on a geometric rule: draw the line that connects P and Q, find the
other point of the curve that intersects with this line, and Q is the reflection of
this point with respect to the x-axis. For example, in Figure 12-3, the line
connecting P and Q intersects the curve at a third point between P and Q, and
the point P + Q is the point at the same x coordinate but the inverse y
coordinate.
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Figure 12-3: A general case of the geometric rule for adding points over an elliptic curve

"This geometric rule is simple, but it won’t directly give you the coordinates of
the point R. We compute the coordinates (xp, yz) of R using the coordinates (v, ,

y,) of P and the coordinates (x(, yp) of Q using the formulas xp, = m? — X, = XQ
and yp = m(x, — xg) - y, , where the value 7 = (yy - y,) / (xg — x,) is the slope of
the line connecting P and Q.

Unfortunately, these formulas and the line-drawing trick shown in Figure 12-
3 don’t always work. If, for example, P = Q, you can’t draw a line between two
points (there’s only one), and if P = —P, the line doesn’t cross the curve again, so
there is no point on the curve to mirror. We’ll explore these in the next section.

Adding a Point and Its Negative
The negative of a point P = (xp, yp) is the point —P = (xp , —yp), which is the point

mirrored around the x-axis. For any P, we say that P + (-P) = O, where O is



called the point at infinity. And as you can see in Figure 12-4, the line between P
and —P runs to infinity and never intersects the curve. (The point at infinity is a
virtual point that belongs to any elliptic curve; it is to elliptic curves what zero is
to integers.)

1 I . T T
s

P+{—P}=O;

-3 -2 -1 0 ] 2 3 4
Figure 12-4: The geometric rule for adding points on an elliptic curve with the operation P
+ (-P) = O when the line between the points never intersects the curve

Doubling a Point

When P = Q (that is, P and Q are at the same position), adding P and Q is
equivalent to computing P + P, also denoted 2P. This addition operation is
therefore called a doubling.

However, to find the coordinates of the result R = 2P, we can’t use the
geometric rule from the previous section, because we can’t draw a line between
P and itself. Instead, we draw the line tangent to the curve at P, and 2P is the
negation of the point where this line intersects the curve, as shown on Figure



12-5.
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Figure 12-5: The geometric rule for adding points over an elliptic curve using the doubling
operation P + P

The formula for determining the coordinates (xg, yg) of R = P + P is slightly
different from the formula we would use for a distinct P and Q. Again, the basic
formula is xp = 7% — x, — xg and yp = m(x, — xg) — y,, but the value of  is
different; it becomes (3xp2 +a)/ 2y,, where # is the curve’s parameter, as in y> =

3

x° +ax + b.

Multiplication

In order to multiply points on elliptic curves by a given number &, where £ is an
integer, we determine the point #P by adding P to itself # — 1 times. In other
words, 2P =P + P,3P =P + P + P, and so on. To obtain the x and y coordinates



of kP, repeatedly add P to itself and apply the preceding addition law.

To compute kP efficiently, however, the naive technique of adding P by
applying the addition law # — 1 times is far from optimal. For example, if % is
large (of the order of, say, 2%2°6) as it occurs in elliptic curve-based crypto
schemes, then computing k — 1 additions is downright infeasible.

But there’s a trick: you can gain an exponential speed-up by adapting the
technique discussed in “Fast Exponentiation Algorithm: Square-and-Multiply”
on page 192 to compute x° mod 7. For example, to compute 8P in three
additions instead of seven using the naive method, you would first compute P, =

P+P,thenP4=P2+P2,andﬁnallyP4+P4=8P.

Elliptic Curve Groups

Because points can be added together, the set of points on an elliptic curve forms
a group. According to the definition of a group (see “What Is a Group?” on page
174), if the points P and Q belong to a given curve, then P + Q also belongs to
the curve.

Furthermore, because addition is associative, we have (P + Q) + R=P + (Q + R)
for any points P, Q, and R. In a group of elliptic curve points, the identity
element is called the point at infinity, and denoted O, such that P + O = P for any
P. Every point P = (xp , yp) has an inverse, —P = (xp , —yp), such that P + (-P) = O.

In practice, most elliptic curve-based cryptosystems work with x and vy
coordinates that are numbers modulo a prime number, p (in other words,
numbers in the finite field Z,). Just as the security of RSA depends on the size of

the numbers used, the security of an elliptic curve-based cryptosystem depends
on the number of points on the curve. But how do we know the number of
points on an elliptic curve, or its cardinality? Well, it depends on the curve and
the value of p.

One rule of thumb is that there are approximately p points on the curve, but
you can compute the exact number of points with Schoof’s algorithm, which
counts points on elliptic curves over finite fields. You’ll find this algorithm built
in to SageMath. For example, Listing 12-1 shows how to use this algorithm to
count the number of points on the curve y* = x° — 4x over Z,¢; shown in Figure

12-1.

sage: Z = Zmod(191)



sage: E = EllipticCurve(Z, (-4,0))
sage: E.cardinality()
192

Listing 12-1: Computing the cardinality, or number of points on a curve

In Listing 12-1, we’ve first defined the variable z as the set over integers
modulo 191; then we defined the variable E as the elliptic curve over z with the
coefficients —4 and 0. Finally, we computed the number of points on the curve,
also known as its cardinality, group order, or just order. Note that this count
includes the point at infinity O.

The ECDLP Problem

Chapter 9 introduced the DLP: that of finding the number y given some base
number g, where x = g ¥ mod p for some large prime number p. Cryptography
with elliptic curves has a similar problem: the problem of finding the number
given a base point P where the point Q = £P. This is called the elliptic curve
discrete logarithm problem, or ECDLP. (Instead of numbers, the elliptic curve’s
problems operate on points, and multiplication is wused instead of
exponentiation.)

All elliptic curve cryptography is built on the ECDLP problem, which, like
DLP, is believed to be hard and has withstood cryptanalysis since its
introduction into cryptography in 1985. One important difference between
ECDLP and the classical DLP is that ECDLP allows you to work with smaller
numbers and still enjoy a similar level of security.

Generally, when p is 7 bits, you’ll get a security level of about 7 / 2 bits. For
example, an elliptic curve taken over numbers modulo p, with a 256-bit p, will
give a security level of about 128 bits. For the sake of comparison, to achieve a
similar security level with DLP or RSA, you would need to use numbers of
several thousands of bits. The smaller numbers used for ECC arithmetic are one
reason why it’s often faster than RSA or classical Diffie-Hellman.

One way of solving ECDLP is to find a collision between two outputs, ¢;P +
d;Q and ;P + d,Q. The points P and Q in these equations are such that Q = kP
for some unknown £, and ¢y, dy, ¢, and d, are the numbers you will need in order
to find k.

As with the hash function discussed in Chapter 6, a collision occurs when two



different inputs produce the same output. Therefore, in order to solve ECDLP,
we need to find points where the following is true:

ciP+diQ=cP+d,0

In order to find these points, we replace Q with the value kP, and we have the
following:

CIP + dlkP = (Cl + dlk)P = CzP + dsz = (02 + dzk)P

This tells us that (¢; + d;k) equals (¢, + d,k) when taken modulo the number of
points on the curve, which is not a secret.
From this, we can deduce the following:

dk—dk=c¢c —c,
k(dl—di)zlsl—::?
kz(ﬁl—c:?) /(dl—dz)

And we’ve found £, the solution to ECDLP.

Of course, that’s only the big picture—the details are more complex and
interesting. In practice, elliptic curves extend over numbers of at least 256 bits,
which makes attacking elliptic curve cryptography by finding a collision
impractical because doing so takes up to 21%% operations (the cost of finding a

collision over 256-bit numbers, as you learned in Chapter 6).

Diffie—Hellman Key Agreement over Elliptic Curves

Recall from Chapter 11 that in the classical Diffie-Hellman (DH) key
agreement protocol, two parties establish a shared secret by exchanging non-
secret values. Given some fixed number g, Alice picks a secret random number 4,

computes A = g?, sends A to Bob, and Bob picks a secret random 4 and sends B =
¢’ to Alice. Both then combine their secret key with the other’s public key to
produce the same A” = B* = g*.

The elliptic curve version of DH is identical to that of classical DH but with
different notations. In the case of ECC, for some fixed point G, Alice picks a
secret random number 4, computes P! = 4G (the point G multiplied by d),
and sends P, to Bob. Bob picks a secret random dg, computes the point Py =



dgG, and sends it to Alice. Then both compute the same shared secret, /PP =
dPP1 = #14PG. This method is called elliptic curve Diffie—Hellman, or ECDH.
ECDH is to the ECDLP problem what DH is to DLP: it’s secure as long as

ECDLP is hard. DH protocols that rely on DLP can therefore be adapted to
work with elliptic curves and rely on ECDLP as a hardness assumption. For
example, authenticated DH and Menezes—Qu—Vanstone (MQV) will also be
secure when used with elliptic curves. (In fact, MQV was first defined as working
over elliptic curves.)

Signing with Elliptic Curves

The standard algorithm used for signing with ECC is ECDSA, which stands for
elliptic curve digital signature algorithm. 'This algorithm has replaced RSA
signatures and classical DSA signatures in many applications. It is, for example,
the only signature algorithm used in Bitcoin and is supported by many TLS and
SSH implementations.

As with all signature schemes, ECDSA consists of a signature generation
algorithm that the signer uses to create a signature using their private key and a
verification algorithm that a verifier uses to check a signature’s correctness given
the signer’s public key. The signer holds a number, 4, as a private key, and
verifiers hold the public key, P = dG. Both know in advance what elliptic curve to
use, its order (z, the number of points in the curve), as well as the coordinates of
a base point, G.

ECDSA Signature Generation

In order to sign a message, the signer first hashes the message with a
cryptographic hash function such as SHA-256 or BLAKE? to generate a hash
value, 4, that is interpreted as a number between 0 and » — 1. Next, the signer
picks a random number, &, between 1 and » — 1 and computes kG, a point with
the coordinates (x, y). The signer now sets 7 = x mod # and computes s = (b + 7d)
/ k mod 7, and then uses these values as the signature (7, s).

The length of the signature will depend on the coordinate lengths being used.
For example, when you’re working with a curve where coordinates are 256-bit
numbers, 7 and s would both be 256 bits long, yielding a 512-bit-long signature.

ECDSA Signature Verification



The ECDSA verification algorithm uses a signer’s public key to verify the
validity of a signature.

In order to verify an ECDSA signature (7, 5) and a message’s hash, b, the
verifier first computes w = 1 / s, the inverse of s in the signature, which is equal
to k / (b + vd) mod n, since s is defined as s = (b + rd) / k. Next, the verifier
multiplies w with 4 to find # according to the following formula:

wh=hk(h+rd)=u
The verifier then multiplies w with 7 to find v:
wr=rk(h+rd)=v

Given # and v, the verifier computes the point Q according to the following
formula:

O=uG+vP

Here, P is the signer’s public key, which is equal to dG, and the verifier only
accepts the signature if the x coordinate of Q is equal to the value 7 from the
signature.

This process works because, as a last step, we compute the point Q by
substituting the public key P with its actual value dG:

uG +vdG=(u+vd)G
When we replace # and v with their actual values, we obtain the following:
u+vd=hk(h+rd)+drk/(h+rd)=(hk+drk)/ (h+rdy=k(h~+dr)/ (h+rd)=k

This tells us that (# + vd) is equal to the value %k, chosen during signature
generation, and that #G + vdG is equal to the point £G. In other words, the
verification algorithm succeeds in computing point kG, the same point
computed during signature generation. Validation is complete once a verifier
confirms that kG’s x coordinate is equal to the 7 received; otherwise, the
signature is rejected as invalid.

ECDSA vs. RSA Signatures



Elliptic curve cryptography is often viewed as an alternative to RSA for public-
key cryptography, but ECC and RSA don’t have much in common. RSA is only
used for encryption and signatures, whereas ECC is a family of algorithms that
can be used to perform encryption, generate signatures, perform key agreement,
and offer advanced cryptographic functionalities such as identity-based
encryption (a kind of encryption that uses encryption keys derived from a
personal identifier, such as an email address).

When comparing RSA and ECC’s signature algorithms, recall that in RSA
signatures, the signer uses their private key 4 to compute a signature as y = 1
mod 7, where x is the data to be signed and y is the signature. Verification uses

the public key e to confirm that y* mod n equals x—a process that’s clearly
simpler than that of ECDSA.

RSA’s verification process is often faster than ECC’s signature generation
because it uses a small public key e. But ECC has two major advantages over
RSA: shorter signatures and signing speed. Because ECC works with shorter
numbers, it produces shorter signatures than RSA (hundreds of bits long, not
thousands of bits), which is an obvious benefit if you have to store or transmit
numerous signatures. Signing with ECDSA is also much faster than signing with
RSA (though signature verification is about as fast) because ECDSA works with
much smaller numbers than RSA does for a similar security level. For example,
Listing 12-2 shows that ECDSA is about 150 times faster at signing and a little
faster at verifying. Note that ECDSA signatures are also shorter than RSA
signatures because they’re 512 bits (two elements of 256 bits each) rather than
4096 bits.

$ openssl speed ecdsap256 rsa4096

sign verify sign/s verify/s
rsa 4096 bits 0.007267s 0.000116s 137.6 8648.0
sign verify sign/s verify/s
256 bit ecdsa (nistp256) 0.0000s 0.0001s 21074.6 9675.7

Listing 12-2: Comparing the speed of 4096-bit RSA signatures with 256-bit ECDSA
signatures

It’s fair to compare the performance of these differently sized signatures
because they provide a similar security level. However, in practice, many systems
use RSA signatures with 2048 bits, which is orders of magnitude less secure than

256-bit ECDSA. Thanks to its smaller modulus size, 2048-bit RSA is faster than
256-bit ECDSA at verifying, yet still slower at signing, as shown in Listing 12-3.



$ openssl speed rsa2048
sign verify sign/s verify/s
rsa 2048 bits 0.000696s 0.000032s 1436.1 30967.1

Listing 12-3: The speed of 2048-bit RSA signatures

The upshot is that you should prefer ECDSA to RSA except when signature
verification is critical and you don’t care about signing speed, as in a sign-once,
verify-many situation (for example, when a Windows executable application is
signed once and then verified by all the systems executing it).

Encrypting with Elliptic Curves

Although elliptic curves are more commonly used for signing, you can still
encrypt with them. But you’ll rarely see people do so in practice due to
restrictions in the size of the plaintext that can be encrypted: you can fit only
about 100 bits of plaintext, as compared to almost 4000 in RSA with the same
security level.

One simple way to encrypt with elliptic curves is to use the integrated
encryption scheme (IES), a hybrid asymmetric-symmetric key encryption
algorithm based on the Diffie-Hellman key exchange. Essentially, IES encrypts
a message by generating a Diffie-Hellman key pair, combining the private key
with the recipient’s own public key, deriving a symmetric key from the shared
secret obtained, and then using an authenticated cipher to encrypt the message.

When used with elliptic curves, IES relies on ECDLP’s hardness and is called
elliptic-curve integrated encryption scheme (ECIES). Given a recipient’s public key,
P, ECIES encrypts a message, M, as follows:

1. Pick a random number, d, and compute the point Q = dG, where the base
point G is a fixed parameter. Here, (4, Q) acts as an ephemeral key pair,
used only for encrypting M.

2. Compute an ECDH shared secret by computing S = dP.
3. Use a key derivation scheme (KDF) to derive a symmetric key, K, from S.

4. Encrypt M using K and a symmetric authenticated cipher, obtaining a
ciphertext, C, and an authentication tag, 7.

The ECIES ciphertext then consists of the ephemeral public key Q followed
by C and 7. Decryption is straightforward: the recipient computes S by



multiplying R with their private exponent to obtain S, and then derives the key K
and decrypts C and verifies 7.

Choosing a Curve

Criteria used to assess the safety of an elliptic curve include the order of the
group used (that is, its number of points), its addition formulas, and its origins.

There are several types of elliptic curves, but not all are equally good for
cryptographic purposes. When making your selection, be sure to choose
coefficients # and & in the curve’s equation y* = x° + ax + b carefully; otherwise,
you may end up with an insecure curve. In practice, you’ll use some de facto
standard curve for encryption, but knowing what makes a safe curve will help
you choose among the several available ones and better understand any

associated risks. Here are some points to keep in mind:

e The order of the group should not be a product of small numbers;
otherwise solving ECDLP becomes much easier.

¢ In “Adding and Multiplying Points” on page 221, you learned that adding
points P + (Q required a specific addition formula when Q = P.
Unfortunately, treating this case differently from the general one may leak
critical information if an attacker is able to distinguish doublings from
additions between distinct points. Some curves are secure because they use a
single formula for all point addition. (When a curve does not require a
specific formula for doublings, we say that it admits a unified addition law.)

e If the creators of a curve don’t explain the origin of # and b, they may be
suspected of foul play because you can’t know whether they may have
chosen weaker values that enable some yet-unknown attack on the
cryptosystem.

Let’s review some of the most commonly used curves, especially ones used for
signatures or Diffie-Hellman key agreement.

NOTE

You’ll find more criteria and more details about curves on the dedicated website
https://safecurves.cr.yp.to/.
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NIST Curves

In 2000, the NIST curves were standardized by the US NIST in the FIPS 186
document under “Recommended Elliptic Curves for Federal Government Use.”
Five NIST curves work modulo a prime number (as discussed in “Elliptic
Curves over Integers” on page 219), called prime curves. Ten other NIST curves
work with binary polynomials, which are mathematical objects that make
implementation in hardware more efficient. (We won’t cover binary polynomials
in further detail because they’re seldom used with elliptic curves.)

The most common NIST curves are the prime curves. Of these, one of the
most common is P-256, a curve that works over numbers modulo the 256-bit
number p = 22°6 — 2224 4 2192 L 296 _ 1. 'The equation for P-256 is y*> = &> — 3x +
b, where b is a 256-bit number. NIST also provides prime curves of 192 bits, 224
bits, 384 bits, and 521 bits.

NIST curves are sometimes criticized because only the NSA, creator of the
curves, knows the origin of the & coefficient in their equations. The only
explanation we’ve been given is that # results from hashing a random-looking
constant with SHA-1. For example, P-256’s b parameter comes from the
following constant: c49d3608 86e70493 6a6678el 139d26b7 819f7e90.

No one knows why the NSA picked this particular constant, but most experts
don’t believe the curve’s origin hides any weakness.

Curve25519

Daniel J. Bernstein brought Curve25519 (pronounced curve-twenty-five-five-
nineteen) to the world in 2006. Motivated by performance, he designed
Curve25519 to be faster and use shorter keys than the standard curves. But
Curve25519 also brings security benefits, because unlike the NIST curves it has
no suspicious constants and can use the same unified formula for adding distinct
points or for doubling a point.

The form of Curve25519’s equation, y* = &° + 486662x° + «, is slightly
different from that of the other equations you’ve seen in this chapter, but it still
belongs to the elliptic curve family. The unusual form of this equation allows for
specific implementation techniques that make Curve25519 fast in software.

Curve25519 works with numbers modulo the prime number 22%° — 19, a 256-
bit prime number that is as close as possible to 22°°. The & coefficient 486662 is
the smallest integer that satisfies the security criteria set by Bernstein. Taken



together, these features make Curve25519 more trustworthy than NIST curves
and their fishy coefficients.

Curve25519 is used everywhere: in Google Chrome, Apple systems,
OpenSSH, and many other systems. However, because Curve25519 isn’t a
NIST standard, some applications stick to NIST curves.

NOTE

To learn all the details and rationale bebind Curve25519, view the 2016
presentation “The first 10 years of Curve25519” by Daniel J. Bernstein, available
at http://cr.yp.to/talks. html#2016.03.09/.

Other Curves

As 1 write this, most cryptographic applications use NIST curves or
Curve25519, but there are other legacy standards in use, and newer curves are
being promoted and pushed within standardization committees. Some of the old
national standards include France’s ANSSI curves and Germany’s Brainpool
curves: two families that don’t support complete addition formulas and that use
constants of unknown origins.

Some newer curves are more efficient than the older ones and are clear of any
suspicion; they offer different security levels and wvarious efficiency
optimizations. Examples include Curve41417, a variant of Curve25519, which
works with larger numbers and offers a higher level of security (approximately
200 bits); Ed448-Goldilocks, a 448-bit curve first proposed in 2014 and
considered to be an internet standard; as well as six curves proposed by Aranha
et al. in “A note on high-security general-purpose elliptic curves” (see
http://eprint.iacr.org/2013/647/), though these curves are rarely used. The details
specific to all these curves are beyond the scope of this book.

How Things Can Go Wrong

Elliptic curves have their downsides due to their complexity and large attack
surface. Their use of more parameters than classical Diffie-Hellman brings with
it a greater attack surface with more opportunities for mistakes and abuse—and
possible software bugs that might affect their implementation. Elliptic curve
software may also be vulnerable to side-channel attacks due to the large numbers
used in their arithmetic. If the speed of calculations depends on inputs, attackers
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may be able to obtain information about the formulas being used to encrypt.

In the following sections, I discuss two examples of vulnerabilities that can
occur with elliptic curves, even when the implementation is safe. These are
protocol vulnerabilities rather than implementation vulnerabilities.

ECDSA with Bad Randomness

ECDSA signing is randomized, as it involves a secret random number 4 when
setting s = (b + 7d) / k mod n. However, if the same k is reused to sign a second
message, an attacker could combine the resulting two values, s; = (b + 7d) / k and
sy =(hy +7d) / k, to get s; — 5, = (hy — by) / k and then k = (by — b)) / (57 — 5).
When k is known, the private key d is easily recovered by computing the
following:

(ksy —hy)/r=((hy+rdy—h)/r=rd/r=d

Unlike RSA signatures, which won’t allow the key to be recovered if a weak
pseudorandom number generator (PRNG) is used, the use of non-random
numbers can lead to ECDSA’s k being recoverable, as happened with the attack
on the PlayStation 3 game console in 2010, presented by the failOverflow team at
the 27th Chaos Communication Congress in Berlin, Germany.

Breaking ECDH Using Another Curve

ECDH can be elegantly broken if you fail to validate input points. The primary
reason is that the formulas that give the coordinates for the sum of points P + Q
never involve the / coefficient of the curve; instead, they rely only on the
coordinates of P and Q and the # coefficient (when doubling a point). The
unfortunate consequence of this is that when adding two points, you can never
be sure that you’re working on the right curve because you may actually be
adding points on a different curve with a different 4 coefficient. That means you
can break ECDH as described in the following scenario, called the invalid curve
attack.

Say that Alice and Bob are running ECDH and have agreed on a curve and a
base point, G. Bob sends his public key dgG to Alice. Alice, instead of sending a

public key d\G on the agreed upon curve, sends a point on a different curve,

either intentionally or accidentally. Unfortunately, this new curve is weak and



allows Alice to choose a point P for which solving ECDLP is easy. She chooses a
point of low order, for which there is a relatively small 4 such that 2P = O.

Now Bob, believing that he has a legitimate public key, computes what he
thinks is the shared secret dgP, hashes it, and uses the resulting key to encrypt

data sent to Alice. The problem is that when Bob computes dgP, he is

unknowingly computing on the weaker curve. As a result, because P was chosen
to belong to a small subgroup within the larger group of points, the result dgP

will also belong to that small subgroup, allowing an attacker to determine the
shared secret dgP efficiently if they know the order of P.

One way to prevent this is to make sure that points P and Q belong to the
right curve by ensuring that their coordinates satisfy the curve’s equation. Doing
so would prevent this attack by making sure that you’re only able to work on the
secure curve.

Such an invalid curve attack was found in 2015 on certain implementations of
the TLS protocol, which uses ECDH to negotiate session keys. (For details, see
the paper “Practical Invalid Curve Attacks on TLS-ECDH?” by Jager, Schwenk,

and Somorovsky.)

Further Reading

Elliptic curve cryptography is a fascinating and complex topic that involves lots
of mathematics. I've not discussed important notions such as a point’s order, a
curve’s cofactor, projective coordinates, torsion points, and methods for solving
the ECDLP problem. If you are mathematically inclined, you’ll find information
on these and other related topics in the Handbook of Elliptic and Hyperelliptic
Curve Cryptography by Cohen and Frey (Chapman and Hall/CRC, 2005). The
2013 survey “Elliptic Curve Cryptography in Practice” by Bos, Halderman,
Heninger, Moore, Naehrig, and Wustrow also gives a good illustrated
introduction with practical examples (betps://eprint.iacr.org/2013/734/).
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13
TLS

The Transport Layer Security (TLS) protocol, also known as Secure Socket Layer
(SSL), which is the name of its predecessor, is the workhorse of internet security.
TLS protects connections between servers and clients, whether that connection
is between a website and its visitors, email servers, a mobile application and its
servers, or video game servers and players. Without TLS, there would be no
secure online commerce, secure online banking, or for that matter secure online
anything.

TLS is application agnostic; it doesn’t care about the type of content
encrypted. This means that you can use it for web-based applications that rely
on the HTTP protocol, as well as for any system where a client computer or
device needs to initiate a connection with a remote server. For example, TLS is
widely used for machine-to-machine communications in so-called internet of
things (Io'T) applications.

This chapter provides you with an abbreviated view of TLS. As you’ll see,
TLS has become increasingly complex over the years. Unfortunately, complexity
and bloat brought multiple vulnerabilities, and bugs found in its cluttered
implementations have made headlines—think Heartbleed, BEAST, CRIME,
and POODLE, all vulnerabilities that impacted millions of web servers.

In 2013, engineers tired of fixing new cryptographic vulnerabilities in TLS
overhauled it and started working on TLS 1.3. As you’ll learn in this chapter,
TLS 1.3 ditched unnecessary features and insecure ones, and replaced old
algorithms with state-of-the-art ciphers. The result is a simpler, faster, and more
secure protocol.

But before we explore how TLS 1.3 works, let’s review the problem that TLS
aims to solve in the first place, and the reason for its very existence.



Target Applications and Requirements

TLS is best known for being the S in HI'I'PS websites, and the padlock in a
browser’s address bar indicating that a page is secure. The primary driver for
creating TLS was to enable secure browsing in applications such as e-commerce
or e-banking by encrypting website connections to protect credit card numbers,
user credentials, and other sensitive information.

TLS also helps to protect internet-based communication in general by
establishing a secure channel between a client and a server that ensures the data
transferred is confidential, authenticated, and unmodified.

One of TLS’s security goals is to prevent man-in-the-middle attacks, wherein
an attacker intercepts encrypted traffic from the transmitting party, decrypts the
traffic to capture the clear content, and re-encrypts it to send to the receiving
party. TLS defeats man-in-the-middle attacks by authenticating servers (and
optionally clients) using certificates and trusted certificate authorities, as we’ll
discuss in more detail in the section “Certificates and Certificate Authorities” on
page 238.

To ensure wide adoption, TLS needed to satisfy four more requirements: it
needed to be efficient, interoperable, extensible, and versatile.

For TLS, efficiency means minimizing the performance penalty compared
with unencrypted connections. This is good for both the server (to reduce the
cost of hardware for the service providers) and for clients (to avoid perceptible
delays or the reduction of mobile devices’ battery life). The protocol needed to
be interoperable so that it would work on any hardware and any operating
system. It was to be extensible so that it could support additional features or
algorithms. And it had to be versatile—that is, not bound to a specific
application (this parallels something like Transport Control Protocol, which
doesn’t care about the application protocol used on top of it).

The TLS Protocol Suite

To protect client-server communications, TLS is made up of multiple versions
of several protocols that together form the TLS protocol suite. And although
TLS stands for Transport Layer Security, it’s actually not a transport protocol.
TLS usually sits between the transport protocol TCP and an application layer
protocol such as HT'TP or SMTP, in order to secure data transmitted over a
TCP connection.



TLS can also work over the User Datagram Protocol (UDP) transport protocol,
which is used for “connectionless” transmissions such as voice or video traffic.
However, unlike TCP, UDP doesn’t guarantee delivery or correct packet
ordering. The UDP version of TLS is therefore slightly different and is called
DTLS (Datagram Transport Layer Security). For more on TCP and UDP, see
Charles Kozierok’s The TCP/IP Guide (No Starch Press, 2005.)

The TLS and SSL Family of Protocols: A Brief History

TLS began life in 1995 when Netscape, developer of the Netscape browser,
developed TLS’s ancestor, the Secure Socket Layer (SSL) protocol. SSL was far
from perfect, and both SSL 2.0 and SSL 3.0 had security flaws. The upshot is
that you should never use SSL, you should always use TLS—what adds to the
confusion is that TLS is often referred to as “SSL,” even by security experts.

Moreover, not all versions of TLS are secure. TLS 1.0 (1999) is the least
secure TLS version, though it’s still more secure than SSL 3.0. TLS 1.1 (20006)
is better but includes a number of algorithms known today to be weak. TLS 1.2
(2008) is better yet, but it’s complex and only gets you high security if
configured correctly (which is no simple matter). Also, its complexity increases
the risk of bugs in implementations and the risk of incorrect configurations. For
example, TLS 1.2 supports AES in CBC mode, which is often vulnerable to
padding oracle attacks.

TLS 1.2 inherited dozens of features and design choices from earlier versions
of TLS that make it suboptimal, both in terms of security and performance. To
clean up this mess, cryptography engineers reinvented TLS—keeping only the
good parts and adding security features. The result is TLS 1.3, an overhaul that
has simplified a bloated design and made it more secure, more efficient, and
simpler. Essentially, TLS 1.3 is mature TLS.

TLS in a Nutshell

TLS has two main protocols: one determines how to transmit data, and the
other what data to transmit. The record protocol defines a packet format to
encapsulate data from higher-level protocols and sends this data to another
party. It’s a simple protocol that people often forget is part of TLS.

"The handshake protocol—or just handshake—is 'TLS’s key agreement protocol.
It’s often mistaken for “the” TLS protocol but the record protocol and the
handshake can’t be separated.



The handshake is started by a client to initiate a secure connection with a
server. The client sends an initial message called ClientHello with parameters
that include the cipher it wants to use. The server checks this message and its
parameters and then responds with a message called ServerHello. Once both the
client and the server have processed each other’s messages, they’re ready to
exchange encrypted data using session keys established through the handshake
protocol, as you’ll see in the section “The TLS Handshake Protocol” on page
241.

Certificates and Certificate Authorities

The most critical step in the TLS handshake, and the crux of TLS’s security, is
the certificate validation step, wherein a server uses a certificate to authenticate itself
to a client.

A certificate is essentially a public key accompanied by a signature of that key
and associated information (including the domain name). For example, when
connecting to hztps://www.google.com/, your browser will receive a certificate
from some network host and will then verify the certificate’s signature, which
reads something like “I am google.com and my public key is [key].” If the signature
is verified, the certificate (and its public key) are said to be #rusted, and the
browser can proceed with establishing the connection. (See Chapters 10 and 12
for details about signatures.)

How does the browser know the public key needed to verify the signature?
That’s where the concept of certificate authority (CA) comes in. A CA is
essentially a public key hard coded in your browser or operating system. The
public key’s private key (that is, its signing capability) belongs to a trusted
organization that ensures the public keys in certificates that it issues belong to
the website or entity that claims them. That is, a CA acts as a trusted third party.
Without CAs, there would be no way to verify that the public key served by
google.com belongs to Google and not to an eavesdropper performing a man-in-
the-middle attack.

For example, the command shown in Listing 13-1 shows what happens when
we use the OpenSSL command-line tool to initiate a TLS connection to
www.google.com on port 443, the network port used for TLS-based HT'TP
connections (that is, HT'TPS.):

$ openssl s_client -connect www.google.com:443
CONNECTED(00000003)
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--snip--

Certificate chain

® 0 s:/C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com
1:/C=US/0=Google Inc/CN=Google Internet Authority G2

® 1 s:/C=US/0=Google Inc/CN=Google Internet Authority G2
1:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA

® 2 s:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA
1:/C=US/0=Equifax/0U=Equifax Secure Certificate Authority

Server certificate

----- BEGIN CERTIFICATE-----

MIIEgDCCA21gAwIBAgIISCr6QCbz5rowDQYJIKoZIhvcNAQELBQAWSTELMAKGAIUE

BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBIbmMxJTAjBgNVBAMTHEdvb2dsZSBJIbnR1

--snip--

cb9reU8in8yCaH8dtzrFyUracpMureWnBea jOYXRPTdCFccejAh/xyH5SKDO0Z4v

3TP9GBtCLAH1ImSXoPhX73dp7jipZqgbY4kiEDNx+hformTUFBDHDOeO/s2nqwulL

pBH6XQ==

----- END CERTIFICATE-----

subject=/C=US/ST=California/L=Mountain View/0=Google Inc/CN=www.google.com

issuer=/C=US/0=Google Inc/CN=Google Internet Authority G2

--snip--

Listing 13-1: Establishing a TLS connection with www.google.com and receiving certificates
to authenticate the connection

I've trimmed the output to show only the interesting part, which is the
certificate. Notice that before the first certificate (which starts with the BEGIN
CERTIFICATE tag) is a description of the certificate chain, where the line starting
with s: describes the subject name and the line starting with i: describes the
issuer of the signature. Here, certificate 0 is the one received by google.com @,
certificate 1 @ belongs to the entity that signed certificate o, and certificate 2 ©
belongs to the entity that signed certificate 1. The organization that issued
certificate 2 (GeoTrust) granted permission to Google Internet Authority to
issue a certificate (certificate 1) for the domain name www.google.com, thereby
transferring trust to Google Internet Authority.

Obviously, these CA organizations must be trustworthy and only issue
certificates to trustworthy entities, and they must protect their private keys in
order to prevent an attacker from issuing certificates on their behalf (for
example, in order to impersonate a legitimate google.com server).

To see what’s in a certificate, we enter the command shown in Listing 13-2
into a Linux terminal and then paste the first certificate shown in Listing 13-1.

$ openssl x509 -text -noout
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----- BEGIN CERTIFICATE-----
--snip--
----- END CERTIFICATE-----
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 5200243873191028410 (0x482afad4026f3e6ba)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, 0=Google Inc, CN=Google Internet Authority G2
Validity
Not Before: Dec 15 14:07:56 2016 GMT
Not After : Mar 9 13:35:00 2017 GMT
Subject: C=US, ST=California, L=Mountain View, O0=Google
CN=www.google.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:
00:bc:bc:b2:f3:1a3:16:3b:c6:f6:9d:28:e1:ef:8e:
92:9b:13:b2:ae:7b:50:8f:f0:b4:e0:36:8d:09:00:

--snip--
8f:e6:96:fe:41:41:85:9d:a9:10:9a:09:6e:fc:bd:
43:fa:4d:c6:a3:55:9a:9e:07:8b:f9:bl:1e:ce:d1:
22:49
Exponent: 65537 (0x10001)
--snip--

Signature Algorithm: sha256WithRSAEncryption
94:cd:66:55:83:f1:16:7d:46:d8:66:21:06:ec:c6:9d:7c:1c:
2b:c1:f6:4f:b7:3e:cd:01:ad:69:bd:a1:81:6a:7c:96:f5:9c:
--snip--
85:fa:2b:99:35:05:04:31:c3:d1:e3:bf:b3:69:ea:c2:e5:8b:
a4:11:fa:5d

Inc,

Listing 13-2: Decoding a certificate received from www.google.com

What you see in Listing 13-2 is the command openssl x509 decoding a
certificate, originally provided as a block of base64-encoded data. Because
OpenSSL knows how this block of data is structured, it can tell us what’s inside
the certificate, including a serial number and version information, identifying
information, validity dates (the Not Before and Not After lines), a public key (here
as an RSA modulus and its public exponent), and a signature of the preceding

information.

Although security experts and cryptographers often claim the whole certificate
system is broken by design, it’s one of the best solutions we have, along with the

trust-on-first-use (TOFU) policy adopted by SSH, for example.
The Record Protocol
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All data exchanged through TLS 1.3 communications is transmitted as
sequences of TLS records, the data packets used by TLS. The TLS record
protocol (the record layer) is essentially a transport protocol, agnostic of the
transported data’s meaning; this is what makes TLS suitable for any application.
The TLS record protocol is first used to carry the data exchanged during the
handshake. Once the handshake is complete and both parties share a secret key,

application data is fragmented into chunks that are transmitted as part of the
TLS records.

Structure of a TLS Record

A TLS record is a chunk of data of at most 16 kilobytes, structured as follows:

e The first byte represents the type of data transmitted and is set to the value
22 for handshake data, 23 for encrypted data, and 21 for alerts. In the TLS
1.3 specifications, this value is called ContentType.

e The second and third byte are set to 3 and 1, respectively. These bytes are
fixed for historical reasons and are not unique to TLS version 1.3. In the
specifications, this 2-byte value is called ProtocolVersion.

e The fourth and fifth bytes encode the length of the data to transmit as a 16-
bit integer, which can be no larger than 21* bytes (16KB).

® The rest of the bytes are the data to transmit (also called the payload), of a
length equal to the value encoded by the record’s fourth and fifth bytes.

NOTE

A TLS record has a relatively simple structure. As we’ve seen, a TLS record’s header
includes only three fields. For comparison, an IPv4 packet includes 14 fields before its
payload and a TCP segment includes 13 fields.

When the first byte of a TLS 1.3 record (ContentType) is set to 23, its
payload is encrypted and authenticated using an authenticated cipher. The
payload consists of a ciphertext followed by an authentication tag, which the
receiving end will decrypt. But then how does the recipient know which cipher
and key to decrypt with? That’s the magic of TLS: if you receive an encrypted
TLS record, you already know the cipher and key, because they are established
when the TLS handshake protocol is executed.



Nonces

Unlike many other protocols such as IPsec’s Encapsulating Security Payload
(ESP), TLS records don’t specify the nonce to be used by the authenticated
cipher.

The nonces used to encrypt and decrypt TLS records are derived from 64-bit
sequence numbers, maintained locally by each party, and incremented for each
new record. When the client encrypts data, it derives a nonce by XORing the
sequence number with a value called client_write_iv, itself derived from the
shared secret. The server uses a similar method but with a different value, called

server_write_tiv.

For example, if you transmit three TLS records, you’ll derive a nonce from 0
for the first record, from 1 for the second, and from 2 for the third; if you then
receive three records, you’ll also use nonces 0, 1, and 2, in this order. Reuse of
the same sequence numbers values for encrypting transmitted data and
decrypting receiving data isn’t a weakness because they are XORed with
different constants (client_write_iv and server_write_iv) and because you use
different secret keys for each direction.

Zero Padding

TLS 1.3 records support a nice feature known as zero padding that mitigates
traffic analysis attacks. Traffic analysis is a method that attackers use to extract
information from traffic patterns using timing, volume of data transferred, and
so on. For example, because ciphertexts are approximately the same size as
plaintexts, even when strong encryption is used, attackers can determine the
approximate size of your messages simply by looking at the length of their
ciphertext.

Zero padding adds zeros to the plaintext in order to inflate the ciphertext’s
size, and thus to fool observers into thinking that an encrypted message is longer
than it really is.

The TLS Handshake Protocol

The handshake is the key TLS agreement protocol—the process by which a
client and server establish shared secret keys in order to initiate secure
communications. During the course of a TLS handshake, the client and server
play different roles. The client proposes some configurations (the TLS version



and a suite of ciphers, in order of preference) and the server chooses the
configuration to be used. The server should follow the client’s preferences, but it
may do otherwise. In order to ensure interoperability between implementations
and to guarantee that any server implementing TLS 1.3 will be able to read TLS
1.3 data sent by any client implementing TLS 1.3 (even if it’s using a different
library or programming language), the TLS 1.3 specifications also describe the
format in which data should be sent.

Figure 13-1 shows how data is exchanged in the handshake process, as
described in the TLS 1.3 specifications. As you can see, in the TLS 1.3
handshake, the client sends a message to the server saying, “I want to establish a
TLS connection with you. Here are the ciphers that I support to encrypt TLS
records, and here is a Diffie-Hellman public key.” The public key must be
generated specifically for this TLS session, and the client keeps the associated
private key. The message sent by the client also includes a 32-byte random value
and optional information (additional parameters and such). This first message is
called ClientHello, and it must follow a specific format when transmitted as a
series of bytes, as defined in the TLS 1.3 specification.

Client Server
Generate key pair (¢, C = cQ)
ClientHello Generate key pair (s, S = sQ)
- ciphers supported —— Compute secret = DH(s, C)
- public key C Derive keys = KDF(secret)
ServerHello
- ciphers selected
- public key S
Certificate
Verify certificate
Verify signature Signature
Compute secret = DH(c, S) <#————— over ClientHello, ServerHello,
Derive keys = KDF(secref) certificate

Verify MAC using keys
MAC

over ClientHello, ServerHello,
certificate, signature

Figure 13-1: The TLS 1.3 handshake process when connecting to HTTPS websites

But note that the specifications also describe in what format data should be



sent, in order to ensure interoperability between implementations by
guaranteeing that any server implementing 'TLS 1.3 will be able to read TLS 1.3
data sent by any client implementing 'T'LS 1.3, possibly using a different library
or programming language.

The server receives the ClientHello message, verifies that it’s correctly
formatted, and responds with a message called ServerHello. The ServerHello
message is loaded with information: it contains the cipher to be used to encrypt
TLS records, a Diffie-Hellman public key, a 32-byte random value (discussed in
“Downgrade Protection” on page 244), a certificate, a signature of all the
previous information in ClientHello and ServerHello messages (computed using
the private key associated with the certificate’s public key), a MAC of that same
information plus the signature. The MAC is computed using a symmetric key
derived from the Diffie-Hellman shared secret, which the server computes from
its Diffie-Hellman private key and the client’s public key.

When the client receives the ServerHello message, it verifies the certificate’s
validity, verifies the signature, computes the shared Diffie-Hellman secret and
derives symmetric keys from it, and verifies the MAC sent by the server. Once
everything has been verified, the client is ready to send encrypted messages to
the server.

Note, however, that TLS 1.3 supports many options and extensions, so it may
behave differently than what has been described here (and shown in Figure 13-
1). You can, for example, configure the TLS 1.3 handshake to require a client
certificate so that the server verifies the identity of the client. TLS 1.3 also
supports a handshake with pre-shared keys.

NOTE

TLS 1.3 supports many options and extensions, so it may bebave differently than
what bas been described bere (and shown in Figure 13-1). You can, for example,
configure the TLS 1.3 handshake to require a client certificate so that the server
verifies the identity of the client. TLS 1.3 also supports a handshake with pre-shared
keys.

Let’s look at this in practice. Say you've deployed TLS 1.3 to provide secure
access to the website https://www.nostarch.com/. When you point your browser
(the client) to this site, your browser sends a ClientHello message to the site’s
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server that includes the ciphers that it supports. The website responds with a
ServerHello message and a certificate that includes a public key associated with
the domain www.nostarch.com. The client verifies the certificate’s validity using
one of the certificate authorities embedded in the browser (the received
certificate should be signed by a trusted certificate authority, whose certificate
should be included in the browser’s certificate store in order to be validated).
Once all checks are passed, the browser requests the site’s initial page from the
www.nostarch.com server.

Upon a successful TLS 1.3 handshake, all communications between the client
and the server are encrypted and authenticated. An eavesdropper can learn that a
client at a given IP address is talking to a server at another given IP address, and
can observe the encrypted content exchanged, but won’t be able to learn the
underlying plaintext or modify the encrypted messages (if they do, the receiving
party will notice that the communication has been tampered with, because
messages are not only encrypted but also authenticated). That’s enough security
for many applications.

TLS 1.3 Cryptographic Algorithms

We know that TLS 1.3 uses authenticated encryption algorithms, a key
derivation function (a hash function that derives secret keys from a shared
secret), as well as a Diffie-Hellman operation. But how exactly do these work,
what algorithms are used, and how secure are they?

With regard to the choice of authenticated ciphers, TLS 1.3 supports only
three algorithms: AES-GCM, AES-CCM (a slightly less efficient mode than
GCM), and the ChaCha20 stream cipher combined with the Poly1305 MAC (as
defined in RFC 7539). Because TLS 1.3 prevents you from using an unsafe key
length such as 64 or 80 bits (which are both too short), the secret key can be
either 128 bits (AES-GCM or AES-CCM) or 256 bits (AES-GCM or
ChaCha20-Poly1305).

The key derivation operation (KDF) in Figure 13-1 is based on HKDF, a
construction based on HMAC (discussed in Chapter 7) and defined in RFC 5869
that uses either the SHA-256 or the SHA-384 hash function.

Your options for performing the Diffie-Hellman operation (the core of the
TLS 1.3 handshake) are limited to elliptic curve cryptography and a
multiplicative group of integers modulo a prime number (as in traditional
Diffie-Hellman). But you can’t use just any elliptic curve or group: the
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supported curves include three NIST curves as well as Curve25519 (discussed in
Chapter 12) and Curve448, both defined in RFC 7748. 'TLS 1.3 also supports
DH over groups of integers, as opposed to elliptic curves. The groups supported
are the five groups defined in RFC 7919: groups of 2048, 3072, 4096, 6144, and
8192 bits.

The 2048-bit group may be TLS 1.3’s weakest link. Whereas the other
options provide at least 128-bit security, 2048-bit Diffie—-Hellman is believed to
provide less than 100-bit security. Supporting a 2048-bit group can therefore be
seen as inconsistent with other TLS 1.3 design choices.

TLS 1.3 Improvements over TLS 1.2

TLS 1.3 is very different from its predecessor. For one thing, it gets rid of weak
algorithms like MD5, SHA-1, RC4, and AES in CBC mode. Also, whereas TLS
1.2 often protected records using a combination of a cipher and a MAC (such as
HMAC-SHA-1) within a MAC-then-encrypt construction, TLS 1.3 only
supports the more efficient and more secure authenticated ciphers. TLS 1.3 also
ditches elliptic curve point encoding negotiation, and defines a single point
format for each curve.

One of the main development goals of TLS 1.3 was to remove features in 1.2
that weakened the protocol and to reduce the protocol’s overall complexity and
thereby its attack surface. For example, TLS 1.3 ditches optional data
compression, a feature that enabled the CRIME attack on TLS 1.2. This attack
exploited the fact that the length of the compressed version of a message leaks
information on the content of the message.

But TLS 1.3 also brings new features that make connections either more
secure or more efficient. I'll discuss three of these features briefly: downgrade
protection, the single round-trip handshake, and session resumption.

Downgrade Protection

TLS 1.3’s downgrade protection feature is designed as a defense against downgrade
attacks, wherein an attacker forces the client and server to use a weaker version of
TLS than 1.3. To carry out a downgrade attack, an attacker forces the server to
use a weaker version of TLS by intercepting and modifying the ClientHello
message to tell the server that the client doesn’t support TLS 1.3. Now the
attacker can exploit vulnerabilities in earlier versions of TLS.

In an effort to defeat downgrade attacks, the TLS 1.3 server uses three types



of patterns in the 32-byte random value sent within the ServerHello message to
identify the type of connection requested. The pattern should match the client’s
request for a specific type of TLS connection. If the client receives the wrong
pattern, it knows that something is up.

Specifically, if the client asks for a TLS 1.2 connection, the first eight of the
32 bytes are set to 44 4F 57 4E 47 52 44 01, and if it asks for a TLS 1.1
connection, they’re set to 44 4F 57 4K 47 52 44 00. However, if the client
requests a TLS 1.3 connection, these first eight bits should be random. For
example, if a client sends a ClientHello asking for a TLS 1.3 connection, but an
attacker on the network modifies it to ask for a TLS 1.1 connection, when the
client receives the ServerHello with the wrong pattern, it will know that its
ClientHello message was modified. (The attacker can’t arbitrarily modify the
server’s 32-byte random value because this value is cryptographically signed.)

Single Round-Trip Handshake

In a typical TLS 1.2 handshake, the client sends some data to the server, waits
for a response, and then sends more data and waits for the server’s response
before sending encrypted messages. The delay is that of two round-trip times
(RTT). In contrast, TLS 1.3’s handshake takes a single round-trip time, as
shown in Figure 13-1. The time saved can be in the hundreds of milliseconds.
That may sound small, but its actually significant when you consider that servers
of popular services handle thousands of connections per second.

Session Resumption

TLS 1.3 is faster than 1.2, but it can be made even faster (on the order of
hundreds of milliseconds) by completely eliminating the round trips that precede
an encrypted session. The trick is to use session resumption, a method that
leverages the pre-shared key exchanged between the client and server in a
previous session to bootstrap a new session. Session resumption brings two
major benefits: the client can start encrypting immediately, and there is no need
to use certificates in these subsequent sessions.

Figure 13-2 shows how session resumption works. First, the client sends a
ClientHello message that includes the identifier of the key already shared
(denoted PSK for pre-shared key) with the server, along with a fresh DH public
key. The client can also include encrypted data in this first message (such data is
known as 0-RTT data). When the server responds to a ClientHello message, it



provides a MAC over the data exchange. The client verifies the MAC and knows
that it’s talking to the same server as it did previously, thus rendering certificate
validation somewhat superfluous. The client and the server perform a Diffie—
Hellman key agreement as in the normal handshake, and subsequent messages
are encrypted using keys that depend on both the PSK and the newly computed
Diffie-Hellman shared secret.

Client Server
Generate key pair (¢, C = Q)
ClientHello :
Generate key pair (s, S = sQ)
- pre-shared key (PSK) ID e : :
_ zub“c Koy C y (PSK] Derive keys = KDF[PSK, DH(s, C))
BRI gl ServerHello
- hared key (PSK) ID
Derive keys = KDF(PSK, DHic, 5)) , Iﬁ;:,; ;"'{ ]
Verify MAC using keys
MAC
over ClientHello, ServerHello

Figure 13-2: The TLS 1.3 session resumption handshake. The O-RTT data is the session
resumption data sent along with the ClientHello.

The Strengths of TLS Security

We'll evaluate the strengths of TLS 1.3 with respect to two main security
notions discussed in Chapter 11: authentication and forward secrecy.

Authentication

During the TLS 1.3 handshake, the server authenticates to the client using the
certificate mechanism. However, the client is not authenticated, and clients may
authenticate with a server-based application (such as Gmail) by providing a
username and password in a TLS record after performing the handshake. If the
client has already established a session with the remote service, it may
authenticate by sending a secure cookie, one that can only be sent through a TLS
connection.

In certain cases, clients can authenticate to a server using a certificate-based
mechanism similar to what the server uses in order to authenticate to the client:
the client sends a client certificate to the server, which in turn verifies this
certificate before authorizing the client. However, client certificates are rarely



used because they complicate things for both clients and the server (that is, the
certificate issuer): clients need to perform complex operations in order to
integrate the certificate into their system and to protect its private key, while the
issuer needs to make sure that only authorized clients received a certificate,
among other requirements.

Forward Secrecy

Recall from “Key Agreement Protocols” on page 205 that a key agreement is
said to provide forward secrecy if previous sessions aren’t compromised when
the present session is compromised. In the data leak model, only temporary
secrets are compromised, whereas in the breach model, long-term secrets are
exposed.

Thankfully, TLS 1.3 forward secrecy holds up in the face of both a data leak
and a breach. In the case of the data leak model, the attacker recovers temporary
secrets such as the session keys or Diffie-Hellman private keys of a specific
session (the values ¢, s, secret, and keys in Figure 13-1 on page 242). However,
they can only use these values to decrypt communications from the present
session, but not from previous sessions, because different values of ¢ and s were

used (thus yielding different keys).

In the breach model, the attacker also recovers long-term secrets (namely, the
private key that corresponds to the public key in the certificate). However, this is
no more useful when decrypting previous sessions than temporary secrets,
because this private key only serves to authenticate the server, and forward
secrecy holds up again.

But what happens in practice? Say an attacker compromises a client’s machine
and gains access to all of its memory. Now the attacker may recover the client’s
TLS session keys and secrets for the current session from memory. But more
importantly, if previous keys are still in memory, the attacker may be able to find
them too and use them to decrypt previous sessions, thereby bypassing the
theoretical forward secrecy. Therefore, in order for a TLS implementation to
ensure forward secrecy, it must properly erase keys from memory once they are
no longer used, typically by zeroing out the memory.

How Things Can Go Wrong

TLS 1.3 fits the bill as a general-purpose secure communications protocol, but
it's not bulletproof. Like any security system, it can fail under certain



circumstances (for example, when the assumptions made by its designers about
real attacks turn out to be wrong). Unfortunately, even the latest version of TLS
1.3, configured with the most secure ciphers, can still be compromised. For
example, TLS 1.3 security relies on the assumption that all three parties (the
client, the server, and the certificate authority) will behave honestly, but what it
one party is compromised or the TLS implementation itself is poorly
implemented?

Compromised Certificate Authority

Root certificate authorities (root CAs) are organizations that are trusted by
browsers to validate certificates served by remote hosts. For example, if your
browser accepts the certificate provided by www.google.com, the assumption is
that a trusted CA has verified the legitimacy of the certificate owner. The
browser verifies the certificate by checking its CA-issued signature. Since only
the CA knows the private key required to create this signature, we assume that
others can’t create valid certificates on behalf of the CA. Very often a website’s
certificate won’t be signed by a root CA but by an intermediate CA, which is
connected to the root CA through a certificate chain.

But let’s say that a CA’s private key is compromised. Now the attacker will be
able to use the CA’s private key to create a certificate for any URLs in, say, the
google.com: domain without Google’s approval. What happens then? The attacker
can use those certificates to pretend to host a legitimate server or subdomain like
mail.google.com and intercept a user’s credentials and communications. That’s
exactly what happened in 2011 when an attacker hacked into the network of the
Dutch certificate authority DigiNotar and was able to create certificates that
appeared to have been legitimate DigilNotar certificates. The attacker then used
these fake certificates for several Google services.

Compromised Server

If a server is compromised and fully controlled by an attacker, all is lost: the
attacker will be able to see all transmitted data before it’s encrypted, and all
received data once it has been decrypted. They will also be able to get their
hands on the server’s private key, which could allow them to impersonate the
legitimate server using their own malicious server. Obviously, TLS won’t save
you in this case.

Fortunately, such security disasters are rarely seen in high-profile applications
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such as Gmail and iCloud, which are well protected and sometimes have their
private keys stored in a separate security module. Attacks on web applications via
vulnerabilities such as database query injections and cross-site scripting are more
common, because they are mostly independent of 'T'LS’s security and are carried
out by attackers over a legitimate TLS connection. Such attacks may
compromise usernames, passwords, and so on.

Compromised Client

TLS security is also compromised when a client, such as a browser, is
compromised by a remote attacker. Having compromised the client, the attacker
will be able to capture session keys, read any decrypted data, and so on. They
could even install a rogue CA certificate in the client’s browser to have it silently
accept otherwise invalid certificates, thereby letting attackers intercept TLS
connections.

The big difference between the compromised CA or server scenarios and the
compromised client scenario is that in the case of the compromised client, only
the targeted client will be affected, instead of potentially 4// the clients.

Bugs in Implementations

As with any cryptographic system, TLS can fail when there are bugs in its
implementation. The poster child for TLS bugs is Heartbleed (see Figure 13-3),
a buffer overflow in the OpenSSL implementation of a minor TLS feature
known as heartbeat. Heartbleed was discovered in 2014, independently by a
Google researcher and by the Codenomicon company, and affected millions of
TLS servers and clients.

As you can see in Figure 13-3, a client first sends a buffer along with a buffer
length to the server to check whether the server is online. In this example, the
buffer is the string BANANAS, and the client explicitly says that this word is
seven letters long. The server reads the seven-letter word and returns it to the
client.



Client Server

Server’s memory:

Send me the 7-letter word BANANAS if you are thare..-_ CLIENT WANTS 7 LETTERS:

BANANAS. . PRIVATE_KEY=1928
BANANAS 1249128319283812994851123
e 189123123812312312...

Server’s memory:

Send me the 200-letter word BANANAS if you are thare;.-_ CLIENT WANTS 200 LETTERS:

BANANAS. .PRIVATE_KEY=1928

BANANAS. PRIVATE_KEY = 192812491283192838129 | 1249128319283812994851123
- 189123123812312312...

Figure 13-3: The Heartbleed bug in OpenSSL implementations of TLS

The problem is that the server doesn’t confirm that the length is correct, and
will attempt to read as many characters as the client tells it to. Consequently, if
the client provides a length that is longer than the string’s actual length, the
server reads too much data from memory and will return it to the client,
together with any extra data that may contain sensitive information, such as
private keys or session cookies.

It won’t surprise you to hear that the Heartbleed bug came as a shock. To
avoid similar future bugs, OpenSSL and other major TLS implementations now
perform rigorous code reviews and use automated tools such as fuzzers in order
to identify potential issues.

Further Reading

As I stated at the outset, this chapter is not a comprehensive guide to TLS, and
you may want to dig deeper into TLS 1.3. For starters, the complete TLS 1.3
specifications include everything about the protocol (though not necessarily
about its underlying rationale). You can find that on the home page of the TLS
Working Group (TLSWG) here: https://tiswg.github.io/.

In addition, let me cite two important T'LS initiatives:

e SSL Labs TLS test (bttps://wwuw.ssllabs.com/ssltest/) is a free service by Qualys
that lets you test a browser’s or a server’s TLS configuration, providing a
security rating as well as improvement suggestions. If you set up your own
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TLS server, use this test to make sure that everything is safe and that you
get an “A” rating.

Let’s Encrypt (bttps://letsencrypt.org/) is a nonprofit that offers a service to
“automagically” deploy TLS on your HT'TP servers. It includes features to
automatically generate a certificate and configure the TLS server, and it
supports all the common web servers and operating systems.
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14
QUANTUM AND POST-QUANTUM

Previous chapters focused on cryptography today, but in this chapter I'll
examine the future of cryptography over a time horizon of, say, a century or
more—one in which gquantum computers exist. Quantum computers are
computers that leverage phenomena from quantum physics in order to run
different kinds of algorithms than the ones we’re used to. Quantum computers
don’t exist yet and look very hard to build, but if they do exist one day, then
they’ll have the potential to break RSA, Diffie-Hellman, and elliptic curve
cryptography—that is, all the public-key crypto deployed or standardized as of
this writing.

To insure against the risk posed by quantum computers, cryptography
researchers have developed alternative public-key crypto algorithms called posz-
quantum algorithms that would resist quantum computers. In 2015, the NSA
called for a transition to quantum-resistant algorithms designed to be safe even
in the face of quantum computers, and in 2017 the US standardization agency
NIST began a process that will eventually standardize post-quantum algorithms.

This chapter will thus give you a nontechnical overview of the principles
behind quantum computers as well as a glimpse of post-quantum algorithms.
There’s some math involved, but nothing more than basic arithmetic and linear
algebra, so don’t be scared by the unusual notations.

How Quantum Computers Work

Quantum computing is a model of computing that uses quantum physics to
compute differently and do things that classical computers can’t, such as
breaking RSA and elliptic curve cryptography efficiently. But a quantum
computer is not a super-fast normal computer. In fact, quantum computers can’t
solve any problem that is too hard for a classical computer, such as brute force



search or NP-complete problems.

Quantum computers are based on quantum mechanics, the branch of physics
that studies the behavior of subatomic particles, which behave truly randomly.
Unlike classical computers, which operate on bits that are either 0 or 1, quantum
computers are based on quantum bits (or qubits), which can be both 0 and 1
simultaneously—a state of ambiguity called superposition. Physicists discovered
that in this microscopic world, particles such as electrons and photons behave in
a highly counterintuitive way: before you observe an electron, the electron is not
at a definite location in space, but in several locations at the same time (that is, in
a state of superposition). But once you observe it—an operation called
measurement in quantum physics—then it stops at a fixed, random location and is
no longer in superposition. This quantum magic is what enables the creation of
qubits in a quantum computer.

But quantum computers only work because of a crazier phenomenon called
entanglement: two particles can be connected (entangled) in a way that observing
the value of one gives the value of the other, even if the two particles are widely
separated (kilometers or even light-years away from each other). This behavior is
illustrated by the Einstein—Podolsky—Rosen (EPR) paradox and is the reason why
Albert  Einstein  initially  dismissed  quantum  mechanics.  (See
https://plato.stanford.edu/entries/qt-epr/ for an in-depth explanation of why.)

To best explain how a quantum computer works, we should distinguish the
actual quantum computer (the hardware, composed of quantum bits) from
quantum algorithms (the software that runs on it, composed of quantum gates).
The next two sections discuss these two notions.

Quantum Bits

Quantum bits (qubits), or groups thereof, are characterized with numbers called
amplitudes, which are akin to probabilities but aren’t exactly probabilities.
Whereas a probability is a number between 0 and 1, an amplitude is a complex
number of the form 4 + b x 7, or simply & + bi, where 4 and / are real numbers,
and 7 is an imaginary unit. The number 7 is used to form imaginary numbers,
which are of the form #i, with / a real number. When 7 is multiplied by a real
number, we get another imaginary number, and when it is multiplied by itself it
gives —1; that is 72 = 1.

Unlike real numbers, which can be seen as belonging to a line (see Figure 14-


../../../../../https@plato.stanford.edu/entries/qt-epr/default.htm

1), complex numbers can be seen as belonging to a plane (a space with two
dimensions), as shown in Figure 14-2. Here, the x-axis in the figure corresponds
to the 4 in 4 + bi, the y-axis corresponds to the 4, and the dotted lines correspond
to the real and imaginary part of each number. For example, the vertical dotted
line going from the point 3 + 27 down to 3 is two units long (the 2 in the
imaginary part 27).
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Figure 14-2: A view of complex numbers as points in a two-dimensional space

As you can see in Figure 14-2, you can use the Pythagorean theorem to
compute the length of the line going from the origin (0) to the point # + b7 by
viewing this line as the diagonal of a triangle. The length of this diagonal is
equal to the square root of the sum of the squared coordinates of the point, or
V(@* + %), which we call the modulus of the complex number # + bi. We denote
the modulus as |4 + b7l and can use it as the length of a complex number.

In a quantum computer, registers consist of 1 or more qubits in a state of

superposition characterized by a set of such complex numbers. But as we’ll see,
these complex numbers—the amplitudes—can’t be any numbers.



Amplitudes of a Single Qubit

A single qubit is characterized by two amplitudes that I'll call a (alpha) and B
(beta). We can then express a qubit’s state as @ 10) + B 1) , where the “1 ) ”
notation is used to denote vectors in a quantum state. This notation then means
that when you observe this qubit it will appear as 0 with a probability Ial? and 1
with a probability IB12. Of course, in order for these to be actual probabilities, |
al? and IB1? must be numbers between 0 and 1, and Ial? + |BI% must be equal
to 1.

For example, say we have the qubit W (psi) with amplitudes of a = 1/y2 and B =
1/2. We can express this as follows:

¥ =(1/+2)[0)+(1/2)|1) = (jo+]1) / V2

This notation means that in the qubit ¥, the value 0 has an amplitude of 1/12,
and the value 1 has the same amplitude, 1/42. To get the actual probability from
the amplitudes, we compute the modulus of 1/y2 (which is equal to 1/42,
because it has no imaginary part), then square it: (1/y2)> = 1/2. That is, if you
observe the qubit ¥, you’ll have a 1/2 chance of seeing a 0, and the same chance
of seeing a 1.

Now consider the qubit @ (phi), where
® =(i/2)|0)-(1/2)[1) = (i|0)= 1)) / V2, or |®) = (i / 2,1/ 2)

The qubit ® is fundamentally distinct from W because unlike W, where
amplitudes have equal values, the qubit ® has distinct amplitudes of a = i/y2 (a
positive imaginary number) and B = —1/y2 (a negative real number). If, however,
you observe ®, the chance of your seeing a 0 or 1 is 1/2, the same as it is with ¥.
Indeed, we can compute the probability of seeing a 0 as follows, based on the
preceding rules:

|ﬂ|2=( (lfﬁ)i]2=1/ﬁ2:1/2

Because a = i/N2, Q can be written as a + bi with a = 0 and b = 12, and
computing 1a| =(a? + b?) yields 1/2.




The upshot is that different qubits can behave similarly to an observer (with
the same probability of seeing a 0 for both qubits) but have different amplitudes.
This tells us that the actual probabilities of seeing a 0 or a 1 only partially
characterize a qubit; just as when you observe the shadow of an object on a wall,
the shape of the shadow will give you an idea of the object’s width and height,
but not of its depth. In the case of qubits, this hidden dimension is the value of
its amplitude: Is it positive or negative? Is it a real number or an imaginary
number?

NOTE

To simplify notations, a qubit is often simply written as its pair of amplitudes (a, B).
Our previous example can then be written 1W) = (1/42, 1/42).

Amplitudes of Groups of Qubits

We've explored single qubits, but how do we understand multiple qubits? For
example, a quantum byte can be formed with 8 qubits, when put into a state
where the quantum states of these 8 qubits are somehow connected to each
other (we say that the qubits are entangled, which is a complex physical
phenomenon). Such a quantum byte can be described as follows, where the as
are the amplitudes associated with each of the 256 possible values of the group of
8 qubits:

a4 |00000000) + o, |00000001) + ot |00000010) + ct, |00000011) + ... + 0t [11111111)

Note that we must have 10yl? + 1a;1? + . .. + 1035512 = 1, so that all
probabilities sum to 1.

Our group of 8 qubits can be viewed as a set of 28 = 256 amplitudes, because it
has 256 possible configurations, each with its own amplitude. In physical reality,
however, you’d only have eight physical objects, not 256. The 256 amplitudes
are an implicit characteristic of the group of 8 qubits; each of these 256 numbers
can take any of infinitely many different values. Generalizing, a group of » qubits
is characterized by a set of 2” complex numbers, a number that grows
exponentially with the numbers of qubits.

This encoding of exponentially many high-precision complex numbers is a
core reason why a classical computer can’t simulate a quantum computer: in



order to do so, it would need an unfathomably high amount of memory (of size
around 2”) to store the same amount of information contained in only 7 qubits.

Quantum Gates

The concepts of amplitude and quantum gates are unique to quantum
computing. Whereas a classical computer uses registers, memory, and a
microprocessor to perform a sequence of instructions on data, a quantum
computer transforms a group of qubits reversibly by applying a series of
quantum gates, and then measures the value of one or more qubits. Quantum
computers promise more computing power because with only # qubits, they can
process 2” numbers (the qubits’ amplitudes). This property has profound
implications.

From a mathematical standpoint, quantum algorithms are essentially a circuit
of quantum gates that transforms a set of complex numbers (the amplitudes)
before a final measurement where the value of 1 or more qubits is observed (see
Figure 14-3). You'll also see quantum algorithms referred to as quantum gate
arrays or qUANTUIN CLrcuits.

; Measurement
n qubits:

zﬂ' Circuit of
H‘ —— quanfum |f——
: gates
[Igr:—]

Figure 14-3: Principle of a quantum algorithm

Quantum Gates as Matrix Multiplications

Unlike the Boolean gates of a classical computer (AND, XOR, and so on), a
quantum gate acts on a group of amplitudes just as a matrix acts when multiplied
with a vector. For example, in order to apply the simplest quantum gate, the
identity gate, to the qubit @, we see [ as a 2 x 2 matrix and multiply it with the
column vector consisting of the two amplitudes of ®, as shown here:
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The result of this matrix—vector multiplication is another column vector with
two elements, where the top value is equal to the dot product of the I matrix’s
first line with the input vector (the result of adding the product of the first
elements 1 and /42 to the product of the second elements 0 and —1/42), and
likewise for the bottom value.

In practice, a quantum computer wouldn’t explicitly compute matrix—vector
multiplications because the matrices would be way too large. (That’s why quantum
computing can’t be simulated by a classical computer.) Instead, a quantum computer
would transform qubits as physical particles through physical transformations that
are equivalent to a matrix multiplication. Confused? Here’s what Richard Feynman
had to say: “If you are not completely confused by quantum mechanics, you do not
understand it.”
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The Hadamard Quantum Gate

The only quantum gate we’ve seen so far, the identity gate I, is pretty useless
because it doesn’t do anything and leaves a qubit unchanged. Now we’re going
to see one of the most useful quantum gates, called the Hadamard gate, usually
denoted H. The Hadamard gate is defined as follows (note the negative value in
the bottom-right position):

H:[U«.@ 1/\@}
1/4J2 -1/42

Let’s see what happens if we apply this gate to the qubit W) = (1/y2, 1/42):

(1742 1742 Y 1/42) (1/72+41/2) (1)
Hm_{lh@ —1,»“ﬁJ{lfﬁJ_[lfﬁ—U?)_[ﬂ]_0



By applying the Hadamard gate H to |¥) , we obtain the qubit 10} for
which the value 10) has amplitude 1, and 11) has amplitude 0. This tells us
that the qubit will behave deterministically: that is, if you observe this qubit, you
would always see a 0 and never a 1. In other words, we’ve lost the randomness of
the initial qubit 1¥) .

What happens if we apply the Hadamard gate again to the qubit 10} ?

(1742 /N2 () (1/42)
Hio)_(l/ﬁ —I/ﬁJ{OJ_{lfﬁ}_W}

This brings us back to the qubit |¥) and a randomized state. Indeed, the
Hadamard gate is often used in quantum algorithms to go from a deterministic
state to a uniformly random one.

Not All Matrices are Quantum Gates

Although quantum gates can be seen as matrix multiplications, not all matrices
correspond to quantum gates. Recall that a qubit consists of the complex
numbers @ and B and the amplitudes of the qubit, such that they satisfy the
condition lal? + IB1? = 1. If after multiplying a qubit by a matrix we get two
amplitudes that don’t match this condition, the result can’t be a qubit. Quantum
gates can only correspond to matrices that preserve the property lal? + IBI? =
1, and matrices that satisfy this condition are called unitary matrices.

Unitary matrices (and quantum gates by definition) are invertible, meaning
that given the result of an operation, you can compute back the original qubit by
applying the inverse matrix. This is the reason why quantum computing is said to
be a kind of reversible computing.

Quantum Speed-Up

A quantum speed-up occurs when a problem can be solved faster by a quantum
computer than by a classical one. For example, in order to search for an item
among 7 items of an unordered list on a classical computer, you need on average
n/2 operations, because you need to look at each item in the list before finding
the one you’re looking for. (On average, you’ll find that item after searching half
of the list.) No classical algorithm can do better than 7/2. However, a quantum
algorithm exists to search for an item in only about Yz operations, which is



orders of magnitude smaller than »/2. For example, if » is equal to 1000000,
then 7/2 is 500000, whereas vz is 1000.

We attempt to quantify the difference between quantum and classical
algorithms in terms of #ime complexity, which is represented by O() notation. In
the previous example, the quantum algorithm runs in time O(yz) but the classical
algorithm can’t be faster than O(n). Because the difference in time complexity
here is due to the square exponent, we call this guadratic speed-up. But while such
a speed-up will likely make a difference, there are much more powerful ones.

Exponential Speed-Up and Simon’s Problem

Exponential speed-ups are the Holy Grail of quantum computing. They occur
when a task that takes an exponential amount of time on a classical computer,
such as O(2”), can be performed on a quantum computer with polynomial
complexity—namely O(n¥) for some fixed number 4. This exponential speed-up
can turn a practically impossible task into a possible one. (Recall from Chapter 9
that cryptographers and complexity theorists associate exponential time with the
impossible, and they associate polynomial time with the practical.)

The poster child of exponential speed-ups is Simon’s problem. In this
computational problem, a function, f(), transforms #-bit strings to z-bit strings,
such that the output of f() looks random except that there is a value, 7z, such that
any two values w, y that satisfies f(x) = f(y), then y = x ® 7. The way to solve this
problem is to find 7.

The route to take when solving Simon’s problem with a classical algorithm
boils down to finding a collision, which takes approximately 2”/? queries to ().
However, a quantum algorithm (shown in Figure 14-4) can solve Simon’s
problem in approximately 7 queries, with the extremely efficient time complexity

of O(n).
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Figure 14-4: The circuit of the quantum algorithm that solves Simon’s problem efficiently

As you can see in Figure 14-4, you initialize 27 qubits to 10) , apply
Hadamard gates (H) to the first # qubits, then apply the gate Qf to the two
groups of all z qubits. Given two n-qubit groups x and y, the gate Qf transforms
the quantum state lx) |y} to the state lx) If(x) ® y) . That is, it computes the
function f() on the quantum state reversibly, because you can go from the new
state to the old one by computing f(x) and XORing it to f(x) ® y. (Unfortunately,
explaining why all of this works is beyond the scope of this book.)

The exponential speed-up for Simon’s problem can be used against symmetric
ciphers only in very specific cases, but in the next section you’ll see some real
crypto-killer applications of quantum computing.

The Threat of Shor’s Algorithm

In 1995, AT&T researcher Peter Shor published an eye-opening article titled
“Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer.” Shor’s algorithm is a quantum algorithm that causes
an exponential speed-up when solving the factoring, discrete logarithm (DLP),
and elliptic curve discrete logarithm (ECDLP) problems. You can’t solve these
problems with a classical computer, but you could with a quantum computer.
That means that you could use a quantum computer to solve any cryptographic
algorithm that relies on those problems, including RSA, Diftie-Hellman, elliptic
curve cryptography, and all currently deployed public-key -cryptography
mechanisms. In other words, you could reduce the security of RSA or elliptic
curve cryptography to that of Caesar’s cipher. (Shor might as well have titled his



article “Breaking All Public-Key Crypto on a Quantum Computer.”) Shor’s
algorithm has been called “one of the major scientific achievements of the late
20th century” by renowned complexity theorist Scott Aaronson.

Shor’s algorithm actually solves a more general class of problems than
factoring and discrete logarithms. Specifically, if a function f() is periodic—that is,
if there’s a W (the period) such that f(x + w) = f(x) for any x, Shor’s algorithm will
efficiently find . (This looks very similar to Simon’s problem discussed
previously, and indeed Simon’s algorithm was a major inspiration for Shor’s
algorithm.) The ability of Shor’s algorithm to efficiently compute the period of a
function is important to cryptographers because that ability can be used to attack
public-key cryptography, as I’ll discuss next.

A discussion of the details of how Shor’s algorithm achieves its speed-up is far
too technical for this book, but in this section I'll show how you could use Shor’s
algorithm to attack public-key cryptography. Let’s see how Shor’s algorithm
could be used to solve the factoring and discrete logarithm problems (as
discussed in Chapter 9), which are respectively the hard problems behind RSA
and Diffie-Hellman.

Shor’s Algorithm Solves the Factoring Problem

Say you want to factor a large number, N = pqg. It’s easy to factor N if you can
compute the period of #* mod N, a task that is hard to do with a classical
computer but easy to do on a quantum one. You first pick a random number #
less than N, and ask Shor’s algorithm to find the period W of the function f(x) =
#* mod N. Once you’ve found the period, you’ll have #* mod N = #°*® mod N
(that is, 2* mod N = #%4® mod N), which means that 2® mod N = 1, or 4® — 1 mod
N = 0. In other words, 24® — 1 is a multiple of N, or 4°~! = kN for some unknown
number k.

The key observation here is that you can easily factor the number 2%~ as the
product of two terms, where 4° =1 = (472 - 1)(a®/? + 1). You can then compute
the greatest common divisor (GCD) between (#°/2 — 1) and N, and check to see
if you’ve obtained a nontrivial factor of N (that is, a value other than 1 or N). If
not, you can just rerun the same algorithm with another value of 4. After a few
trials, you’ll get a factor of N. You’ve now recovered the private RSA key from
its public key, which allows you to decrypt messages or forge signatures.

But just how easy is this computation? Note that the best classical algorithm



to use to factor a number N runs in time exponential in 7, the bit length of N
(that is, #» = log, N). However, Shor’s algorithm runs in time polynomial in n—

namely, O(#°(log n)(log log #)). This means that if we had a quantum computer,
we could run Shor’s algorithm and see the result within a reasonable amount of
time (days? weeks? months, maybe?) instead of thousands of years.

Shor’s Algorithm and the Discrete Logarithm Problem

The challenge in the discrete logarithm problem is to find y, given y = ¢* mod p,
for some known numbers g and p. Solving this problem takes an exponential
amount of time on a classical computer, but Shor’s algorithm lets you find y
easily thanks to its efficient period-finding technique.

For example, consider the function f(a, b) = g%". Say we want to find the
period of this function, the numbers W and w’, such that f(z + W, & + W’) = (s, b)
for any # and 4. The solution we seek is then x = - / @’ modulo ¢, the order of
g, which is a known parameter. The equality f(z + W, b + ®’) = f(a, b) implies g®y®
"mod p = 1. By substituting y with g%, we have g® * *®' mod p = 1, which is
equivalent to ® + x®’ mod ¢ = 0, from which we derive x = - 0 / ®'.

Again, the overall complexity is O(zn’(log #)(log log 7)), with # the bit length of
p. This algorithm generalizes to find discrete logarithms in any commutative
group, not just the group of numbers modulo a prime number.

Grover’s Algorithm

After Shor’s algorithm exponential speed-up for factoring, another important
form of quantum speed-up is the ability to search among #» items in time
proportional to the square root of #, whereas any classical algorithm would take
time proportional to 7. This quadratic speed-up is possible thanks to Grover’s
algorithm, a quantum algorithm discovered in 1996 (after Shor’s algorithm). I
won’t cover the internals of Grover’s algorithm because they’re essentially a
bunch of Hadamard gates, but I'll explain what kind of problem Grover solves
and its potential impact on cryptographic security. I'll also show why you can
salvage a symmetric crypto algorithm from quantum computers by doubling the
key or hash value size, whereas asymmetric algorithms are destroyed for good.
Think of Grover’s algorithm as a way to find the value ¥ among » possible
values, such that f(x) = 1, and where f(x) = 0 for most other values. If 7z values of
x satisfy f(x) = 1, Grover will find a solution in time O((n / m)); that is, in time



proportional to the square root of # divided by 7. In comparison, a classical
algorithm can’t do better than O(n / m).

Now consider the fact that f() can be any function. It could be, for example,
“f() = 1 if and only if x is equal to the unknown secret key K such that E(K, P) =
C” for some known plaintext P and ciphertext C, and where E() is some
encryption function. In practice, this means that if you’re looking for a 128-bit
AES key with a quantum computer, you’ll find the key in time proportional to
264 rather than 2128 if you had only classical computers. You would need a large
enough plaintext to ensure the uniqueness of the key. (If the plaintext and
ciphertext are, say, 32 bits, many candidate keys would map that plaintext to that
ciphertext.) The complexity 26* is much smaller than 2!28, meaning that a secret
key would be much easier to recover. But there’s an easy solution: to restore
128-bit security, just use 256-bit keys! Grover’s algorithm will then reduce the

complexity of searching a key to “only” 22°6/2 = 2128

operations.

Grover’s algorithm can also find preimages of hash functions (a notion
discussed in Chapter 6). To find a preimage of some value 5, the f() function is
defined as “f(x) = 1 if and only if Hash(x) = b, otherwise f(x) = 0.” Grover thus
gets you preimages of n-bit hashes at the cost of the order of 2/ operations. As
with encryption, to ensure 2” post-quantum security, just use hash values twice as
large, since Grover’s algorithm will find a preimage of a 2z-bit value in at least
2" operations.

The bottom line is that you can salvage symmetric crypto algorithms from
quantum computers by doubling the key or hash value size, whereas asymmetric
algorithms are destroyed for good.

NOTE

There is a quantum algorithm that finds bash function collisions in time OQ™3),

instead of OQ™?), as with the classic birthday attack. This would suggest that
quantum computers can outperform classical computers for finding bash function

collisions, except that the OQ™3)-time quantum algorithm also requires O@2"3)
space, or memory, in order to run. Give OQ2™3) worth of computer space to a classic
algorithm and it can run a parvallel collision search algorithm with a collision time of
only OQR™9), which is much faster than the OQ™3) quantum algorithm. (For
details of this attack, see “Cost Analysis of Hash Collisions” by Daniel J. Bernstein at




http://cr.yp.to/papers.html#collisioncost.)

Why Is It So Hard to Build a Quantum Computer?

Although quantum computers can in principle be built, we don’t know how hard
it will be or when that might happen, if at all. And so far, it looks really hard. As
of early 2017, the record holder is a machine that is able to keep 14 (fourteen!)
qubits stable for only a few milliseconds, whereas we’d need to keep millions of
qubits stable for weeks in order to break any crypto. The point is, we’re not
there yet.

Why is it so hard to build a quantum computer? Because you need extremely
small things to play the role of qubits—about the size of electrons or photons.
And because qubits must be so small, they’re also extremely fragile.

Qubits must also be kept at extremely low temperatures (close to absolute
zero) in order to remain stable. But even at such a freezing temperature, the
state of the qubits decays, and they eventually become useless. As of this writing,
we don’t yet know how to make qubits that will last for more than a couple of
seconds.

Another challenge is that qubits can be affected by the environment, such as
heat and magnetic fields, which can create noise in the system, and hence
computation errors. In theory, it’s possible to deal with these errors (as long as
the error rate isn’t too high), but it’s hard to do so. Correcting qubits’ errors
requires specific techniques called quantum error-correcting codes, which in
turn require additional qubits and a low enough rate of error. But we don’t know
how to build systems with such a low error rate.

At the moment, there are two main approaches to forming qubits, and
therefore to building quantum computers: superconducting circuits and ion
traps. Using superconducting circuits is the approach championed by labs at
Google and IBM. It’s based on forming qubits as tiny electrical circuits that rely
on quantum phenomena from superconductor materials, where charge carriers
are pairs of electrons. Qubits made of superconducting circuits need to be kept
at temperatures close to absolute zero, and they have a very short lifetime. The
record as of this writing is nine qubits kept stable for a few microseconds.

Ion traps, or trapped ions, are made up of ions (charged atoms) and are

manipulated using lasers in order to prepare the qubits in specific initial states.
Using ion traps was one of the first approaches to building qubits, and they tend
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to be more stable than superconducting circuits. The record as of this writing is
14 qubits stable for a few milliseconds. But ion traps are slower to operate and
seem harder to scale than superconducting circuits.

Building a quantum computer is really a moonshot effort. The challenge
comes down to 1) building a system with a handful of qubits that is stable, fault
tolerant, and capable of applying basic quantum gates, and 2) scaling such a
system to thousands or millions of qubits to make it useful. From a purely
physical standpoint, and to the best of our knowledge, there is nothing to
prevent the creation of large fault-tolerant quantum computers. But many things
are possible in theory and prove hard or too costly to realize in practice (like
secure computers). Of course, the future will tell who is right—the quantum
optimists (who sometimes predict a large quantum computer in ten years) or the
quantum skeptics (who argue that the human race will never see a quantum
computer).

Post-Quantum Cryptographic Algorithms

The field of post-quantum cryptography is about designing public-key algorithms
that cannot be broken by a quantum computer; that is, they would be quantum
safe and able to replace RSA and elliptic curve-based algorithms in a future
where off-the-shelf quantum computers could break 4096-bit RSA moduli in a
snap.

Such algorithms should not rely on a hard problem known to be efficiently
solvable by Shor’s algorithm, which kills the hardness in factoring and discrete
logarithm problems. Symmetric algorithms such as block ciphers and hash
functions would lose only half their theoretical security in the face of a quantum
computer but would not be badly broken as RSA. They might constitute the
basis for a post-quantum scheme.

In the following sections, I explain the four main types of post-quantum
algorithms: code-based, lattice-based, multivariate, and hash-based. Of these,
hash-based is my favorite because of its simplicity and strong security
guarantees.

Code-Based Cryptography

Code-based post-quantum cryptographic algorithms are based on error-correcting
codes, which are techniques designed to transmit bits over a noisy channel. The
basic theory of error-correcting codes dates back to the 1950s. The first code-



based encryption scheme (the McEliece cryptosystem) was developed in 1978 and
is still unbroken. Code-based crypto schemes can be used for both encryption
and signatures. Their main limitation is the size of their public key, which is
typically on the order of a hundred kilobytes. But is that really a problem when
the average size of a web page is around two megabytes?

Let me first explain what error-correcting codes are. Say you want to transmit
a sequence of bits as a sequence of (say) 3-bit words, but the transmission is
unreliable and you’re concerned that 1 or more bits may be incorrectly
transmitted: you send 010, but the receiver gets 011. One simple way to address
this would be to use a very basic error-correction code: instead of transmitting
010 you would transmit 000111000 (repeating each bit three times), and the
receiver would decode the received word by taking the majority value for each of
the three bits. For example, 100110111 would be decoded to 011 because that
pattern appears twice. But as you can see, this particular error-correcting code
would allow a receiver to correct only up to one error per 3-bit chunk, because if
two errors occur in the same 3-bit chunk, the majority value would be the wrong
one.

Linear codes are an example of less trivial error-correcting codes. In the case of
linear codes, a word to encode is seen as an #-bit vector v, and encoding consists
of multiplying v with an 7 x n matrix G to compute the code word w = vG. (In
this example, 7 is greater than #, meaning that the code word is longer than the
original word.) The value G can be structured such that for a given number ¢,
any #-bit error in w allows the recipient to recover the correct v. In other words,
t is the maximum number of errors that can be corrected.

In order to encrypt data using linear codes, the McEliece cryptosystem
constructs G as a secret combination of three matrices, and encrypts by
computing w = vG plus some random value, e, which is a fixed number of 1 bit.
Here, G is the public key, and the private key is composed of the matrices 4, B,
and C such that G = ABC. Knowing A4, B, and C allows one to decode a message
reliably and retrieve w. (You’ll find the decoding step described online.)

The security of the McEliece encryption scheme relies on the hardness of
decoding a linear code with insufficient information, a problem known to be
NP-complete and therefore out of reach of quantum computers.

Lattice-Based Cryptography



Lattices are mathematical structures that essentially consist of a set of points in an
n-dimensional space, with some periodic structure. For example, in dimension
two (7 = 2), a lattice can be viewed as the set of points shown in Figure 14-5.
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Figure 14-5: Points of a two-dimensional lattice, where v and w are basis vectors of the
lattice, and s is the closest vector to the star-shaped point

Lattice theory has led to deceptively simple cryptography schemes. I'll give
you the gist of it.

A first hard problem found in lattice-based crypto is known as short integer
solution (SIS). SIS consists of finding the secret vector s of # numbers given (A4, b)
such that b = As mod ¢, where A is a random 7 x # matrix and ¢ is a prime
number.

The second hard problem in lattice-based cryptography is called learning with
ervors (LWE). LWE consists of finding the secret vector s of # numbers given
(A, b), where b = As + e mod ¢, with A being a random 72 x 7 matrix, ¢ a random
vector of noise, and ¢ a prime number. This problem looks a lot like noisy
decoding in code-based cryptography.

SIS and LWE are somewhat equivalent, and can be restated as instances of the
closest vector problem (CVP) on a lattice, or the problem of finding the vector in a
lattice closest to a given point, by combining a set of basis vectors. The dotted
vector s in Figure 14-5 shows how we would find the closest vector to the star-
shaped point by combining the basis vectors v and w.

CVP and other lattice problems are believed to be hard both for classical and
quantum computers. But this doesn’t directly transfer to secure cryptosystems,
because some problems are only hard in the worst case (that is, for their hardest



instance) rather than the average case (which is what we need for crypto).
Furthermore, while finding the exact solution to CVP is hard, finding an
approximation of the solution can be considerably easier.

Multivariate Cryptography

Multivariate cryptography is about building cryptographic schemes that are as
hard to break as it is to solve systems of multivariate equations, or equations
involving multiple unknowns. Consider, for example, the following system of
equations involving four unknowns x;, x5, a3, x4:

oo A =11

20 X0, g, =12
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XoXg + X%, + %, +x, =0

These equations consist of the sum of terms that are either a single unknown,
such as x4 (or terms of degree one), or the product of two unknown values, such

as x,x3 (terms of degree two or quadratic terms). T'o solve this system, we need to
find the values of x|, x5, 3, x4 that satisfy all four equations. Equations may be
over all real numbers, integers only, or over finite sets of numbers. In
cryptography, however, equations are typically over numbers modulo some
prime numbers, or over binary values (0 and 1).

The problem here is to find a solution that is NP-hard given a random
quadratic system of equations. This hard problem, known as multivariate
quadratics (MQ) equations, is therefore a potential basis for post-quantum systems
because quantum computers won’t solve NP-hard problems efficiently.

Unfortunately, building a cryptosystem on top on MQ isn’t so
straightforward. For example, if we were to use MQ for signatures, the private
key might consist of three systems of equations, L;, N, and L,, which when
combined in this order would give another system of equations that we’ll call P,
the public key. Applying the transformations L, N, and L, consecutively (that is,
transforming a group of values as per the system of equations) is then equivalent
to applying P by transforming xy, x,, &3, X4 to ¥1, ¥2, ¥3, ¥4, defined as follows:
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In such a cryptosystem, L;, N, and L, are chosen such that L.; and L, are linear

transformations (that is, having equations where terms are only added, not
multiplied) that are invertible, and where N is a quadratic system of equations
that is also invertible. This makes the combination of the three a quadratic
system that’s also invertible, but whose inverse is hard to determine without
knowing the inverses of L;, N, and L,.

Computing a signature then consists of computing the inverses of L, N, and

L, applied to some message, M, seen as a sequence of variables, xy, x5, . . . .

S=Ly (N (L, (M)))

Verifying a signature then consists of verifying that P(S) = M.

Attackers could break such a cryptosystem if they manage to compute the
inverse of P, or to determine L, N, and L, from P. The actual hardness of

solving such problems depends on the parameters of the scheme, such as the
number of equations used, the size and type of the numbers, and so on. But
choosing secure parameters is hard, and more than one multivariate scheme
considered safe has been broken.

Multivariate cryptography isn’t used in major applications due to concerns
about the scheme’s security and because it’s often slow or requires tons of
memory. A practical benefit of multivariate signature schemes, however, is that it
produces short signatures.

Hash-Based Cryptography

Unlike the previous schemes, hash-based cryptography is based on the well-
established security of cryptographic hash functions rather than on the hardness
of mathematical problems. Because quantum computers cannot break hash
functions, they cannot break anything that relies on the difficulty of finding
collisions, which is the key idea of hash function-based signature schemes.

Hash-based cryptographic schemes are pretty complex, so we’ll just take a



look at their simplest building block: the one-time signature, a trick discovered
around 1979, and known as Winternitz one-time signature (WO'TS), after its
inventor. Here “one-time” means that a private key can be used to sign only one
message; otherwise, the signature scheme becomes insecure. (WOTS can be
combined with other methods to sign multiple messages, as you’ll see in the
subsequent section.)

But first, let’s see how WO'TS works. Say you want to sign a message viewed
as a number between 0 and w — 1, where w is some parameter of the scheme.
The private key is a random string, K. To sign a message, M, with 0 < M < w,
you compute Hash(Hash(. . .(Hash(K))), where the hash function Hash is
repeated M times. We denote this value as Hash™(K). The public key is

Hash?(K), or the result of w nested iterations of Hash, starting from K.

A WOTS signature, S, is verified by checking that Hash? = ¥(S) is equal to
the public key Hash?(K). Note that S is K after M applications of Hash, so if we
do another w — M applications of Hash, we’ll get a value equal to K hashed M +
(w — M) = w times, which is the public key.

"This scheme looks rather dumb, and it has significant limitations:

Signatures can be forged
From HashM(K), the signature of M, you can compute Hash(Hash"/(K)) =

Hash * 1(K), which is a valid signature of the message M + 1. This problem
can be fixed by signing not only M, but also w — M, using a second key.

It only works for short messages

If messages are 8 bits long, there are up to 2% — 1 = 255 possible messages, so
you’ll have to compute Hash up to 255 times in order to create a signature.
That might work for short messages, but not for longer ones: for example,
with 128-bit messages, signing the message 2128 — 1 would take forever. A

workaround is to split longer messages into shorter ones.

It works only once
If a private key is used to sign more than one message, an attacker can recover
enough information to forge a signature. For example, if w = 8 and you sign
the numbers 1 and 7 using the preceding trick to avoid trivial forgeries, the
attacker gets Hash!(K) and Hash’(K’) as a signature of 1, and Hash’(K) and

Hash!(K’) as a signature of 7. From these values, the attacker can compute



Hash*(K) and Hash*(K") for any « in [1;7] and thus forge a signature on
behalf of the owner of K and K'. There is no simple way to fix this.

State-of-the-art hash-based schemes rely on more complex versions of
WOTS, combined with tree data structures and sophisticated techniques
designed to sign different messages with different keys. Unfortunately, the
resulting schemes produce large signatures (on the order of dozens of kilobytes,
as with SPHINCS, a state-of-the-art scheme at the time of this writing), and
they sometimes have a limit on the number of messages they can sign.

How Things Can Go Wrong

Post-quantum cryptography may be fundamentally stronger than RSA or elliptic
curve cryptography, but it’s not infallible or omnipotent. Our understanding of
the security of post-quantum schemes and their implementations is more limited
than for not-post-quantum cryptography, which brings with it increased risk, as
summarized in the following sections.

Unclear Security Level

Post-quantum schemes can appear deceptively strong yet prove insecure against
both quantum and classical attacks. Lattice-based algorithms, such as the ring-
LWE family of computational problems (versions of the LWE problem that
work with polynomials), are sometimes problematic. Ring-LWE is attractive for
cryptographers because it can be leveraged to build cryptosystems that are in
principle as hard to break as it is to solve the hardest instances of Ring-LWE
problems, which can be NP-hard. But when security looks too good to be true,
it often is.

One problem with security proofs is that they are often asymptotic, meaning
that they’re true only for a large number of parameters such as the dimension of
the underlying lattice. However, in practice, a much smaller number of
parameters is used.

Even when a lattice-based scheme looks to be as hard to break as some NP-
hard problem, its security remains hard to quantify. In the case of lattice-based
algorithms, we rarely have a clear picture of the best attacks against them and
the cost of such an attack in terms of computation or hardware, because of our
lack of understanding of these recent constructions. This uncertainty makes
lattice-based  schemes harder to compare against better-understood



constructions such as RSA, and this scares potential users. However, researchers
have been making progress on this front and hopefully in a few years, lattice
problems will be as well understood as RSA. (For more technical details on the
Ring-LWE problem, read Peikert’s excellent survey at
bttps://eprint.iacr.org/2016/351/.)

Fast Forward: What Happens if It’s Too Late?

Imagine this CNN headline: April 2, 2048: “ACME, Inc. reveals its secretly built
quantum computer, launches break-crypto-as-a-service platform.” Okay, RSA
and elliptic curve crypto are screwed. Now what?

The bottom line is that post-quantum encryption is way more critical than
post-quantum signatures. Let’s look at the case of signatures first. If you were
still using RSA-PSS or ECDSA as a signature scheme, you could just issue new
signatures using a post-quantum signature scheme in order to restore your
signatures’ trust. You would revoke your older, quantum-unsafe public keys and
compute fresh signatures for every message you had signed. After a bit of work,
you’d be fine.

You would only need to panic if you were encrypting data using quantum-
unsafe schemes, such as RSA-OAEP. In this case all transmitted ciphertext could
be compromised. Obviously, it would be pointless to encrypt that plaintext again
with a post-quantum algorithm since your data’s confidentiality is already gone.

But what about key agreement, with Diffie-Hellman (DH) and its elliptic
curve counterpart (ECDH)?

Well, at first glance, the situation looks to be as bad as with encryption:
attackers who’ve collected public keys g and g’ could use their shiny new
quantum computer to compute the secret exponent # or b and compute the
shared secret g2, and then derive from it the keys used to encrypt your traffic.
But in practice, Diffie-Hellman isn’t always used in such a simplistic fashion.
The actual session keys used to encrypt your data may be derived from both the
Diffie—-Hellman shared secret and some internal state of your system.

For example, that’s how state-of-the-art mobile messaging systems work,
thanks to a protocol pioneered with the Signal application. When you send a
new message to a peer with Signal, a new Diffie-Hellman shared secret is
computed and combined with some internal secrets that depend on the previous
messages sent within that session (which can span long periods of time). Such
advanced use of Diffie-Hellman makes the work of an attacker much harder,
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even one with a quantum computer.

Implementation Issues

In practice, post-quantum schemes will be code, not algorithms; that is, software
running on some physical processor. And however strong the algorithms may be
on paper, they won’t be immune to implementation errors, software bugs, or
side-channel attacks. An algorithm may be completely post-quantum in theory
but may still be broken by a simple classical computer program because a
programmer forgot to enter a semicolon.

Furthermore, schemes such as code-based and lattice-based algorithms rely
heavily on mathematical operations, the implementation of which uses a variety
of tricks to make those operations as fast as possible. But by the same token, the
complexity of the code in these algorithms makes implementation more
vulnerable to side-channel attacks, such as timing attacks, which infer
information about secret values based on measurement of execution times. In
fact, such attacks have already been applied to code-based encryption (see
https://eprint.iacr.org/2010/479/) and to lattice-based signature schemes (see
https://eprint.iacr.org/2016/300/).

The upshot is that, ironically, post-quantum schemes will be less secure in
practice at first than non-post-quantum ones, due to vulnerabilities in their
implementations.

Further Reading

To learn the basics of quantum computation, read the classic Quantum
Computation and Quantum Information by Nielsen and Chuang (Cambridge,
2000). Aaronson’s Quantum Computing Since Democritus (Cambridge, 2013), a
less technical and more entertaining read, covers more than quantum
computing.

Several software simulators will allow you to experiment with quantum
computing. The Quantum Computing Playground at
hitp://www.quantumplayground.net/ is particularly well designed, with a simple
programming language and intuitive visualizations.

For the latest research in post-quantum cryptography, see https://pqcrypto.org/
and the associated conference PQCrypto.

The coming years promise to be particularly exciting for post-quantum crypto
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thanks to NIST’s Post-Quantum Crypto Project, a community effort to develop
the future post-quantum standard. Be sure to check the project’s website
bttp://esve.nist.gov/groups/ST/post-quantum-crypto/  for the related algorithms,
research papers, and workshops.
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